Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
ACS Appl Mater Interfaces ; 16(19): 24580-24589, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38706440

RESUMEN

The precise design and synthesis of active sites to improve catalyst's performance has emerged as a promising tactic for electrochemistry. However, it is challenging to combine different types of active sites and manipulate them simultaneously at atomic resolution. Here, we present a strategy to synthesize Re atom-doped Cu twin boundaries (TBs), through pulsed electrodeposition and boundary segregation. The Re-doped Cu TBs demonstrate a highly efficient nitrogen reduction reaction (NRR) performance. Re-doped Cu TBs showed a turnover frequency of ∼5889 s-1, ∼800 times higher than the pure Cu TB active centers (∼7 s-1). In addition to the "acceptance-donation" activation of N2 molecules, theoretical calculations also reveal that the Re-Re dimer on TB can boost the NRR and impede the hydrogen evolution reaction synchronously, rendering Re-doped Cu TB catalysts with high NRR activity and selectivity.

2.
Immun Ageing ; 21(1): 29, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730291

RESUMEN

BACKGROUND: Quercetin is a flavonol compound widely distributed in plants that possesses diverse biological properties, including antioxidative, anti-inflammatory, anticancer, neuroprotective and senescent cell-clearing activities. It has been shown to effectively alleviate neurodegenerative diseases and enhance cognitive functions in various models. The immune system has been implicated in the regulation of brain function and cognitive abilities. However, it remains unclear whether quercetin enhances cognitive functions by interacting with the immune system. RESULTS: In this study, middle-aged female mice were administered quercetin via tail vein injection. Quercetin increased the proportion of NK cells, without affecting T or B cells, and improved cognitive performance. Depletion of NK cells significantly reduces cognitive ability in mice. RNA-seq analysis revealed that quercetin modulated the RNA profile of hippocampal tissues in aging animals towards a more youthful state. In vitro, quercetin significantly inhibited the differentiation of Lin-CD117+ hematopoietic stem cells into NK cells. Furthermore, quercetin promoted the proportion and maturation of NK cells by binding to the MYH9 protein. CONCLUSIONS: In summary, our findings suggest that quercetin promotes the proportion and maturation of NK cells by binding to the MYH9 protein, thereby improving cognitive performance in middle-aged mice.

3.
Front Immunol ; 15: 1367048, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585259

RESUMEN

Objective: In the defense against microorganisms like Candida albicans, macrophages recruit LC3(Microtubule-associated protein 1A/1B-light chain 3) to the periplasm, engaging in the elimination process through the formation of a single-membrane phagosome known as LC3-associated phagocytosis (LAP). Building on this, we propose the hypothesis that glucocorticoids may hinder macrophage phagocytosis of Candida glabrata by suppressing LAP, and rapamycin could potentially reverse this inhibitory effect. Methods: RAW264.7 cells were employed for investigating the immune response to Candida glabrata infection. Various reagents, including dexamethasone, rapamycin, and specific antibodies, were utilized in experimental setups. Assays, such as fluorescence microscopy, flow cytometry, ELISA (Enzyme-Linked Immunosorbent Assay), Western blot, and confocal microscopy, were conducted to assess phagocytosis, cytokine levels, protein expression, viability, and autophagy dynamics. Results: Glucocorticoids significantly inhibited macrophage autophagy, impairing the cells' ability to combat Candida glabrata. Conversely, rapamycin exhibited a dual role, initially inhibiting and subsequently promoting phagocytosis of Candida glabrata by macrophages. Glucocorticoids hinder macrophage autophagy in Candida glabrata infection by suppressing the MTOR pathway(mammalian target of rapamycin pathway), while the activation of MTOR pathway by Candida glabrata diminishes over time. Conclusion: Our study elucidates the intricate interplay between glucocorticoids, rapamycin, and macrophage autophagy during Candida glabrata infection. Understanding the implications of these interactions not only sheds light on the host immune response dynamics but also unveils potential therapeutic avenues for managing fungal infections.


Asunto(s)
Candida glabrata , Candidiasis , Animales , Ratones , Candida glabrata/fisiología , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Sirolimus/farmacología , Ratones Endogámicos BALB C , Autofagia , Macrófagos , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos
4.
Glob Med Genet ; 11(2): 150-158, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38628662

RESUMEN

Background NFE2L2 (nuclear factor erythroid-2-related factor-2) encodes a basic leucine zipper (bZIP) transcription factor and exhibits variations in various tumor types, including lung cancer. In this study, we comprehensively investigated the impact of simultaneous mutations on the survival of NFE2L2 -mutant lung cancer patients within specific subgroups. Methods A cohort of 1,103 lung cancer patients was analyzed using hybridization capture-based next-generation sequencing. Results The NFE2L2 gene had alterations in 3.0% (33/1,103) of lung cancer samples, including 1.5% (15/992) in adenocarcinoma and 16.2% (18/111) in squamous cell carcinoma. Thirty-four variations were found, mainly in exons 2 (27/34). New variations in exon 2 (p.D21H, p.V36_E45del, p.F37_E45del, p.R42P, p.E67Q, and p.L76_E78delinsQ) were identified. Some patients had copy number amplifications. Co-occurrence with TP53 (84.8%), CDKN2A (33.3%), KMT2B (33.3%), LRP1B (33.3%), and PIK3CA (27.3%) mutations was common. Variations of NFE2L2 displayed the tightest co-occurrence with IRF2 , TERC , ATR , ZMAT3 , and SOX2 ( p < 0.001). In The Cancer Genome Atlas Pulmonary Squamous Carcinoma project, patients with NFE2L2 variations and 3q26 amplification had longer median survival (63.59 vs. 32.04 months, p = 0.0459) and better overall survival. Conclusions NFE2L2 mutations display notable heterogeneity in lung cancer. The coexistence of NFE2L2 mutations and 3q26 amplification warrants in-depth exploration of their potential clinical implications and treatment approaches for affected patients.

5.
Front Genet ; 15: 1364742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666293

RESUMEN

The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) mediated Cas9 nuclease system has been extensively used for genome editing and gene modification in eukaryotic cells. CRISPR/Cas9 technology holds great potential for various applications, including the correction of genetic defects or mutations within the human genome. The application of CRISPR/Cas9 genome editing system in human disease research is anticipated to solve a multitude of intricate molecular biology challenges encountered in life science research. Here, we review the fundamental principles underlying CRISPR/Cas9 technology and its recent application in neurodegenerative diseases, cardiovascular diseases, autoimmune related diseases, and cancer, focusing on the disease modeling and gene therapy potential of CRISPR/Cas9 in these diseases. Finally, we provide an overview of the limitations and future prospects associated with employing CRISPR/Cas9 technology for diseases study and treatment.

6.
Clin Exp Med ; 24(1): 89, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683255

RESUMEN

The significance of Protein phosphatase 4 catalytic subunit (PPP4C) in diffuse large B-cell lymphoma (DLBCL) prognosis is not well understood. This work aimed to investigate the expression of PPP4C in DLBCL, investigate the correlation between PPP4C expression and clinicopathological parameters, and assess the prognostic significance of PPP4C. The mRNA expression of PPP4C was investigated using data from TCGA and GEO. To further analyze PPP4C expression, immunohistochemistry was performed on tissue microarray samples. Correlation analysis between clinicopathological parameters and PPP4C expression was conducted using Pearson's chi-square test or Fisher's exact test. Univariate and multivariate Cox hazard models were utilized to determine the prognostic significance of clinicopathological features and PPP4C expression. Additionally, survival analysis was performed using Kaplan-Meier survival curves. In both TCGA and GEO datasets, we identified higher mRNA levels of PPP4C in tumor tissues compared to normal tissues. Upon analysis of various clinicopathological features of DLBCL, we observed a correlation between high PPP4C expression and ECOG score (P = 0.003). Furthermore, according to a Kaplan-Meier survival analysis, patients with DLBCL who exhibit high levels of PPP4C had worse overall survival (P = 0.001) and progression-free survival (P = 0.002). PPP4C was shown to be an independent predictive factor for OS and PFS in DLBCL by univariate and multivariate analysis (P = 0.011 and P = 0.040). This study's findings indicate that high expression of PPP4C is linked to a poor prognosis for DLBCL and may function as an independent prognostic factors.


Asunto(s)
Biomarcadores de Tumor , Linfoma de Células B Grandes Difuso , Fosfoproteínas Fosfatasas , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Anciano , Biomarcadores de Tumor/genética , Adulto , Estimación de Kaplan-Meier , Inmunohistoquímica , Análisis de Supervivencia , Regulación Neoplásica de la Expresión Génica , Anciano de 80 o más Años
7.
Cancer Sci ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613253

RESUMEN

Peripheral T-cell lymphoma (PTCL) is a highly aggressive type of non-Hodgkin's lymphoma with a poor prognosis. Pyroptosis is a newly discovered procedural cell death mode, which has been implicated to occur in both tumor cells and immune cells. However, the occurrence and effect of pyroptosis on PTCL remain unclear. Here, we found that pyroptosis occurred in interstitial macrophages of PTCL rather than in tumor cells. In clinical specimens, macrophage pyroptosis was associated with a poor prognosis of PTCL. In vitro experiments and gene sequencing results showed that pyroptotic macrophages could upregulate the expression of TLR4 through secreting inflammatory cytokines IL-18. Upregulated TLR4 activated its downstream NF-κB anti-apoptotic signaling pathway, thus leading to malignant proliferation and chemotherapy resistance of tumor cells. Moreover, the expression of factors such as XIAP in the NF-κB anti-apoptotic pathway was downregulated after the knockdown of TLR4, and the malignant promotion effect of pyroptotic macrophages on PTCL cells was also reversed. Our findings revealed the mechanism of pyroptotic macrophages promoting the malignant biological behavior of PTCL and elucidated the key role of TLR4 in this process. In-depth analysis of this mechanism will contribute to understanding the regulatory effect of PTCL by the tumor microenvironment and providing new ideas for the clinical treatment of PTCL.

8.
Materials (Basel) ; 17(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38612209

RESUMEN

Typically, in the manufacturing of GH4169 superalloy forgings, the multi-process hot forming that consists of pre-deformation, heat treatment and final deformation is required. This study focuses on the microstructural evolution throughout hot working processes. Considering that δ phase can promote nucleation and limit the growth of grains, a process route was designed, including pre-deformation, aging treatment (AT) to precipitate sufficient δ phases, high temperature holding (HTH) to uniformly heat the forging, and final deformation. The results show that the uneven strain distribution after pre-deformation has a significant impact on the subsequent refinement of the grain microstructure due to the complex coupling relationship between the evolution of the δ phase and recrystallization behavior. After the final deformation, the fine-grain microstructure with short rod-like δ phases as boundaries is easy to form in the region with a large strain of the pre-forging. However, necklace-like mixed grain microstructure is formed in the region with a small strain of the pre-forging. In addition, when the microstructure before final deformation consists of mixed grains, dynamic recrystallization (DRX) nucleation behavior preferentially depends on kernel average misorientation (KAM) values. A large KAM can promote the formation of DRX nuclei. When the KAM values are close, a smaller average grain size of mixed-grain microstructure is more conductive to promote the DRX nucleation. Finally, the interaction mechanisms between δ phase and DRX nucleation are revealed.

9.
Clin Transl Oncol ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554189

RESUMEN

PURPOSE: Metabolic syndrome (MetS), characterized by insulin resistance, is closely associated with the prognosis of various cancer types, but has not been reported in diffuse large B-cell lymphoma (DLBCL). The aim of this study is to examine how other clinicopathological variables and the MetS influence the prognosis of DLBCL. METHODS: Clinical and pathological data were collected from 319 patients with DLBCL who were admitted to our hospital between January 2012 and December 2020. The data accessible with SPSS 27.0 enables the utilization of various statistical methods for clinical data analysis, including independent sample t test and univariate and multivariate COX regression. RESULTS: The presence of MetS was linked to both overall survival (OS) and progression-free survival (PFS), in addition to other clinicopathological characteristics as age, IPI score, rituximab usage, and Ki-67 expression level. This link with OS and PFS indicated a poor prognosis, as shown by survival analysis. Subsequent univariate analysis identified IPI score, Ki-67 expression level, tumor staging, rituximab usage, lactate dehydrogenase expression level, and the presence or absence of MetS as factors linked with OS and PFS. Furthermore, multivariate Cox regression analysis confirmed the independent risk factor status of IPI score, Ki-67 expression level, rituximab usage, and the presence of MetS in evaluating the prognosis of patients with DLBCL. CONCLUSION: This study's findings indicate that patients with pre-treatment MetS had a poor prognosis, with relatively shorter OS and PFS compared to those without pre-treatment MetS. Furthermore, the presence of MetS, IPI score, Ki-67 expression level, and rituximab usage were identified as independent risk factors significantly affecting the prognosis of DLBCL.

10.
Plant Commun ; : 100887, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532644

RESUMEN

BEL1-LIKE HOMEODOMAIN (BLH) proteins are known to function in various plant developmental processes. However, the role of BLHs in regulating plant cell elongation is still unknown. Here, we identify a BLH gene, GhBLH1, that positively regulates fiber cell elongation. Combined transcriptomic and biochemical analyses reveal that GhBLH1 enhances linolenic acid accumulation to promote cotton fiber cell elongation by activating the transcription of GhFAD7A-1 via binding of the POX domain of GhBLH1 to the TGGA cis-element in the GhFAD7A-1 promoter. Knockout of GhFAD7A-1 in cotton significantly reduces fiber length, whereas overexpression of GhFAD7A-1 results in longer fibers. The K2 domain of GhKNOX6 directly interacts with the POX domain of GhBLH1 to form a functional heterodimer, which interferes with the transcriptional activation of GhFAD7A-1 via the POX domain of GhBLH1. Overexpression of GhKNOX6 leads to a significant reduction in cotton fiber length, whereas knockout of GhKNOX6 results in longer cotton fibers. An examination of the hybrid progeny of GhBLH1 and GhKNOX6 transgenic cotton lines provides evidence that GhKNOX6 negatively regulates GhBLH1-mediated cotton fiber elongation. Our results show that the interplay between GhBLH1 and GhKNOX6 modulates regulation of linolenic acid synthesis and thus contributes to plant cell elongation.

11.
Plant Physiol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38527791

RESUMEN

Auxin, a pivotal regulator of diverse plant growth processes, remains central to development. The auxin-responsive genes auxin/indole-3-acetic acids (AUX/IAAs) are indispensable for auxin signal transduction, which is achieved through intricate interactions with auxin response factors (ARFs). Despite this, the potential of AUX/IAAs to govern the development of the most fundamental biological unit, the single cell, remains unclear. In this study, we harnessed cotton (Gossypium hirsutum) fiber, a classic model for plant single-cell investigation, to determine the complexities of AUX/IAAs. Our research identified two pivotal AUX/IAAs, auxin resistant 2 (GhAXR2) and short hypocotyl 2 (GhSHY2), which exhibit opposite control over fiber development. Notably, suppressing GhAXR2 reduced fiber elongation, while silencing GhSHY2 fostered enhanced fiber elongation. Investigating the mechanistic intricacies, we identified specific interactions between GhAXR2 and GhSHY2 with distinct ARFs. GhAXR2's interaction with GhARF6-1 and GhARF23-2 promoted fiber cell development through direct binding to the AuxRE cis-element in the constitutive triple response 1 (GhCTR1) promoter, resulting in transcriptional inhibition. In contrast, the interaction of GhSHY2 with GhARF7-1 and GhARF19-1 exerted a negative regulatory effect, inhibiting fiber cell growth by activating the transcription of xyloglucan endotransglucosylase/hydrolase 9 (GhXTH9) and cinnamate-4-hydroxylase (GhC4H). Thus, our study reveals the intricate regulatory networks surrounding GhAXR2 and GhSHY2, elucidating the complex interplay of multiple ARFs in AUX/IAA-mediated fiber cell growth. This work enhances our understanding of single-cell development and has potential implications for advancing plant growth strategies and agricultural enhancements.

12.
Cell Mol Biol Lett ; 29(1): 36, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486141

RESUMEN

BACKGROUND: Macrophage activation may play a crucial role in the increased susceptibility of obese individuals to acute lung injury (ALI). Dysregulation of miRNA, which is involved in various inflammatory diseases, is often observed in obesity. This study aimed to investigate the role of miR-192 in lipopolysaccharide (LPS)-induced ALI in obese mice and its mechanism of dysregulation in obesity. METHODS: Human lung tissues were obtained from obese patients (BMI ≥ 30.0 kg/m2) and control patients (BMI 18.5-24.9 kg/m2). An obese mouse model was established by feeding a high-fat diet (HFD), followed by intratracheal instillation of LPS to induce ALI. Pulmonary macrophages of obese mice were depleted through intratracheal instillation of clodronate liposomes. The expression of miR-192 was examined in lung tissues, primary alveolar macrophages (AMs), and the mouse alveolar macrophage cell line (MH-S) using RT-qPCR. m6A quantification and RIP assays helped determine the cause of miR-192 dysregulation. miR-192 agomir and antagomir were used to investigate its function in mice and MH-S cells. Bioinformatics and dual-luciferase reporter gene assays were used to explore the downstream targets of miR-192. RESULTS: In obese mice, depletion of macrophages significantly alleviated lung tissue inflammation and injury, regardless of LPS challenge. miR-192 expression in lung tissues and alveolar macrophages was diminished during obesity and further decreased with LPS stimulation. Obesity-induced overexpression of FTO decreased the m6A modification of pri-miR-192, inhibiting the generation of miR-192. In vitro, inhibition of miR-192 enhanced LPS-induced polarization of M1 macrophages and activation of the AKT/ NF-κB inflammatory pathway, while overexpression of miR-192 suppressed these reactions. BIG1 was confirmed as a target gene of miR-192, and its overexpression offset the protective effects of miR-192. In vivo, when miR-192 was overexpressed in obese mice, the activation of pulmonary macrophages and the extent of lung injury were significantly improved upon LPS challenge. CONCLUSIONS: Our study indicates that obesity-induced downregulation of miR-192 expression exacerbates LPS-induced ALI by promoting macrophage activation. Targeting macrophages and miR-192 may provide new therapeutic avenues for obesity-associated ALI.


Asunto(s)
Lesión Pulmonar Aguda , MicroARNs , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Regulación hacia Abajo , Lipopolisacáridos/toxicidad , Activación de Macrófagos , Ratones Obesos , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/complicaciones , Obesidad/genética , Transducción de Señal
13.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496466

RESUMEN

The complex and heterogeneous genetic architecture of schizophrenia inspires us to look beyond individual risk genes for therapeutic strategies and target their interactive dynamics and convergence. Postsynaptic NMDA receptor (NMDAR) complexes are a site of such convergence. Src kinase is a molecular hub of NMDAR function, and its protein interaction subnetwork is enriched for risk-genes and altered protein associations in schizophrenia. Previously, Src activity was found to be decreased in post-mortem studies of schizophrenia, contributing to NMDAR hypofunction. PSD-95 suppresses Src via interacting with its SH2 domain. Here, we devised a strategy to suppress the inhibition of Src by PSD-95 via employing a cell penetrating and Src activating PSD-95 inhibitory peptide (TAT-SAPIP). TAT-SAPIP selectively increased post-synaptic Src activity in humans and mice, and enhanced synaptic NMDAR currents in mice. Chronic ICV injection of TAT-SAPIP rescued deficits in trace fear conditioning in Src hypomorphic mice. We propose blockade of the Src-PSD-95 interaction as a proof of concept for the use of interfering peptides as a therapeutic strategy to reverse NMDAR hypofunction in schizophrenia and other illnesses.

14.
J Am Chem Soc ; 146(12): 8520-8527, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38491937

RESUMEN

Two-dimensional (2D) zeolite, with a high aspect ratio, has more open skeletons and accessible active sites than its three-dimensional (3D) counterpart. However, traditional methods of obtaining 2D zeolites often cause structural damage and widespread skeleton defects, hindering efficient selectivity in molecular separation. In this study, we present, for the first time, a direct epitaxial synthesis of 2D zeolite (Epi-MWW) guided by hexagonal boron nitride (h-BN) with a coincidence matching of site lattices to MWW zeolite. The as-grown Epi-MWW zeolite possesses a high crystallinity and intact hexagonal 2D morphology, with an average thickness of 10 nm and an aspect ratio of over 50. Thanks to its excellent molecular accessibility, the diffusion time constants of o-xylene (OX) and p-xylene (PX) are as 12 and 133 times higher than those of conventional MCM-22, respectively; the PX/OX selectivity of Epi-MWW is 7.4 times better than MCM-22 as calculated by the ideal adsorbed solution theory.

15.
Immunity ; 57(2): 200-202, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38354699

RESUMEN

Disease-associated microglia (DAMs) are a unique microglial state in development and various CNS pathologies. In this issue of Immunity, Lan and colleagues provide novel insights into the diversity of DAMs in CNS diseases, revealing their terminal fate following juvenile stroke verses their reversible fate following neonatal stroke and their ability to maintain immune memory upon return to homeostatic states.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Accidente Cerebrovascular , Recién Nacido , Humanos , Microglía
16.
J Am Chem Soc ; 146(6): 4036-4044, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38291728

RESUMEN

As an important biomarker, ammonia exhibits a strong correlation with protein metabolism and specific organ dysfunction. Limited by the immobile instrumental structure, invasive and complicated procedures, and unsatisfactory online sensitivity and selectivity, current medical diagnosis fails to monitor this chemical in real time efficiently. Herein, we present the successful synthesis of a long-range epitaxial metal-organic framework on a millimeter domain-sized single-crystalline graphene substrate (LR-epi-MOF). With a perfect 30° epitaxial angle and a mere 2.8% coincidence site lattice mismatch between the MOF and graphene, this long-range-ordered epitaxial structure boosts the charge transfer from ammonia to the MOF and then to graphene, thereby promoting the overall charge delocalization and exhibiting extraordinary electrical global coupling properties. This unique characteristic imparts a remarkable sensitivity of 0.1 ppb toward ammonia. The sub-ppb detecting capability and high anti-interference ability enable continuous information recording of breath ammonia that is strongly correlated with the intriguing human lifestyle. Wearable electronics based on the LR-epi-MOF could accurately portray the active protein metabolism pattern in real time and provide personal assistance in health management.


Asunto(s)
Grafito , Estructuras Metalorgánicas , Humanos , Amoníaco , Grafito/química , Electrónica
17.
Clin Rheumatol ; 43(3): 1063-1071, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38200254

RESUMEN

OBJECTIVES: To elucidate the sex-specific differences in demographic features, clinical characteristics, and quality of life in Chinese patients with psoriatic arthritis (PsA). METHODS: A total of 1,074 patients with PsA registered between December 2018 and June 2021 from the Chinese REgistry of Psoriatic ARthritis (CREPAR) cohort were selected. The baseline data on demographics, clinical characteristics, commonly used laboratory tests, comorbidities, and quality of life assessments were collected for this cross-sectional analysis. RESULTS: A total of 1,074 patients were included in this study, 585 (54.47%) of them were male and 489 (45.53%) were female. The age at PsA onset in male patients was earlier than that in female patients (38.10 ± 12.79 vs 40.37 ± 13.41, p = 0.005). For clinical characteristics, male patients presented with higher rates of axial involvement (43.89% vs 37.74%, p = 0.044) and nail involvement (66.15% vs 58.08%, p = 0.006), while female patients presented with higher rates of peripheral arthritis (89.57% vs 83.93%, p = 0.007). For laboratory tests, men presented with a higher percentage of HLA-B27 positivity than women (24.65% vs 16.70%, p = 0.002) and had higher levels of CRP (median 9.70 vs 5.65, p < 0.001). Regarding disease assessment indices, male patients scored higher in PASI and BASFI (median 5.00 vs 3.00, p = 0.007 and 1.80 vs 1.40, p = 0.012, respectively). No sex difference was found in rates of achieving remission. Factors associated with disease remission were also analyzed in both sexes. CONCLUSION: Demographic and clinical characteristics tend to vary between male and female patients with PsA. Male patients reported more functional limitations in daily life. Key Points • The demographic and clinical features vary greatly between male and female patients with PsA. • Male patients reported more functional burden in daily life as measured by BASFI.


Asunto(s)
Artritis Psoriásica , Humanos , Masculino , Femenino , Artritis Psoriásica/epidemiología , Calidad de Vida , Estudios Transversales , Sistema de Registros , China/epidemiología , Índice de Severidad de la Enfermedad
18.
Cell Death Discov ; 10(1): 32, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228635

RESUMEN

Pyroptotic cell death, an inflammatory form of programmed cell death (PCD), is emerging as a potential therapeutic opportunity for radiotherapy (RT). RT is commonly used for cancer treatment, but its effectiveness can be limited by tumor resistance and adverse effects on healthy tissues. Pyroptosis, characterized by cell swelling, membrane rupture, and release of pro-inflammatory cytokines, has been shown to enhance the immune response against cancer cells. By inducing pyroptotic cell death in tumor cells, RT has the potential to enhance treatment outcomes by stimulating anti-tumor immune responses and improving the overall efficacy of RT. Furthermore, the release of danger signals from pyroptotic cells can promote the recruitment and activation of immune cells, leading to a systemic immune response that may target distant metastases. Although further research is needed to fully understand the mechanisms and optimize the use of pyroptotic cell death in RT, it holds promise as a novel therapeutic strategy for improving cancer treatment outcomes. This review aims to synthesize recent research on the regulatory mechanisms underlying radiation-induced pyroptosis and to elucidate the potential significance of this process in RT. The insights gained from this analysis may inform strategies to enhance the efficacy of RT for tumors.

19.
Anal Chem ; 96(5): 1913-1921, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38266028

RESUMEN

2D nanosheets (NSs) have been widely used in drug-related applications. However, a comprehensive investigation into the cytotoxicity mechanism linked to the redox activity is lacking. In this study, with cytochrome c (Cyt c) as the model biospecies, the cytotoxicity of 2D NSs was evaluated systematically based on their redox effect with microfluidic techniques. The interface interaction, dissolution, and redox effect of 2D NSs on Cyt c were monitored with pulsed streaming potential (SP) measurement and capillary electrophoresis (CE). The relationship between the redox activity of 2D NSs and the function of Cyt c was evaluated in vitro with Hela cells. The results indicated that the dissolution and redox activity of 2D NSs can be simultaneously monitored with CE under weak interface interactions and at low sample volumes. Both WS2 NSs and MoS2 NSs can reduce Cyt c without significant dissolution, with reduction rates measured at 6.24 × 10-5 M for WS2 NSs and 3.76 × 10-5 M for MoS2 NSs. Furthermore, exposure to 2D NSs exhibited heightened reducibility, which prompted more pronounced alterations associated with Cyt c dysfunction, encompassing ATP synthesis, modifications in mitochondrial membrane potential, and increased reactive oxygen species production. These observations suggest a positive correlation between the redox activity of 2D NSs and their redox toxicity in Hela cells. These findings provide valuable insight into the redox properties of 2D NSs regarding cytotoxicity and offer the possibility to modify the 2D NSs to reduce their redox toxicity for clinical applications.


Asunto(s)
Citocromos c , Molibdeno , Humanos , Células HeLa , Oxidación-Reducción
20.
Int J Biol Macromol ; 260(Pt 1): 129372, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237818

RESUMEN

Recently, photothermal nanomaterials has attracted enormous interests owing to their enhanced therapeutic effects and less adverse effects in the treatment of infectious diseases. Herein, this work presents a photothermally responsive antimicrobial, bioadhesive hydrogel through three dimensions (3D) printing technology for treatment the wound infection. The hydrogel is based on a visible-light-activated naturally derived polymer (GelMA), GelMA grafted with dopamine (GelMA-DA) and the polydopamine coated reduced graphene oxide (rGO@PDA), which can provide the multifunctional such as photothermal antibacterial, antioxidant, conductivity, adhesion and hemostasis performance to accelerate wound healing. The developed hydrogel shown the excellent adhesion capability to adhere the in vitro physiological tissues and glass surface. Moreover, the fabricated hydrogel also exhibited excellent cytocompatibility to L929 cells which is a vital biofunction for efficiently promoting cell proliferation and migration in vitro. The hydrogel also showed remarkable photothermally responsive antimicrobial capability against two strains (99.3 % antibacterial ratio for E. coli and 98.6 % antibacterial ratio for S. aureus). Furthermore, it could support the wound repair and regeneration of S. aureus infected full-thickness wound defects in rats. Overall, the 3D printed hydrogel could be used as a photothermal platform for the development of more effective therapies against the infected wound.


Asunto(s)
Antiinfecciosos , Metacrilatos , Infección de Heridas , Animales , Ratas , Hidrogeles/farmacología , Escherichia coli , Staphylococcus aureus , Infección de Heridas/tratamiento farmacológico , Antibacterianos/farmacología , Impresión Tridimensional , Gelatina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...