Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Analyst ; 149(4): 1202-1211, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214351

RESUMEN

In this study, the carboxy silane 4-(triethoxysilyl)butanoic acid (TESBA) was used to modify titanium dioxide (TiO2) to create a self-assembled monolayer (SAM) and then directionally immobilize a capture antibody using protein A. We selected the amino silane (3-aminopropyl)triethoxysilane (APTES) to perform a comparative analysis with TESBA, and employed glutaraldehyde (GA) as the control. The modification and detection effects and the limit of detection (LOD) were evaluated by detecting human immunoglobulin G (IgG). The average normalized sensitivity of the dual-grating coupler waveguide biosensor was 49.63 ± 0.27 RIU-1 and the optimum resolution was 1.30 × 10-6 RIU. When the SAM was prepared using TESBA and APTES followed by GA, the LOD was 4.59 × 10-7 g mL-1 and 5.29 × 10-7 g mL-1, respectively. We analyzed the modification and detection effects by the t-test and concluded that the differences in the modification effects using TESBA and APTES followed by GA were significant and the differences in the detection effects using TESBA and APTES followed by GA were insignificant. The use of TESBA as the SAM led to the modification effect being superior to that obtained using APTES followed by GA. The detection effect using TESBA was as outstanding as that using APTES followed by GA. Our findings demonstrate the feasibility and effectiveness of using TESBA as the SAM to carboxylate the surface of TiO2, thereby enabling immobilization of biomolecules for human IgG detection.


Asunto(s)
Inmunoglobulina G , Titanio , Humanos , Ácido Butírico , Glutaral
2.
BMC Biol ; 21(1): 293, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110916

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder with clinical presentations of progressive cognitive and memory deterioration. The pathologic hallmarks of AD include tau neurofibrillary tangles and amyloid plaque depositions in the hippocampus and associated neocortex. The neuronal aggregated tau observed in AD cells suggests that the protein folding problem is a major cause of AD. J-domain-containing proteins (JDPs) are the largest family of cochaperones, which play a vital role in specifying and directing HSP70 chaperone functions. JDPs bind substrates and deliver them to HSP70. The association of JDP and HSP70 opens the substrate-binding domain of HSP70 to help the loading of the clients. However, in the initial HSP70 cycle, which JDP delivers tau to the HSP70 system in neuronal cells remains unclear. RESULTS: We screened the requirement of a diverse panel of JDPs for preventing tau aggregation in the human neuroblastoma cell line SH-SY5Y by a filter retardation method. Interestingly, knockdown of DNAJB6, one of the JDPs, displayed tau aggregation and overexpression of DNAJB6b, one of the isoforms generated from the DNAJB6 gene by alternative splicing, reduced tau aggregation. Further, the tau bimolecular fluorescence complementation assay confirmed the DNAJB6b-dependent tau clearance. The co-immunoprecipitation and the proximity ligation assay demonstrated the protein-protein interaction between tau and the chaperone-cochaperone complex. The J-domain of DNAJB6b was critical for preventing tau aggregation. Moreover, reduced DNAJB6 expression and increased tau aggregation were detected in an age-dependent manner in immunohistochemical analysis of the hippocampus tissues of a mouse model of tau pathology. CONCLUSIONS: In summary, downregulation of DNAJB6b increases the insoluble form of tau, while overexpression of DNAJB6b reduces tau aggregation. Moreover, DNAJB6b associates with tau. Therefore, this study reveals that DNAJB6b is a direct sensor for its client tau in the HSP70 folding system in neuronal cells, thus helping to prevent AD.


Asunto(s)
Enfermedad de Alzheimer , Proteínas del Choque Térmico HSP40 , Chaperonas Moleculares , Proteínas del Tejido Nervioso , Neuroblastoma , Animales , Humanos , Ratones , Empalme Alternativo , Enfermedad de Alzheimer/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas del Tejido Nervioso/genética , Pliegue de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Mov Disord ; 38(12): 2217-2229, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37752895

RESUMEN

BACKGROUND: Rare mutations in NADH:ubiquinone oxidoreductase complex assembly factor 5 (NDUFAF5) are linked to Leigh syndrome. OBJECTIVE: We aimed to describe clinical characteristics and functional findings in a patient cohort with NDUFAF5 mutations. METHODS: Patients with biallelic NDUFAF5 mutations were recruited from multi-centers in Taiwan. Clinical, laboratory, radiological, and follow-up features were recorded and mitochondrial assays were performed in patients' skin fibroblasts. RESULTS: Nine patients from seven unrelated pedigrees were enrolled, eight homozygous for c.836 T > G (p.Met279Arg) in NDUFAF5 and one compound heterozygous for p.Met279Arg. Onset age had a bimodal distribution. The early-onset group (age <3 years) presented with psychomotor delay, seizure, respiratory failure, and hyponatremia. The late-onset group (age ≥5 years) presented with normal development, but slowly progressive dystonia. Combing 25 previously described patients, the p.Met279Arg variant was exclusively identified in Chinese ancestry. Compared with other groups, patients with late-onset homozygous p.Met279Arg were older at onset (P = 0.008), had less developmental delay (P = 0.01), less hyponatremia (P = 0.01), and better prognosis with preserved ambulatory function into early adulthood (P = 0.01). Bilateral basal ganglia necrosis was a common radiological feature, but brainstem and spinal cord involvement was more common with early-onset patients (P = 0.02). A modifier gene analysis showed higher concomitant mutation burden in early-versus late-onset p.Met279Arg homozygous cases (P = 0.04), consistent with more impaired mitochondrial function in fibroblasts from an early-onset case than a late-onset patient. CONCLUSIONS: The p.Met279Arg variant is a common mutation in our population with phenotypic heterogeneity and divergent prognosis based on age at onset. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos Distónicos , Hiponatremia , Enfermedad de Leigh , Trastornos del Movimiento , Preescolar , Humanos , Trastornos Distónicos/complicaciones , Hiponatremia/complicaciones , Enfermedad de Leigh/genética , Enfermedad de Leigh/complicaciones , Metiltransferasas/genética , Proteínas Mitocondriales/genética , Trastornos del Movimiento/complicaciones , Mutación/genética , Niño , Adulto Joven
5.
Curr Oncol ; 30(2): 1699-1707, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36826092

RESUMEN

Currently, the active surveillance of men with favorable intermediate-risk localized prostate cancer (PCa) is a longstanding controversy, in terms of their oncological outcomes, and radical prostatectomy would constitute a similar concern of overtreatment, regarding its functional outcomes. Thus, focal therapy could be considered in men belonging to favorable intermediate-risk group. Among all focal therapies, high-intensity focused ultrasound (HIFU) was the most studied methodology in clinical trials. Although HIFU provided better functional outcomes than radical prostatecomy, the oncological outcomes were inferior in men with intermediate-risk localized PCa. Two articles have been published discussing the feasibility and clinical outcomes of robot-assisted partial prostatectomy (RAPP), and both the functional and oncological outcomes were superior than those with HIFU. However, the rate of positive surgical margins (PSMs) was reported as high in the literature. Here, we present a case of favorable intermediate-risk localized PCa with an isolated tumor at the anterior apex. After reconstructing a personal three-dimensional (3D) image, we utilized it in a 3D image-guided precise excise, followed by intraoperative frozen specimen review. We found that this method may present a resolution to the high PSM rate documented in the current literature regarding RAPP. This method merits further study with a well-designed prospective study.


Asunto(s)
Neoplasias de la Próstata , Procedimientos Quirúrgicos Robotizados , Robótica , Realidad Virtual , Masculino , Humanos , Estudios Prospectivos , Procedimientos Quirúrgicos Robotizados/métodos , Neoplasias de la Próstata/patología , Prostatectomía/métodos
6.
Ecotoxicol Environ Saf ; 251: 114559, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669277

RESUMEN

Liver metabolic syndrome, which involves impaired hepatic glycogen synthesis, is persistently increased by exposure to environmental pollutants. Most studies have investigated the pathogenesis of liver damage caused by single metal species or pure organics. However, under normal circumstances, the pollutants that we are exposed to are usually chemical mixtures that accumulate over time. Sediments are long-term repositories for environmental pollutants due to their environmental cycles, which make them good samples for evaluating the effect of environmental pollutants on the liver via bioaccumulation. This study aimed to clarify the effects of sediment pollutants on liver damage. Our results indicate that industrial wastewater sediment (downstream) is more cytotoxic than sediments from other zones. Downstream sediment extract (DSE) causes hepatotoxicity, stimulates reactive oxygen species (ROS) generation, triggers mitochondrial dysfunction, induces cell apoptosis, and results in the release of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) proteins. Additionally, to elucidate the underlying mechanism by which sediment pollutants disturb hepatic glycogen synthesis, we investigated the effects of different sediment samples from different pollution situations on glycogen synthesis in liver cell lines. It was found that DSE induced multiple severe impairments in liver cells, and disturbed glycogen synthesis more than under other conditions. These impairments include decreased hepatic glycogen synthesis via inhibition and insulin receptor substrate 1 (IRS-1) /AKT /glycogen synthase kinase3ß (GSK3ß)-mediated glycogen synthase (GYS) inactivation. To our knowledge, this study provides the first detailed evidence of in vitro sediment-accumulated toxicity that interferes with liver glycogen synthesis, leading to hepatic cell damage through apoptosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Contaminantes Ambientales , Humanos , Glucógeno Hepático/metabolismo , Glucógeno Hepático/farmacología , Contaminantes Ambientales/metabolismo , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa/farmacología , Hígado , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
7.
Cell Rep ; 40(12): 111372, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130510

RESUMEN

Golgi outposts (GOPs) in dendrites are known for their role in promoting branch extension, but whether GOPs have other functions is unclear. We found that terminal branches of Drosophila class IV dendritic arborization (C4da) neurons actively grow during the early third-instar (E3) larval stage but retract in the late third (L3) stage. Interestingly, the Fringe (Fng) glycosyltransferase localizes increasingly at GOPs in distal dendritic regions through the E3 to the L3 stage. Expression of the endopeptidase Furin 2 (Fur2), which proteolyzes and inactivates Fng, decreases from E3 to L3 in C4da neurons, thereby increasing Fng-positive GOPs in dendrites. The epidermal Delta ligand and neuronal Notch receptor, the substrate for Fng-mediated O-glycosylation, also negatively regulate dendrite growth. Fng inhibits actin dynamics in dendrites, linking dendritic branch retraction to suppression of the C4da-mediated thermal nociception response in late larval stages. Thus, Fng-positive GOPs function in dendrite retraction, which would add another function to the repertoire of GOPs in dendrite arborization.


Asunto(s)
Dendritas , Proteínas de Drosophila , Actinas/metabolismo , Animales , Dendritas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Furina/metabolismo , Glicosiltransferasas/metabolismo , Larva/metabolismo , Ligandos , Receptores Notch/metabolismo , Células Receptoras Sensoriales/metabolismo
8.
Biosensors (Basel) ; 11(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34940280

RESUMEN

The rapid and sensitive detection of human C-reactive protein (CRP) in a point-of-care (POC) may be conducive to the early diagnosis of various diseases. Biosensors have emerged as a new technology for rapid and accurate detection of CRP for POC applications. Here, we propose a rapid and highly stable guided-mode resonance (GMR) optofluidic biosensing system based on intensity detection with self-compensation, which substantially reduces the instability caused by environmental factors for a long detection time. In addition, a low-cost LED serving as the light source and a photodetector are used for intensity detection and real-time biosensing, and the system compactness facilitates POC applications. Self-compensation relies on a polarizing beam splitter to separate the transverse-magnetic-polarized light and transverse-electric-polarized light from the light source. The transverse-electric-polarized light is used as a background signal for compensating noise, while the transverse-magnetic-polarized light is used as the light source for the GMR biosensor. After compensation, noise is drastically reduced, and both the stability and performance of the system are enhanced over a long period. Refractive index experiments revealed a resolution improvement by 181% when using the proposed system with compensation. In addition, the system was successfully applied to CRP detection, and an outstanding limit of detection of 1.95 × 10-8 g/mL was achieved, validating the proposed measurement system for biochemical reaction detection. The proposed GMR biosensing sensing system can provide a low-cost, compact, rapid, sensitive, and highly stable solution for a variety of point-of-care applications.


Asunto(s)
Técnicas Biosensibles , Proteína C-Reactiva , Proteína C-Reactiva/metabolismo , Humanos , Sistemas de Atención de Punto , Refractometría
9.
Arch Biochem Biophys ; 713: 109058, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34627749

RESUMEN

Antrodia cinnamomea (AC) is a nutraceutical fungus and studies have suggested that AC has the potential to prevent or alleviate diseases. However, little is known about the AC-induced phenotypes on the intestine-liver axis and gut microbial alterations. Here, we performed two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-Biotyper to elaborate the AC-induced phenotypes on the intestine-liver axis and gut microbial distribution of C57BL/6 mice. The experimental outcomes showed that the hepatic density may increase by elevating hepatic redox regulation, lipid degradation and glycolysis-related proteins and alleviating cholesterol biosynthesis and transport-related proteins in C57BL/6 mice with AC treatment. Moreover, AC facilitates intestinal glycolysis, TCA cycle, redox and cytoskeleton regulation-related proteins, but also reduces intestinal vesicle transport-related proteins in C57BL/6 mice. However, the body weight, GTT, daily food/water intake, and fecal/urine weight were unaffected by AC supplementation in C57BL/6 mice. Notably, the C57BL/6-AC mice had a higher gut microbial abundance of Alistipes shahii (AS) than C57BL/6-Ctrl mice. In summary, the AC treatment affects intestinal permeability by regulating redox and cytoskeleton-related proteins and elevates the gut microbial abundance of AS in C57BL/6 mice that might be associated with increasing hepatic density and metabolism-related proteins of the liver in C57BL/6 mice. Our study provides an insight into the mechanisms of AC-induced phenotypes and a comprehensive assessment of AC's nutraceutical effect in C57BL/6 mice.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Polyporales , Proteoma/metabolismo , Animales , Hepatocitos/metabolismo , Intestinos/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL
10.
JMIR Serious Games ; 9(2): e26216, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33737262

RESUMEN

BACKGROUND: In 2019, with the COVID-19 pandemic sweeping across the globe, public health systems worldwide faced severe challenges. Amid the pandemic, one simulation game, Plague Inc., has received substantial attention. This game has indirectly drawn greater public attention to public health issues by simulating pathogen transmission and disease symptoms. OBJECTIVE: Against this backdrop, this research investigates whether the gameful experience of Plague Inc. has indirectly affected public knowledge, attitudes, and practices (KAP) regarding COVID-19. METHODS: An online survey was conducted through social networking services in Taiwan from May 6-28, 2020. RESULTS: A total of 486 subjects participated in this study, of which 276 (56.8%) had played Plague Inc. This study had several findings. First, participants who had played Plague Inc. demonstrated higher levels of knowledge (P=.03, median 7, IQR 7-8) and attitudes (P=.007, median 8, IQR 7-8) than participants who had not played Plague Inc. (knowledge: median 7, IQR 6-8; attitude: median 7, IQR 6-8). Second, there was a significant correlation between creative thinking (ρ=.127, P=.04) and dominance (ρ=.122, P=.04) in attitude. Finally, there was a significant correlation between creative thinking (ρ=.126, P<.001) and dominance (ρ=.119, P=.049) in practice. CONCLUSIONS: Serious games highlighting the theme of pathogen transmission may enhance public knowledge and attitudes regarding COVID-19. Furthermore, the creative thinking and dominance involved in gameful experiences may act as critical factors in public attitudes and practices regarding COVID-19. These findings should be further verified through experimental research in the future.

11.
Cell Biochem Funct ; 39(3): 367-379, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33135206

RESUMEN

Lung cancer is one of the leading causes of cancer-related death worldwide. The most common type of lung cancer is non-small cell lung cancer (NSCLC). When NSCLC is detected, patients are typically already in a metastatic stage. Metastasized cancer is a major obstacle of effective treatment and understanding the mechanisms underlying metastasis is critical to treat cancer. Herein, we selected an invasive subpopulation from the human lung cancer cell line A549 using the transwell system and named it as A549-I5. Invasive and migratory activities of this cell line were analysed using wound healing, invasion, and migration assays. In addition, epithelial-mesenchymal transition (EMT) markers, such as Snail 1, Twist, Vimentin, N-cadherin and E-cadherin, were assessed through immunoblotting. In comparison to A549 cells, the invasive A549-I5 lung cancer cells had enhanced invasiveness, motility and EMT marker expression. Proteomic analysis identified 83 significantly differentially expressed proteins in A549-I5 cells. These identified proteins were classified according to their cellular functions and most were involved in cytoskeleton, redox regulation, protein degradation and protein folding. In summary, our results provide potential diagnostic markers and therapeutic candidates for the treatment of NSCLC metastasis. SIGNIFICANCE OF THE STUDY: When NSCLC is detected, most patients are already in a metastatic stage. Herein, we selected an invasive subpopulation from a human lung cancer cell line which had increased EMT markers as well as high wound healing, invasion and migration abilities. Proteomic analysis identified numerous proteins associated with functions in cytoskeleton, redox regulation, protein degradation and protein folding that were differentially expressed in these cells. These results may provide potential diagnostic markers and therapeutic candidates for the treatment of NSCLC metastasis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Células A549 , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Proteínas de Neoplasias/genética
12.
Chem Biol Interact ; 331: 109249, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32980322

RESUMEN

Oxidative stress provides a major contribution to the pathogenesis of glaucoma and may induce retinal ganglion cell (RGC) damage. Transforming growth factor ß (TGF-ß) has appeared as a neuroprotective protein in various indignities. However, the TGF-ß mechanism of protective effects against oxidative stress damage in RGCs still undetermined. In our research, we investigated the regulatory mechanisms and potential effects of TGF-ß1 & TGF-ß2 in hydrogen peroxide (H2O2)-stimulated oxidative stress of RGCs in vitro. By a series of cell functional qualitative analysis, such as MTT cell viability assay, wound healing ability assay, apoptosis assay, intracellular ROS detection, immunoblot analysis, intracellular GSH content, and high-resolution respirometry, we illustrated the cell state in oxidative stress-induced injury. Results of protein expression showed that TGF-ß1 & TGF-ß2 was upregulated in RGCs after H2O2 stimulation. Cell functional assays resulted that knockdown of TGF-ß1 & TGF-ß2 reduced survival rate whereas enhanced apoptosis and accumulation of reactive oxygen species (ROS). Especially TGF-ß1 upregulation promoted the protein expression of aldehyde dehydrogenase 3A1 (ALDH3A1) and increased the activity of antioxidant and neuroprotection pathways. Additionally, TGF-ß1 & TGF-ß2 on antioxidant signaling was related to activation of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor (Nrf2), which are stress-response proteins. ROS accumulation followed by the accumulation of hypoxia-inducible factor (HIF-1α) caused mitochondrial damage and led to neurodegeneration. In summary, our results demonstrated that TGF-ß1 preserves RGCs from free radicals-mediated injury by upregulating the activation of Nrf2 expression and HO-1 signaling balance HIF-1α upregulation, implying a prospective role of TGF-ß1 in retinal neuroprotection-related therapies.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Acetilcisteína/farmacología , Aldehído Deshidrogenasa/metabolismo , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glutatión/metabolismo , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/farmacología
13.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899874

RESUMEN

A characteristic of diabetes mellitus is hyperglycemia, which is considered with an emphasis on the diabetic retinopathy of progressive neurodegenerative disease. Retinal ganglion cells (RGCs) are believed to be important cells affected in the pathogenesis of diabetic retinopathy. Transforming growth factor-beta (TGF-ß) is a neuroprotective protein that helps to withstand various neuronal injuries. To investigate the potential roles and regulatory mechanisms of TGF-ß in hyperglycemia-triggered damage of RGCs in vitro, we established RGCs in 5.5, 25, 50, and 100 mM D-glucose supplemented media and focused on the TGF-ß-related oxidative stress pathway in combination with hydrogen peroxide (H2O2). Functional experiments showed that TGF-ß1/2 protein expression was upregulated in RGCs with hyperglycemia. The knockdown of TGF-ß enhanced the accumulation of reactive oxygen species (ROS), inhibited the cell proliferation rate, and reduced glutathione content in hyperglycemia. Furthermore, the results showed that the TGF-ß-mediated enhancement of antioxidant signaling was correlated with the activation of stress response proteins and the antioxidant pathway, such as aldehyde dehydrogenase 3A1 (ALDH3A1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), and hypoxia-inducible factor (HIF-1α). Summarizing, our results demonstrated that TGF-ß keeps RGCs from hyperglycemia-triggered harm by promoting the activation of the antioxidant pathway, suggesting a potential anti-diabetic therapy for the treatment of diabetic retinopathy.


Asunto(s)
Estrés Oxidativo/fisiología , Células Ganglionares de la Retina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Antioxidantes/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Glutatión/metabolismo , Hemo-Oxigenasa 1/metabolismo , Peróxido de Hidrógeno/farmacología , Hiperglucemia/metabolismo , Hiperglucemia/fisiopatología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Células Ganglionares de la Retina/fisiología , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/fisiología , Factores de Crecimiento Transformadores/metabolismo
14.
J Cell Mol Med ; 24(20): 11883-11902, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32893977

RESUMEN

More than 70% of patients with ovarian cancer are diagnosed in advanced stages. Therefore, it is urgent to identify a promising prognostic marker and understand the mechanism of ovarian cancer metastasis development. By using proteomics approaches, we found that UDP-glucose dehydrogenase (UGDH) was up-regulated in highly metastatic ovarian cancer TOV21G cells, characterized by high invasiveness (TOV21GHI ), in comparison to its parental control. Previous reports demonstrated that UGDH is involved in cell migration, but its specific role in cancer metastasis remains unclear. By performing immunohistochemical staining with tissue microarray, we found overexpression of UGDH in ovarian cancer tissue, but not in normal adjacent tissue. Silencing using RNA interference (RNAi) was utilized to knockdown UGDH, which resulted in a significant decrease in metastatic ability in transwell migration, transwell invasion and wound healing assays. The knockdown of UGDH caused cell cycle arrest in the G0 /G1 phase and induced a massive decrease of tumour formation rate in vivo. Our data showed that UGDH-depletion led to the down-regulation of epithelial-mesenchymal transition (EMT)-related markers as well as MMP2, and inactivation of the ERK/MAPK pathway. In conclusion, we found that the up-regulation of UGDH is related to ovarian cancer metastasis and the deficiency of UGDH leads to the decrease of cell migration, cell invasion, wound healing and cell proliferation ability. Our findings reveal that UGDH can serve as a prognostic marker and that the inhibition of UGDH is a promising strategy for ovarian cancer treatment.


Asunto(s)
Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Uridina Difosfato Glucosa Deshidrogenasa/metabolismo , Actinas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Técnicas de Silenciamiento del Gen , Humanos , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Invasividad Neoplásica , Metástasis de la Neoplasia , Polimerizacion , Proteómica , ARN Interferente Pequeño/metabolismo , Cicatrización de Heridas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Cell Mol Med ; 24(17): 9737-9751, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32672400

RESUMEN

Cancer metastasis is a common cause of failure in cancer therapy. However, over 60% of oral cancer patients present with advanced stage disease, and the five-year survival rates of these patients decrease from 72.6% to 20% as the stage becomes more advanced. In order to manage oral cancer, identification of metastasis biomarker and mechanism is critical. In this study, we use a pair of oral squamous cell carcinoma lines, OC3, and invasive OC3-I5 as a model system to examine invasive mechanism and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein expression changes between OC3 and invasive OC3-I5. A proteomic study reveals that invasive properties alter the expression of 101 proteins in OC3-I5 cells comparing to OC3 cells. Further studies have used RNA interference technique to monitor the influence of progesterone receptor membrane component 1 (PGRMC1) protein in invasion and evaluate their potency in regulating invasion and the mechanism it involved. The results demonstrated that expression of epithelial-mesenchymal transition (EMT) markers including Twist, p-Src, Snail1, SIP1, JAM-A, vimentin and vinculin was increased in OC3-I5 compared to OC3 cells, whereas E-cadherin expression was decreased in the OC3-I5 cells. Moreover, in mouse model, PGRMC1 is shown to affect not only migration and invasion but also metastasis in vivo. Taken together, the proteomic approach allows us to identify numerous proteins, including PGRMC1, involved in invasion mechanism. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of oral cancer invasion.


Asunto(s)
Proliferación Celular/genética , Proteínas de la Membrana/genética , Neoplasias de la Boca/genética , Proteínas de Neoplasias/genética , Receptores de Progesterona/genética , Animales , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Xenoinjertos , Humanos , Ratones , Neoplasias de la Boca/patología , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Metástasis de la Neoplasia , Proteómica
16.
J Pharm Biomed Anal ; 186: 113300, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32413824

RESUMEN

Cancer metastasis is the major cause of death in pancreatic cancer. We have established a pair of pancreatic ductal adenocarcinoma cell line, PANC1 and invasive PANC1-I5, as a model system toinvestigate the metastatic mechanism as well as potential therapeutic targets in pancreatic cancer. We used proteomic analysis based on two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to examine the global protein expression alterations between PANC1 and PANC1-I5. Proteomic study revealed that 88 proteins are differentially expressed between PANC1-I5 and PANC1 cells, and further functional evaluations through protein expression validation, gene knockout, migration and invasion analysis revealed that galectin-1 is one of the potential players in modulating pancreatic cancer metastasis. To conclude, we have identified numerous proteins might be associated with pancreatic cancer invasiveness in the pancreatic cancer model.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Galectina 1/metabolismo , Neoplasias Pancreáticas/patología , Proteómica , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Electroforesis Bidimensional Diferencial en Gel
17.
Front Pediatr ; 7: 169, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114774

RESUMEN

Yolk sac tumor (YST), which most frequently arises in the gonads as a type of germ cell tumor, is rare in children but is highly malignant. It has been suggested that alpha-fetoprotein (AFP) can be applied as a feasible tumor marker because its level was elevated in >90% of YST. The treatment generally involves debulking surgery of tumors followed by systemic chemotherapy. Metastasis process of YST in children is different from that in adults and thus the treatment option is required. In this study, we described a rare case of YST in terms of the clinical manifestation, imaging, and histopathology findings, diagnosis and treatment in an 8-year-old girl. Furthermore, it is important to investigate more thoroughly a patient with history of intermittent abdominal pain and fever with previously multiple accesses, because these might be the critical signs for YST that should be alarmed for early treatment. Although YST is rare in children, pediatric physicians should be aware of this and prompt treatment should be addressed.

18.
Clin Epigenetics ; 11(1): 85, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142371

RESUMEN

BACKGROUND: Oncogenic K-Ras signaling highly relies on the canonical Ras/MEK/ERK pathway to contribute to pancreatic cancer progression. However, numerous efforts of MEK inhibitors have failed to provide an optimal antitumor effect for pancreatic cancer in practice. The aim of the present work was to develop a more efficacious therapeutic intervention for MEK inhibitors through combination with histone deacetylase (HDAC) inhibitor MPT0E028. METHODS: The effects of combined therapy on cell viability, apoptosis, protein, and RNA expressions were determined by MTT assay, flow cytometry, western blotting, and quantitative PCR analysis. The AsPC-1 xenograft was used to assess antitumor effects in vivo. RESULTS: The co-administration of MPT0E028 and MEK inhibitor yielded synergistic effects on cell viability suppression both in K-Ras mutated and wild-type pancreatic cancer cells and also markedly triggered cell apoptosis. Surprisingly, ERK and epidermal growth factor receptor (EGFR) were activated by the long-term and low-concentration treatment of MPT0E028 or another HDAC inhibitor alone. Whereas, the pharmacological attenuation of ERK signaling dramatically abolished the MPTE028-induced p-ERK and EGFR expression. Overexpression of HDAC4, HDAC6, and MEK, respectively, reversed the cell death induced by the combined treatment. Finally, the combined treatment decreased the tumor volume in an AsPC-1 xenograft model compared to each individual treatment alone. CONCLUSIONS: The synergistic anti-survival effect of the combination was suggested to occur via compensation of the MEK inhibitor for activated ERK. Our results indicate that this combination strategy could benefit patients with pancreatic cancer beyond K-Ras status.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Inhibidores de Histona Desacetilasas/administración & dosificación , Ácidos Hidroxámicos/administración & dosificación , Indoles/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Epigénesis Genética/efectos de los fármacos , Receptores ErbB/genética , Flavonoides/administración & dosificación , Flavonoides/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Masculino , Ratones , Neoplasias Pancreáticas/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridonas/administración & dosificación , Piridonas/farmacología , Pirimidinonas/administración & dosificación , Pirimidinonas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Environ Pollut ; 248: 57-65, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30771748

RESUMEN

Control of organic matter, nutrients and disinfection byproduct formation is a major challenge for the drinking water treatment plants on Matsu Islands, Taiwan, receiving source water from the eutrophic reservoirs. A pilot entrapped biomass reactor (EBR) system was installed as the pretreatment process to reduce organic and nitrogen contents into the drinking water treatment plant. The effects of hydraulic retention time (HRT) and combination of preceding physical treatment (ultraviolet and ultrasound) on the treatment performance were further evaluated. The results showed that the EBR system achieved higher than 81%, 35%, 12% and 46% of reduction in chlorophyll a (Chl a), total COD (TCOD), dissolved organic carbon (DOC) and total nitrogen (TN), respectively under varied influent concentrations. The treatment performance was not significantly influenced by HRT and presence/absence of physical pretreatment and the effluent water quality was stable; however, removal efficiencies and removal rates of Chl a, TCOD and DOC showed strong correlation with their influent concentrations. Excitation-emission matrix (EEM) fluorescence spectroscopy identified fulvic-like and humic-like substances as the two major components of dissolved organic matter (DOM) in the reservoir, and decreased intensity of the major peaks in effluent EEM fluorescence spectra suggested the effective removal of DOM without production of additional amount of soluble microbial products in the EBR. Through the treatment by EBR, about 10% of reduction of total trihalomethane formation potential for the effluent could also be achieved. Therefore, the overall results of this study demonstrate that EBR can be a potential pretreatment process for drinking water treatment plants receiving eutrophic source water.


Asunto(s)
Agua Potable/química , Sustancias Húmicas/análisis , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Calidad del Agua , Biomasa , Clorofila A , Eutrofización , Fluorescencia , Espectrometría de Fluorescencia , Taiwán , Trihalometanos/análisis
20.
J Pharm Biomed Anal ; 160: 344-350, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30114613

RESUMEN

Evodiamine is a natural product extracted from herbal plants such as Tetradium which has shown to have anti-fat uptake and anti-proliferation properties. However, the effects of evodiamine on the behavior of thyroid cancers are largely unknown. To determine if evodiamine might be useful in the treatment of thyroid cancer and its cytotoxic mechanism, we analyzed the impact of evodiamine treatment on differential protein expression in human thyroid cancer cell line ARO using lysine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS). This study demonstrated 77 protein features that were significantly changed in protein expression and revealed evodiamine-induced cytotoxicity in thyroid cancer cells involves dysregulation of protein folding, cytoskeleton, cytoskeleton regulation and transcription control. Our work shows that this combined proteomic strategy provides a rapid method to study the molecular mechanisms of evodiamine-induced cytotoxicity in thyroid cancer cells. The identified targets may be useful for further evaluation as potential targets in thyroid cancer therapy.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Proteómica/métodos , Quinazolinas/farmacología , Línea Celular Tumoral , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Electroforesis Bidimensional Diferencial en Gel/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...