Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 523
Filtrar
1.
Chin Med J (Engl) ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958034

RESUMEN

BACKGROUND: Carotid intima-media thickness (IMT) and diameter, stiffness, and wave reflections, are independent and important clinical biomarkers and risk predictors for cardiovascular diseases. The purpose of the present study was to establish nationwide reference values of carotid properties for healthy Chinese adults and to explore potential clinical determinants. METHODS: A total of 3053 healthy Han Chinese adults (1922 women) aged 18-79 years were enrolled at 28 collaborating tertiary centers throughout China between April 2021 and July 2022. The real-time tracking of common carotid artery walls was achieved by the radio frequency (RF) ultrasound system. The IMT, diameter, compliance coefficient, ß stiffness, local pulse wave velocity (PWV), local systolic blood pressure, augmented pressure (AP), and augmentation index (AIx) were then automatically measured and reported. Data were stratified by age groups and sex. The relationships between age and carotid property parameters were analyzed by Jonckheere-Terpstra test and simple linear regressions. The major clinical determinants of carotid properties were identified by Pearson's correlation, multiple linear regression, and analyses of covariance. RESULTS: All the parameters of carotid properties demonstrated significantly age-related trajectories. Women showed thinner IMT, smaller carotid diameter, larger AP, and AIx than men. The ß stiffness and PWV were significantly higher in men than women before forties, but the differences reversed after that. The increase rate of carotid IMT (5.5 µm/year in women and 5.8 µm/year in men) and diameter (0.03 mm/year in both men and women) were similar between men and women. For the stiffness and wave reflections, women showed significantly larger age-related variations than men as demonstrated by steeper regression slopes (all P for age by sex interaction <0.05). The blood pressures, body mass index (BMI), and triglyceride levels were identified as major clinical determinants of carotid properties with adjustment of age and sex. CONCLUSIONS: The age- and sex-specific reference values of carotid properties measured by RF ultrasound for healthy Chinese adults were established. The blood pressures, BMI, and triglyceride levels should be considered for clinical application of corresponding reference values.

2.
Transl Cancer Res ; 13(6): 3142-3155, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988912

RESUMEN

Background and Objective: Long noncoding RNAs (lncRNAs) are involved in a wide variety of physiological and pathological processes in organisms. LncRNAs play a significant role as oncogenic or tumour-suppressing factors in various biological processes associated with malignant tumours and are closely linked to the occurrence and development of malignancies. Lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) is a recently discovered lncRNA. It is upregulated in various malignant tumours and is associated with pathological characteristics such as tumour size, tumour node metastasis (TNM) staging, lymph node metastasis, and tumour prognosis. LOXL1-AS1 exerts its oncogenic role by competitively binding with multiple microRNAs (miRs), thereby regulating the expression of downstream target genes and controlling relevant signalling pathways. This article aims to explore the structure and the function of LOXL1-AS1, and the relationship between LOXL1-AS1 and the occurrence and development of human malignant tumours to provide a reference for further clinical research. Methods: English literature on LOXL1-AS1 in the occurrence and development of various malignant tumours was searched in PubMed. The main search terms were "LOXL1-AS1", "tumour". Key Content and Findings: This article mainly summarizes the biological processes in which LOXL1-AS1 is involved in various human malignant tumours and the ways in which this lncRNA affects malignant biological behaviours such as proliferation, metastasis, invasion, and apoptosis of tumour cells through different molecular regulatory mechanisms. This article also explores the potential clinical significance and application prospects of LOXL1-AS1, aiming to provide a theoretical basis and reference for the clinical diagnosis, treatment, and screening of prognostic markers for malignant tumours. Conclusions: LOXL1-AS1 acts as a competing endogenous RNA (ceRNA), binding to miRs to regulate downstream target genes and exert its oncogenic effects. LOXL1-AS1 may become a novel molecular biomarker for cancer diagnosis and treatment in humans, and it may also serve as an independent prognostic indicator.

3.
Drug Resist Updat ; 76: 101095, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38986165

RESUMEN

BACKGROUND: Response to immunotherapy is the main challenge of head and neck squamous cancer (HNSCC) treatment. Previous studies have indicated that tumor mutational burden (TMB) is associated with prognosis, but it is not always a precise index. Hence, investigating specific genetic mutations and tumor microenvironment (TME) changes in TMB-high patients is essential for precision therapy of HNSCC. METHODS: A total of 33 HNSCC patients were enrolled in this study. We calculated the TMB score based on next-generation sequencing (NGS) sequencing and grouped these patients based on TMB score. Then, we examined the immune microenvironment of HNSCC using assessments of the bulk transcriptome and the single-cell RNA sequence (scRNA-seq) focusing on the molecular nature of TMB and mutations in HNSCC from our cohort. The association of the mutation pattern and TMB was analyzed in The Cancer Genome Atlas (TCGA) and validated by our cohort. RESULTS: 33 HNSCC patients were divided into three groups (TMB-low, -medium, and -high) based on TMB score. In the result of 520-gene panel sequencing data, we found that FAT1 and LRP1B mutations were highly prevalent in TMB-high patients. FAT1 mutations are associated with resistance to immunotherapy in HNSCC patients. This involves many metabolism-related pathways like RERE, AIRE, HOMER1, etc. In the scRNA-seq data, regulatory T cells (Tregs), monocytes, and DCs were found mainly enriched in TMB-high samples. CONCLUSION: Our analysis unraveled the FAT1 gene as an assistant predictor when we use TMB as a biomarker of drug resistance in HNSCC. Tregs, monocytes, and dendritic cells (DCs) were found mainly enriched in TMB-high samples.

4.
Nat Commun ; 15(1): 5981, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013884

RESUMEN

Group 3 innate lymphoid cells (ILC3) are crucial for maintaining mucosal homeostasis and regulating inflammatory diseases, but the molecular mechanisms governing their phenotype and function are not fully understood. Here, we show that ILC3s highly express Fcer1g gene, which encodes the antibody Fc-receptor common gamma chain, FcεR1γ. Genetic perturbation of FcεR1γ leads to the absence of critical cell membrane receptors NKp46 and CD16 in ILC3s. Alanine scanning mutagenesis identifies two residues in FcεR1γ that stabilize its binding partners. FcεR1γ expression in ILC3s is essential for effective protective immunity against bacterial and fungal infections. Mechanistically, FcεR1γ influences the transcriptional state and proinflammatory cytokine production of ILC3s, relying on the CD16-FcεR1γ signaling pathway. In summary, our findings highlight the significance of FcεR1γ as an adapter protein that stabilizes cell membrane partners in ILC3s and promotes anti-infection immunity.


Asunto(s)
Inmunidad Innata , Linfocitos , Ratones Endogámicos C57BL , Receptores de IgE , Animales , Linfocitos/inmunología , Linfocitos/metabolismo , Receptores de IgE/metabolismo , Receptores de IgE/inmunología , Receptores de IgE/genética , Ratones , Receptores de IgG/metabolismo , Receptores de IgG/inmunología , Humanos , Transducción de Señal , Ratones Noqueados
5.
Anal Methods ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041298

RESUMEN

Saxitoxin (STX) is a cyanotoxin with high toxicity, and therefore, there is an urgent need to develop a facile detection method for STX. In this study, an ordered nanopillar array-based electrochemical aptasensor was fabricated for the high-performance detection of STX. The anti-STX aptamer with methylene blue (MB) incorporated at the 3'-end (MB-Apt) was immobilized at the surface of an Au@PAN nanopillar array electrode and used as the recognition element. The proposed aptasensor demonstrated highly sensitive and selective STX detection because of synergistic catalysis effects of MB and ordered nanopillar arrays along with the selection of MB-Apt. The nanopillar array-based electrochemical aptasensor exhibited high sensitivity over a wide linear concentration range of 1 pM-3 nM with a linear regression equation of ΔI (µA) = 28.0 + 6.9 × log[STX] (R2 = 0.98079) and 3-100 nM with a linear regression equation of ΔI (µA) = 10.7 + 43.4 × log[STX] (R2 = 0.98772), where R is the correlation coefficient. In addition, the limit of detection (LOD) was as low as 1 pM. Furthermore, the designed aptasensor demonstrated excellent selectivity toward STX, preventing interference from neo-STX, okadaic acid, and common metal ions. The presented orderly nanopillar array-based strategy to develop an electrochemical aptasensor for STX detection offers a promising method for developing high-performance electrochemical sensors, and the presented aptasensor should find useful application in the detection of shellfish poison.

6.
Cell Rep ; 43(8): 114525, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39037895

RESUMEN

Alternative polyadenylation (APA) is a critical post-transcriptional process that generates mRNA isoforms with distinct 3' untranslated regions (3' UTRs), thereby regulating mRNA localization, stability, and translational efficiency. Cell-type-specific APA extensively shapes the diversity of the cellular transcriptome, particularly during cell fate transition. Despite its recognized significance, the precise regulatory mechanisms governing cell-type-specific APA remain unclear. In this study, we uncover PQBP1 as an emerging APA regulator that actively maintains cell-specific APA profiles in neural progenitor cells (NPCs) and delicately manages the equilibrium between NPC proliferation and differentiation. Multi-omics analysis shows that PQBP1 directly interacts with the upstream UGUA elements, impeding the recruitment of the CFIm complex and influencing polyadenylation site selection within genes associated with the cell cycle. Our findings elucidate the molecular mechanism by which PQBP1 orchestrates dynamic APA changes during neurogenesis, providing valuable insights into the precise regulation of cell-type-specific APA and the underlying pathogenic mechanisms in neurodevelopmental disorders.

7.
Nat Cell Biol ; 26(7): 1110-1123, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38997457

RESUMEN

Migrasomes are organelles that are generated by migrating cells. Here we report the key role of neutrophil-derived migrasomes in haemostasis. We found that a large number of neutrophil-derived migrasomes exist in the blood of mice and humans. Compared with neutrophil cell bodies and platelets, these migrasomes adsorb and enrich coagulation factors on the surface. Moreover, they are highly enriched with adhesion molecules, which enable them to preferentially accumulate at sites of injury, where they trigger platelet activation and clot formation. Depletion of neutrophils, or genetic reduction of the number of these migrasomes, significantly decreases platelet plug formation and impairs coagulation. These defects can be rescued by intravenous injection of purified neutrophil-derived migrasomes. Our study reveals neutrophil-derived migrasomes as a previously unrecognized essential component of the haemostasis system, which may shed light on the cause of various coagulation disorders and open therapeutic possibilities.


Asunto(s)
Coagulación Sanguínea , Plaquetas , Ratones Endogámicos C57BL , Neutrófilos , Neutrófilos/metabolismo , Animales , Humanos , Plaquetas/metabolismo , Ratones , Hemostasis , Movimiento Celular , Activación Plaquetaria , Masculino , Factores de Coagulación Sanguínea/metabolismo , Factores de Coagulación Sanguínea/genética
8.
Dev Biol ; 514: 78-86, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38880275

RESUMEN

The second heart field (SHF) plays a pivotal role in heart development, particularly in outflow tract (OFT) morphogenesis and septation, as well as in the expansion of the right ventricle (RV). Two mouse Cre lines, the Mef2c-AHF-Cre (Mef2c-Cre) and Isl1-Cre, have been widely used to study the SHF development. However, Cre activity is triggered not only in the SHF but also in the RV in the Mef2c-Cre mice, and in the Isl1-Cre mice, Cre activation is not SHF-specific. Therefore, a more suitable SHF-Cre line is desirable for better understanding SHF development. Here, we generated and characterized the Prdm1-Cre knock-in mice. In comparison with Mef2c-Cre mice, the Cre activity is similar in the pharyngeal and splanchnic mesoderm, and in the OFT of the Prdm1-Cre mice. Nonetheless, it was noticed that Cre expression is largely reduced in the RV of Prdm1-Cre mice compared to the Mef2c-Cre mice. Furthermore, we deleted Hand2, Nkx2-5, Pdk1 and Tbx20 using both Mef2c-Cre and Prdm1-Cre mice to study OFT morphogenesis and septation, making a comparison between these two Cre lines. New insights were obtained in understanding SHF development including differentiation into cardiomyocytes in the OFT using Prdm1-Cre mice. In conclusion, we found that Prdm1-Cre mouse line is a more appropriate tool to monitor SHF development, while the Mef2c-Cre mice are excellent in studying the role and function of the SHF in OFT morphogenesis and septation.


Asunto(s)
Corazón , Integrasas , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Animales , Ratones , Corazón/embriología , Integrasas/metabolismo , Integrasas/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones Transgénicos , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas de Sustitución del Gen
9.
IEEE Trans Med Imaging ; PP2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900618

RESUMEN

Several deep learning-based methods have been proposed to extract vulnerable plaques of a single class from intravascular optical coherence tomography (OCT) images. However, further research is limited by the lack of publicly available large-scale intravascular OCT datasets with multi-class vulnerable plaque annotations. Additionally, multi-class vulnerable plaque segmentation is extremely challenging due to the irregular distribution of plaques, their unique geometric shapes, and fuzzy boundaries. Existing methods have not adequately addressed the geometric features and spatial prior information of vulnerable plaques. To address these issues, we collected a dataset containing 70 pullback data and developed a multi-class vulnerable plaque segmentation model, called PolarFormer, that incorporates the prior knowledge of vulnerable plaques in spatial distribution. The key module of our proposed model is Polar Attention, which models the spatial relationship of vulnerable plaques in the radial direction. Extensive experiments conducted on the new dataset demonstrate that our proposed method outperforms other baseline methods. Code and data can be accessed via this link: https://github.com/sunjingyi0415/IVOCT-segementaion.

10.
Oncol Lett ; 28(2): 354, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38881710

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a common type of kidney cancer and accounts for 2-3% of all cancer cases. Furthermore, a growing number of immunotherapy approaches are being used in antitumor treatment. Signaling lymphocyte activation molecule family (SLAMF) members have been well studied in several cancers, whereas their roles in ccRCC have not been investigated. The present study comprehensively assessed the molecular mechanisms of SLAMF members in ccRCC, performed using The Cancer Genome Atlas database, with analysis of gene transcription, prognosis, biological function, clinical features, tumor-associated immune cells and the correlation with programmed cell death protein 1/programmed death-ligand 1 immune checkpoints. Simultaneously, the Tumor Immune Dysfunction and Exclusion algorithm was used to predict the efficacy of immune checkpoint blockade (ICB) therapy in patients with high and low SLAMF expression levels. The results demonstrated that all SLAMF members were highly expressed in ccRCC, and patients with high expression levels of SLAMF1, 4, 7 and 8 had a worse prognosis that those with low expression. SLAMF members were not only highly associated with immune activation but also with immunosuppressive agents. The level of immune cell infiltration was associated with the prognosis of patients with ccRCC with high SLAMF expression. Moreover, high ICB response rates were observed in patients with high expression levels of SMALF1 and 4. In summary, SLAMF members may serve as future potential biomarkers for predicting the prognosis of ccRCC and emerge as a novel immunotherapy target.

11.
Int J Surg ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935124

RESUMEN

BACKGROUND: Surgery and postoperative adjuvant therapy is the standard treatment for locally advanced resectable oral squamous cell carcinoma (OSCC), while neoadjuvant chemoimmunotherapy (NACI) is believed to lead better outcomes. This study aims to investigate the effectiveness of NACI regimens in treating locally advanced resectable OSCC. MATERIALS AND METHODS: Patients diagnosed with locally advanced resectable OSCC who received NACI and non-NACI were reviewed between December 2020 and June 2022 in our single center. The pathologic response was evaluated to the efficacy of NACI treatment. Adverse events apparently related to NACI treatment were graded by Common Terminology Criteria for Adverse Events, version 5.0. Disease-free survival (DFS) and overall survival (OS) rate were assessed. RESULTS: Our analysis involved 104 patients who received NACI. Notably, the pathological complete response (PCR) rate was 47.1%, and the major pathological response (MPR) rate was 65.4%. The top three grade 1-2 treatment-related adverse events (TRAEs) were alopecia (104; 100%), anemia (81; 77.9%) and pruritus (62; 59.6%). Importantly, patients achieving MPR exhibited higher programmed cell death-ligand 1 (PD-L1) combined positive score (CPS). The diagnostic value of CPS as a biomarker for NACI efficacy was enhanced when combined total cholesterol level. The 3-year estimated DFS rates were 89.0% in the NACI cohort compared to 60.8% in the non-NACI cohort, while the 3-year estimated OS rates were 91.3% versus 64.0%, respectively. CONCLUSIONS: The NACI treatment showed safe and encouragingly efficacious for locally advanced resectable OSCC patients. The high response rates and favorable prognosis suggest this approach as a potential treatment option. Prospective randomized controlled trials are needed to further validate these findings.

12.
Cell Death Dis ; 15(6): 455, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937435

RESUMEN

ADGRF5 (GPR116) has been identified as a facilitator of breast cancer cell migration and metastasis, yet the underlying mechanisms remain largely elusive. Our current study reveals that the absence of ADGRF5 in breast cancer cells impairs extracellular matrix (ECM)-associated cell motility and impedes in vivo tumor growth. This correlates with heightened expression of matrix metalloproteinase 8 (MMP8), a well-characterized antitumorigenic MMP, and a shift in the polarization of tumor-associated neutrophils (TANs) towards the antitumor N1 phenotype in the tumor microenvironment (TME). Mechanistically, ADGRF5 inhibits ERK1/2 activity by enhancing RhoA activation, leading to decreased phosphorylation of C/EBPß at Thr235, hindering its nuclear translocation and subsequent activation. Crucially, two C/EBPß binding motifs essential for MMP8 transcription are identified within its promoter region. Consequently, ADGRF5 silencing fosters MMP8 expression and CXCL8 secretion, attracting increased infiltration of TANs; simultaneously, MMP8 plays a role in decorin cleavage, which leads to trapped-inactivation of TGF-ß in the TME, thereby polarizing TANs towards the antitumor N1 neutrophil phenotype and mitigating TGF-ß-enhanced cell motility in breast cancer. Our findings reveal a novel connection between ADGRF5, an adhesion G protein-coupled receptor, and the orchestration of the TME, which dictates malignancy progression. Overall, the data underscore ADGRF5 as a promising therapeutic target for breast cancer intervention.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Metaloproteinasa 8 de la Matriz , Receptores Acoplados a Proteínas G , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Interleucina-8/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Metaloproteinasa 8 de la Matriz/genética , Ratones Desnudos , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral
13.
Sci Bull (Beijing) ; 69(14): 2260-2272, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38702277

RESUMEN

Heparan sulfate proteoglycan 2 (HSPG2) gene encodes the matrix protein Perlecan, and genetic inactivation of this gene creates mice that are embryonic lethal with severe neural tube defects (NTDs). We discovered rare genetic variants of HSPG2 in 10% cases compared to only 4% in controls among a cohort of 369 NTDs. Endorepellin, a peptide cleaved from the domain V of Perlecan, is known to promote angiogenesis and autophagy in endothelial cells. The roles of enderepellin in neurodevelopment remain unclear so far. Our study revealed that endorepellin can migrate to the neuroepithelial cells and then be recognized and bind with the neuroepithelia receptor neurexin in vivo. Through the endocytic pathway, the interaction of endorepellin and neurexin physiologically triggers autophagy and appropriately modulates the differentiation of neural stem cells into neurons as a blocker, which is necessary for normal neural tube closure. We created knock-in (KI) mouse models with human-derived HSPG2 variants, using sperm-like stem cells that had been genetically edited by CRISPR/Cas9. We realized that any HSPG2 variants that affected the function of endorepellin were considered pathogenic causal variants for human NTDs given that the severe NTD phenotypes exhibited by these KI embryos occurred in a significantly higher response frequency compared to wildtype embryos. Our study provides a paradigm for effectively confirming pathogenic mutations in other genetic diseases. Furthermore, we demonstrated that using autophagy inhibitors at a cellular level can repress neuronal differentiation. Therefore, autophagy agonists may prevent NTDs resulting from failed autophagy maintenance and neuronal over-differentiation caused by deleterious endorepellin variants.


Asunto(s)
Autofagia , Proteoglicanos de Heparán Sulfato , Defectos del Tubo Neural , Animales , Ratones , Proteoglicanos de Heparán Sulfato/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Humanos , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/patología , Tubo Neural/metabolismo , Tubo Neural/embriología , Tubo Neural/patología , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/metabolismo , Femenino , Masculino , Modelos Animales de Enfermedad
14.
Cell Mol Gastroenterol Hepatol ; 18(2): 101354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38729522

RESUMEN

BACKGROUND & AIMS: Dysfunction of the intestinal epithelial barrier comprising the junctional complex of tight junctions and adherent junctions leads to increased intestinal permeability, which is a major cause of uncontrolled inflammation related to inflammatory bowel disease (IBD). The NAD+-dependent deacetylase SIRT1 is implicated in inflammation and the pathologic process of IBD. We aimed to elucidate the protective role and underlying mechanism of SIRT1 in cell-cell junction and intestinal epithelial integrity. METHODS: The correlation of SIRT1 expression and human IBD was analyzed by GEO or immunohistochemical analyses. BK5.mSIRT1 transgenic mice and wild-type mice were given dextran sodium sulfate (DSS) and the manifestation of colitis-related phenotypes was analyzed. Intestinal permeability was measured by FITC-dextran and cytokines expression was analyzed by quantitative polymerase chain reaction. The expression of the cell junction-related proteins in DSS-treated or SIRT1-knockdown Caco2 or HCT116 cells was analyzed by Western blotting. The effects of nicotinamide mononucleotide in DSS-induced mice colitis were investigated. Correlations of the SIRT1-ß-TrCP1-Snail1-Occludin/Claudin-1/E-cadherin pathway with human IBD samples were analyzed. RESULTS: Reduced SIRT1 expression is associated with human IBD specimens. SIRT1 transgenic mice exhibit much-reduced manifestations of DSS-induced colitis. The activation of SIRT1 by nicotinamide mononucleotide bolsters intestinal epithelial barrier function and ameliorates DSS-induced colitis in mice. Mechanistically, DSS downregulates SiRT1 expression, leading to destabilization of ß-TrCP1 and upregulation of Snail1, accompanied by reduced expression of E-cadherin, Occludin, and Claudin-1, consequently resulting in increased epithelial permeability and inflammation. The deregulated SIRT1-ß-TrCP1-Snail1-Occludin/Claudin-1/E-cadherin pathway correlates with human IBD. CONCLUSIONS: SIRT1 is pivotal in maintaining the intestinal epithelial barrier integrity via modulation of the ß-TrCP1-Snail1-E-cadhein/Occludin/Claudin-1 pathway.


Asunto(s)
Colitis , Mucosa Intestinal , Sirtuina 1 , Factores de Transcripción de la Familia Snail , Proteínas con Repetición de beta-Transducina , Animales , Humanos , Masculino , Ratones , Proteínas con Repetición de beta-Transducina/metabolismo , Células CACO-2 , Cadherinas/metabolismo , Cadherinas/genética , Colitis/inducido químicamente , Colitis/patología , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Ratones Transgénicos , Permeabilidad , Sirtuina 1/metabolismo , Sirtuina 1/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
15.
Sci Rep ; 14(1): 11370, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762700

RESUMEN

According to the latest cancer research data, there are a significant number of new cancer cases and a substantial mortality rate each year. Although a substantial number of clinical patients are treated with existing cancer drugs each year, the efficacy is unsatisfactory. The incidence is still high and the effectiveness of most cancer drugs remains unsatisfactory. Therefore, we evaluated the human proteins for their causal relationship to for cancer risk and therefore also their potential as drug targets. We used summary tumors data from the FinnGen and cis protein quantitative trait loci (cis-pQTL) data from a genome-wide association study, and employed Mendelian randomization (MR) to explore the association between potential drug targets and nine tumors, including breast, colorectal, lung, liver, bladder, prostate, kidney, head and neck, pancreatic caners. Furthermore, we conducted MR analysis on external cohort. Moreover, Bidirectional MR, Steiger filtering, and colocalization were employed to validate the main results. The DrugBank database was used to discover potential drugs of tumors. Under the threshold of False discovery rate (FDR) < 0.05, results showed that S100A16 was protective protein and S100A14 was risk protein for human epidermal growth factor receptor 2-positive (HER-positive) breast cancer, phosphodiesterase 5A (PDE5A) was risk protein for colorectal cancer, and melanoma inhibitory activity (MIA) was protective protein for non-small cell lung carcinoma (NSCLC). And there was no reverse causal association between them. Colocalization analysis showed that S100A14 (PP.H4.abf = 0.920) and S100A16 (PP.H4.abf = 0.932) shared causal variation with HER-positive breast cancer, and PDE5A (PP.H4.abf = 0.857) shared causal variation with colorectal cancer (CRC). The MR results of all pQTL of PDE5A and MIA were consistent with main results. In addition, the MR results of MIA and external outcome cohort were consistent with main results. In this study, genetic predictions indicate that circulating S100 calcium binding protein A14 (S100A14) and S100 calcium binding protein A16 (S100A16) are associated with increase and decrease in the risk of HER-positive breast cancer, respectively. Circulating PDE5A is associated with increased risk of CRC, while circulating MIA is associated with decreased risk of NSCLC. These findings suggest that four proteins may serve as biomarkers for cancer prevention and as potential drug targets that could be expected for approval.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias , Humanos , Neoplasias/genética , Sitios de Carácter Cuantitativo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
16.
Opt Lett ; 49(10): 2825-2828, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748171

RESUMEN

Based on the longitudinal manipulation of polarization, a special vector optical beam (VOB) with customized polarization variation in propagation direction can be generated, whose properties and applications remain to be studied. Here, the self-healing propagation behaviors of the longitudinally varying VOB after an opaque object are investigated, and the localized polarization responses on the object distance are revealed. On this basis, characteristic parameters are defined to measure the distance of object, achieving a minimum relative error of 0.63% in a longitudinal range of 300 mm. Besides, the correlations and uncoupling methods of object distance and size are discussed. Our studies open new ways to use the structural properties of VOB and may be instructive for laser measurement.

17.
Int J Surg ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729119

RESUMEN

INTRODUCTION: The incidence of occult cervical lymph node metastases (OCLNM) is reported to be 20%-30% in early-stage oral cancer and oropharyngeal cancer. There is a lack of an accurate diagnostic method to predict occult lymph node metastasis and to help surgeons make precise treatment decisions. AIM: To construct and evaluate a preoperative diagnostic method to predict occult lymph node metastasis (OCLNM) in early-stage oral and oropharyngeal squamous cell carcinoma (OC and OP SCC) based on deep learning features (DLFs) and radiomics features. METHODS: A total of 319 patients diagnosed with early-stage OC or OP SCC were retrospectively enrolled and divided into training, test and external validation sets. Traditional radiomics features and DLFs were extracted from their MRI images. The least absolute shrinkage and selection operator (LASSO) analysis was employed to identify the most valuable features. Prediction models for OCLNM were developed using radiomics features and DLFs. The effectiveness of the models and their clinical applicability were evaluated using the area under the curve (AUC), decision curve analysis (DCA) and survival analysis. RESULTS: Seventeen prediction models were constructed. The Resnet50 deep learning (DL) model based on the combination of radiomics and DL features achieves the optimal performance, with AUC values of 0.928 (95% CI: 0.881-0.975), 0.878 (95% CI: 0.766-0.990), 0.796 (95% CI: 0.666-0.927) and 0.834 (95% CI: 0.721-0.947) in the training, test, external validation set1 and external validation set2, respectively. Moreover, the Resnet50 model has great prediction value of prognosis in patients with early-stage OC and OP SCC. CONCLUSION: The proposed MRI-based Resnet50 deep learning model demonstrated high capability in diagnosis of OCLNM and prognosis prediction in the early-stage OC and OP SCC. The Resnet50 model could help refine the clinical diagnosis and treatment of the early-stage OC and OP SCC.

18.
Appl Opt ; 63(10): 2683-2688, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568552

RESUMEN

Different from the scalar optical field with spatially uniform polarization, the vector optical field exhibits inhomogeneous distribution of polarization on the cross section. Manipulating the variation of polarization in a single optical beam is important to acquire a flexible and controllable focused optical field. Previous studies mainly focused on the vector optical field with its polarization varying along a circular trajectory of the Poincaré sphere. Here, we demonstrate the tight focusing behaviors of the vector optical field with the polarization varying along complex curves of the Poincaré sphere, which is generated by the joint modulation of azimuthal phase and amplitude distributions of orthogonally polarized components. The longitudinal polarization component with a multipolar pattern in rotational symmetry can be achieved with similar distribution of the total focused field. The transverse and longitudinal spin angular momentum distributions in the focal space are discussed. Approximately pure transverse spin angular momentum can be constructed and manipulated in the focal space, which provides the possibility to manipulate the 3D spin flux for the applications of nano and spin photonics.

19.
J Orthop Surg Res ; 19(1): 244, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622696

RESUMEN

BACKGROUND: Ossification of ligamentum flavum (OLF) is a prevalent degenerative spinal disease, typically causing severe neurological dysfunction. Kruppel-like factor 5 (KLF5) plays an essential role in the regulation of skeletal development. However, the mechanism KLF5 plays in OLF remains unclear, necessitating further investigative studies. METHODS: qRT-PCR, immunofluorescent staining and western blot were used to measure the expression of KLF5. Alkaline Phosphatase (ALP) staining, Alizarin red staining (ARS), and the expression of Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) were used to evaluate the osteogenic differentiation. Luciferase activity assay and ChIP-PCR were performed to investigate the molecular mechanisms. RESULTS: KLF5 was significantly upregulated in OLF fibroblasts in contrast to normal ligamentum flavum (LF) fibroblasts. Silencing KLF5 diminished osteogenic markers and mineralized nodules, while its overexpression had the opposite effect, confirming KLF5's role in promoting ossification. Moreover, KLF5 promotes the ossification of LF by activating the transcription of Connexin 43 (CX43), and overexpressing CX43 could reverse the suppressive impact of KLF5 knockdown on OLF fibroblasts' osteogenesis. CONCLUSION: KLF5 promotes the OLF by transcriptionally activating CX43. This finding contributes significantly to our understanding of OLF and may provide new therapeutic targets.


Asunto(s)
Ligamento Amarillo , Osificación Heterotópica , Humanos , Células Cultivadas , Conexina 43/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Osificación Heterotópica/genética , Osificación Heterotópica/metabolismo , Osteogénesis/genética , Factores de Transcripción/metabolismo
20.
PLoS One ; 19(4): e0301630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603689

RESUMEN

Aiming at the weak performance of chaotic light output in semiconductor laser systems, the study designed a power control algorithm for semiconductor laser drive systems based on linear self-disturbance rejection control. Then the optimization parameters and scope were determined, and multi-objective optimization and direction preference algorithms were introduced. A chaotic optical performance optimization model based on improved multi-objective genetic algorithm was constructed using adaptive functions as evaluation indicators. These results confirmed that the larger the bandwidth of the controller, the faster the response speed of the resonant converter, but the stability was poor. When the input voltage underwent a sudden change, the current ripple coefficient of the PID algorithm was 0.55%. The linear active disturbance rejection control algorithm could ensure that the voltage and current maintained at the set values, and the output current of the algorithm was more stable when the load underwent sudden changes. The directional preference algorithm could further provide more valuable solutions on the basis of adaptive genetic algorithms. When the peak value of the autocorrelation function was equal to 0.2, the delay characteristics of chaotic light were effectively suppressed, having strong signal bandwidth and complexity. In summary, the constructed model has good application effects in optimizing chaotic optical performance and has certain positive significance for communication security.


Asunto(s)
Algoritmos , Láseres de Semiconductores , Comunicación , Tiempo de Reacción , Semiconductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA