Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 12(6)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925680

RESUMEN

BACKGROUND: The majority of anti-programmed cell-death 1 (PD-1) monoclonal antibodies (mAbs) use S228P mutation IgG4 as the structural basis to avoid the activation of immune cells or complement. However, little attention has been paid to the Fc-Fc interactions between IgG4 and other IgG Fc fragments that could result in adverse effects. Fc-null IgG1 framework is a potential safer alternative to avoid the undesirable Fc-Fc interactions and Fc receptor binding derived effects observed with IgG4. This study provides a comprehensive evaluation of anti-PD-1 mAbs of these two frameworks. METHODS: Trastuzumab and rituximab (both IgG1), wildtype IgG1 and IgG4 were immobilized on nitrocellulose membranes, coated to microplates and biosensor chips, and bound to tumor cells as targets for Fc-Fc interactions. Wildtype IgG1 and IgG4, anti-PD-1 mAb nivolumab (IgG4 S228P), penpulimab (Fc-null IgG1), and tislelizumab (Fc-null IgG4 S228P-R409K) were assessed for their binding reactions to the immobilized IgG proteins and quantitative kinetic data were obtained. To evaluate the effects of the two anti-PD-1 mAbs on immune responses mediated by trastuzumab and rituximab in the context of combination therapy, we employed classic immune models for antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement dependent cytotoxicity. Tumor-bearing mouse models, both wildtype and humanized, were used for in vivo investigation. Furthermore, we also examined the effects of IgG1 and IgG4 on diverse immune cell populations RESULTS: Experiments demonstrated that wildtype IgG4 and nivolumab bound to immobilized IgG through Fc-Fc interactions, diminishing antibody-dependent cell-mediated cytotoxicity and phagocytosis reactions. Quantitative analysis of kinetic parameters suggests that nivolumab and wildtype IgG4 exhibit comparable binding affinities to immobilized IgG1 in both non-denatured and denatured states. IgG4 exerted inhibitory effects on various immune cell types. Wildtype IgG4 and nivolumab both promoted tumor growth in wildtype mouse models. Conversely, wildtype IgG1, penpulimab, and tislelizumab did not show similar adverse effects. CONCLUSIONS: Fc-null IgG1 represents a safer choice for anti-PD-1 immunotherapies by avoiding both the adverse Fc-Fc interactions and Fc-related immune inhibitory effects of IgG4. Fc-null IgG4 S228P-R409K and Fc-null IgG1 displayed similar structural properties and benefits. This study contributes to the understanding of immunotherapy resistance and the advancement of safer immune therapies for cancer.


Asunto(s)
Inmunoglobulina G , Inmunoterapia , Inmunoglobulina G/inmunología , Animales , Ratones , Humanos , Inmunoterapia/métodos , Fragmentos Fc de Inmunoglobulinas/farmacología , Femenino , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo
2.
Redox Biol ; 60: 102608, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36681047

RESUMEN

BACKGROUND: We recently reported a novel IgG4-centered immune evasion mechanism in cancer, and this was achieved mostly through the Fc-Fc reaction of increased IgG4 to cancer-bound IgG in cancer microenvironment. The mechanism was suggested to be related to cancer hyperprogressive disease (HPD) which is a side-effect often associated to IgG4 subtype PD-1 antibody immunotherapy. HPD was reported to occur in cancers with certain mutated genes including KRAS and such mutations are often associated to glutathione (GSH) synthesis. Therefore, we hypothesize that IgG4 and GSH may play a synergistic role in local immunosuppression of cancer. METHODS: Quantitatively analyzed the distribution and abundance of GSH and IgG4 in human cancer samples with ELISA and immunohistochemistry. The interactions between GSH and IgG4 were examined with Electrophoresis and Western Blot. The synergistic effects of the two on classic immune responses were investigated in vitro. The combined effects were also tested in a lung cancer model and a skin graft model in mice. RESULTS: We detected significant increases of both GSH and IgG4 in the microenvironment of lung cancer, esophageal cancer, and colon cancer tissues. GSH disrupted the disulfide bond of IgG4 heavy chain and enhanced IgG4's ability of Fc-Fc reaction to immobilized IgG subtypes. Combined administration of IgG4 and GSH augmented the inhibitory effect of IgG4 on the classic ADCC, ADCP, and CDC reactions. Local administration of IgG4/GSH achieved the most obvious effect of accelerating cancer growth in the mouse lung cancer model. The same combination prolonged the survival of skin grafts between two different strains of mouse. In both models, immune cells and several cytokines were found to shift to the state of immune tolerance. CONCLUSION: Combined application of GSH and IgG4 can promote tumor growth and protect skin graft. The mechanism may be achieved through the effect of the Fc-Fc reaction between IgG4 and other tissue-bound IgG subtypes resulting in local immunosuppression. This reaction was facilitated by increased GSH to dissociate the two heavy chains of IgG4 Fc fragment at its disulfide bonds. Our findings unveiled the interaction between the redox system and the immune systems in cancer microenvironment. It offers a sensible explanation for HPD and provides new possibilities for manipulating this mechanism for cancer immunotherapy.


Asunto(s)
Inmunoglobulina G , Neoplasias Pulmonares , Humanos , Animales , Ratones , Evasión Inmune , Inmunoterapia , Disulfuros , Microambiente Tumoral
3.
Inorg Chem ; 61(27): 10567-10574, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35748889

RESUMEN

The oxidation of hypophosphorous acid (H3PO2) by a ruthenium(VI) nitrido complex, [(L)RuVI(N)(OH2)]+ (RuVIN; L = N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion), has been studied in aqueous acidic solutions at pH 0-2.50. The reaction has the following stoichiometry: 2[(L)RuVI(N)(OH2)]+ + 3H3PO2 + H2O → 2[(L)RuIII(NH2P(OH)2)(OH2)]+ + H3PO3. The pseudo-first-order rate constant, kobs, depends linearly on [H3PO2], and the second-order rate constant k2 depends on [H+] according to the relationship k2 = k[H+]/([H+] + Ka), where k is the rate constant for the oxidation of H3PO2 molecule and Ka is the dissociation constant of H3PO2. At 298.0 K and I = 1.0 M, k = (2.04 ± 0.19) × 10-2 M-1 s-1 and Ka = (6.38 ± 0.63) × 10-2 M. A kinetic isotope effect (KIE) of 2.9 ± 0.1 was obtained when kinetic studies were carried out with D3PO2 at pH 1.16, suggesting P-H bond cleavage in the rate-determining step. On the other hand, when the kinetics were determined in D2O, an inverse KIE of 0.21 ± 0.03 (H3PO2 in H2O vs H3PO2 in D2O) was found. On the basis of experimental results and DFT calculations, the proposed mechanism involves an acid-catalyzed tautomerization of H2P(O)(OH) to HP(OH)2; the latter molecule is the reacting species which reacts with RuVIN via a proton-coupled N-atom transfer pathway.

4.
Front Genet ; 12: 727260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003203

RESUMEN

In the past decade, progress has been made in sex determination mechanism in Vitis. However, genes responsible for sexual differentiation and its mechanism in V. amurensis remain unknown. Here, we identify a sex determination candidate gene coding adenine phosphoribosyl transferase 3 (VaAPRT3) in V. amurensis. Cloning and sequencing of the VaAPRT3 gene allowed us to develop a molecular marker able to discriminate female individuals from males or hermaphrodites based on a 22-bp InDel. Gene expression and endogenous cytokinin content analysis revealed that the VaAPRT3 gene is involved in sex determination or, to be precise, in female organ differentiation, through regulating cytokinin metabolism in V. amurensis. This study enlarged the understanding of sex determination mechanism in the genus Vitis, and the sex marker could be used as a helpful tool for sexual identification in breeding programs as well as in investigation and collection of V. amurensis germplasms.

5.
Cereb Cortex ; 30(9): 4995-5013, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32390052

RESUMEN

The visual system is thought to separate egocentric and allocentric representations, but behavioral experiments show that these codes are optimally integrated to influence goal-directed movements. To test if frontal cortex participates in this integration, we recorded primate frontal eye field activity during a cue-conflict memory delay saccade task. To dissociate egocentric and allocentric coordinates, we surreptitiously shifted a visual landmark during the delay period, causing saccades to deviate by 37% in the same direction. To assess the cellular mechanisms, we fit neural response fields against an egocentric (eye-centered target-to-gaze) continuum, and an allocentric shift (eye-to-landmark-centered) continuum. Initial visual responses best-fit target position. Motor responses (after the landmark shift) predicted future gaze position but embedded within the motor code was a 29% shift toward allocentric coordinates. This shift appeared transiently in memory-related visuomotor activity, and then reappeared in motor activity before saccades. Notably, fits along the egocentric and allocentric shift continua were initially independent, but became correlated across neurons just before the motor burst. Overall, these results implicate frontal cortex in the integration of egocentric and allocentric visual information for goal-directed action, and demonstrate the cell-specific, temporal progression of signal multiplexing for this process in the gaze system.


Asunto(s)
Fijación Ocular/fisiología , Lóbulo Frontal/fisiología , Percepción Visual/fisiología , Animales , Femenino , Macaca mulatta , Estimulación Luminosa
6.
Plant Physiol Biochem ; 141: 73-82, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31132695

RESUMEN

Polyploidy could increase the interactions of pollen sterility loci and Sb locus interaction cause higher pollen abortion than other loci. Therefore, we focused on the interaction at Sb pollen sterility locus in autotetraploid rice compared to diploid rice hybrid using the near-isogenic lines in the present study. Cytological observations indicated that interaction at Sb locus cause high pollen sterility (69.9%) and abnormal chromosome behavior (37.02%) at Metaphase II in autotetraploid rice hybrid. A total of 139 meiosis-related or meiosis stage-specific genes were detected in the autotetraploid rice hybrid harboring interaction at Sb locus and 27 of these meiosis-related or specific genes displayed significant down-regulation, including four pollen fertility related genes (Rad51, XRI1, PSS1 and MIL1). These results revealed a stronger interaction at Sb pollen sterility locus than other loci, which cause down-regulation of many important meiosis-related genes that were associated with higher pollen sterility in autotetraploid rice hybrids.


Asunto(s)
Cruzamientos Genéticos , Meiosis/genética , Oryza/genética , Infertilidad Vegetal/genética , Polen/genética , Alelos , Biología Celular , Cromosomas de las Plantas , Regulación hacia Abajo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Heterocigoto , Tetraploidía , Transcriptoma
7.
Rice (N Y) ; 10(1): 49, 2017 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-29197985

RESUMEN

BACKGROUND: Intersubspecific autotetraploid rice hybrids possess high hybrid vigor; however, low pollen fertility is a critical hindrance in its commercial utilization. Our previous study demonstrated that polyploidy could increase the multi-loci interaction and cause high pollen abortion in autotetraploid rice hybrids. However, there is little known about the critical role of pollen sterility locus or loci in the intersubspecific hybrids. We developed autotetraploid rice hybrids harboring heterozygous genotypes (S i S i S j S j ) at different pollen sterility loci by using the near isogenic lines of Taichung65-4×. Moreover, autotetraploid lines carrying double neutral genes, Sa n and Sb n , were used to assess their effect on fertility restoration. RESULTS: Cytological studies showed that the deleterious genetic interactions at Sa and Sb pollen sterility loci resulted in higher pollen sterility (76.83%) and abnormal chromosome behavior (24.59%) at metaphase I of meiosis in autotetraploid rice hybrids. Transcriptome analysis revealed 1092 differentially expressed genes (DEG) in a hybrid with the pervasive interactions at Sa and Sb pollen sterility loci, and most of the genes (about 83%) exhibited down regulation. Of the DEG, 60 were associated with transcription regulation and 18 genes were annotated as meiosis-related genes. Analysis on the hybrids developed by using autotetraploid rice harboring double neutral genes, Sa n and Sb n , revealed normal pollen fertility, and transcriptome analysis showed non-significant difference in number of DEG among different hybrids. CONCLUSIONS: Our finding revealed that pervasive interactions at Sa and Sb pollen sterility loci cause high sterility in the autotetraploid hybrids that lead to the down-regulation of important meiosis-related genes and transcription regulation factors. Moreover, we also found that the hybrids sterility could be overcome by double neutral genes, Sa n and Sb n , in autotetraploid rice hybrids. The present study provided a strong evidence for the utilization of heterosis in autotetraploid rice hybrids.

8.
J Vis ; 17(5): 20, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28558393

RESUMEN

The relative contributions of egocentric versus allocentric cues on goal-directed behavior have been examined for reaches, but not saccades. Here, we used a cue conflict task to assess the effect of allocentric landmarks on gaze behavior. Two head-unrestrained macaques maintained central fixation while a target flashed in one of eight radial directions, set against a continuously present visual landmark (two horizontal/vertical lines spanning the visual field, intersecting at one of four oblique locations 11° from the target). After a 100-ms delay followed by a 100-ms mask, the landmark was displaced by 8° in one of eight radial directions. After a second delay (300-700 ms), the fixation point extinguished, signaling for a saccade toward the remembered target. When the landmark was stable, saccades showed a significant but small (mean 15%) pull toward the landmark intersection, and endpoint variability was significantly reduced. When the landmark was displaced, gaze endpoints shifted significantly, not toward the landmark, but partially (mean 25%) toward a virtual target displaced like the landmark. The landmark had a larger influence when it was closer to initial fixation, and when it shifted away from the target, especially in saccade direction. These findings suggest that internal representations of gaze targets are weighted between egocentric and allocentric cues, and this weighting is further modulated by specific spatial parameters.


Asunto(s)
Conducta Animal/fisiología , Señales (Psicología) , Fijación Ocular/fisiología , Percepción Visual/fisiología , Animales , Femenino , Macaca mulatta , Movimientos Sacádicos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...