Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Chemosphere ; 358: 142136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692363

RESUMEN

The soil-water interface is replete with photic biofilm and iron minerals; however, the potential of how iron minerals promote biotic nitrate removal is still unknown. This study investigates the physiological and ecological responses of photic biofilm to hematite (Fe2O3), in order to explore a practically feasible approach for in-situ nitrate removal. The nitrate removal by photic biofilm was significantly higher in the presence of Fe2O3 (92.5%) compared to the control (82.8%). Results show that the presence of Fe2O3 changed the microbial community composition of the photic biofilm, facilitates the thriving of Magnetospirillum and Pseudomonas, and promotes the growth of photic biofilm represented by the extracellular polymeric substance (EPS) and the content of chlorophyll. The presence of Fe2O3 also induces oxidative stress (•O2-) in the photic biofilm, which was demonstrated by electron spin resonance spectrometry. However, the photic biofilm could improve the EPS productivity to prevent the entrance of Fe2O3 to cells in the biofilm matrix and mitigate oxidative stress. The Fe2O3 then promoted the relative abundance of Magnetospirillum and Pseudomonas and the activity of nitrate reductase, which accelerates nitrate reduction by the photic biofilm. This study provides an insight into the interaction between iron minerals and photic biofilm and demonstrates the possibility of combining biotic and abiotic methods to improve the in-situ nitrate removal rate.


Asunto(s)
Biopelículas , Compuestos Férricos , Nitratos , Compuestos Férricos/metabolismo , Compuestos Férricos/química , Nitratos/metabolismo , Estrés Oxidativo , Pseudomonas/fisiología , Pseudomonas/metabolismo
2.
Chemosphere ; 359: 142361, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761827

RESUMEN

The abundance of microplastics (MPs) in soil environments has attracted significant attentions, due to their impact on soil physico-chemical properties. However, limited information is available on the influences of MPs on soil carbon composition and microbial utilization characteristics. Therefore, a two-month incubation experiment was conducted to add polyethylene microplastics (PE-MPs) with different levels (1%, 10%) and sizes (150-300 µm and 75-150 µm) into different soils. After that, soil chemical properties including the dissolved organic carbon (DOC), spectral characteristics of dissolved organic matter (DOM) and soil microbial characteristics were analyzed. Results revealed that PE-MPs addition caused significant differences in soil chemical properties between farmland and woodland soils, particularly in soil pH, DOM composition, and soil phosphatase activity. Woodland soil always exhibited higher levels of DOC content, microbial diversity, and soil carbon source utilization compared to farmland soil, leading to increased humification in the DOM of woodland soil. PE-MPs with a larger particle size significantly increased both the soil DOC content and enzyme activity. Addition of PE-MPs altered the soil DOM composition, and the fluorescence parameters like the biological index (BIX) and humification degree. Moreover, the carbon source utilization intensity of microorganisms on PE MPs-contaminated soils is higher in woodland soils. Various analyses confirmed that compared to other soil properties, characteristics of soil DOM had a more significant impact on soil microbial community composition. Thus, PE-MPs in conjunction with soil DOM spectral characteristics regulated soil microbial diversity, which is crucial for understanding soil carbon sequestration.


Asunto(s)
Carbono , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Suelo/química , Contaminantes del Suelo/análisis , Carbono/análisis , Microplásticos/análisis , Sustancias Húmicas/análisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-38635389

RESUMEN

Congenital heart disease (CHD) is the most frequent birth defect and a leading cause of infant mortality, emphasizing the crucial need for its early diagnosis. Ultrasound is the primary imaging modality for prenatal CHD screening. As a complement to the four-chamber view, the three-vessel view (3VV) plays a vital role in detecting anomalies in the great vessels. However, the interpretation of fetal cardiac ultrasound images is subjective and relies heavily on operator experience, leading to variability in CHD detection rates, particularly in resource-constrained regions. In this study, we propose an automated method for segmenting the pulmonary artery, ascending aorta, and superior vena cava in the 3VV using a novel deep learning network named CoFi-Net. Our network incorporates a coarse-fine collaborative strategy with two parallel branches dedicated to simultaneous global localization and fine segmentation of the vessels. The coarse branch employs a partial decoder to leverage high-level semantic features, enabling global localization of objects and suppression of irrelevant structures. The fine branch utilizes attention-parameterized skip connections to improve feature representations and improve boundary information. The outputs of the two branches are fused to generate accurate vessel segmentations. Extensive experiments conducted on a collected dataset demonstrate the superiority of CoFi-Net compared to state-of-the-art segmentation models for 3VV segmentation, indicating its great potential for enhancing CHD diagnostic efficiency in clinical practice. Furthermore, CoFi-Net outperforms other deep learning models in breast lesion segmentation on a public breast ultrasound dataset, despite not being specifically designed for this task, demonstrating its potential and robustness for various segmentation tasks.

4.
Phytomedicine ; 126: 155470, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417242

RESUMEN

BACKGROUND: Asthma affects 3% of the global population, leading to over 0.25 million deaths. Due to its complexity, asthma is difficult to cure or prevent, and current therapies have limitations. This has led to a growing demand for alternative asthma treatments. We found rosmarinic acid (RosA) as a potential new drug candidate from natural medicine. However, RosA has poor bioavailability and remains mainly in the gastrointestinal tract after oral administration, suggesting the involvement of gut microbiota in its bioactivity. PURPOSE: To investigate the mechanism of RosA in alleviating allergic asthma by gut-lung axis. METHODS: We used 16S rRNA gene sequencing and metabolites analysis to investigate RosA's modulation of gut microbiota. Techniques of molecular biology and metabolomics were employed to study the pharmacological mechanism of RosA. Cohousing was used to confirm the involvement of gut microbiota in RosA-induced improvement of allergic asthma. RESULTS: RosA decreased cholate levels from spore-forming bacteria, leading to reduced 5-hydroxytryptamine (5-HT) synthesis, bronchoconstriction, vasodilation, and inflammatory cell infiltration. It also increased short-chain fatty acids (SCFAs) levels, facilitating the expression of intestinal tight junction proteins to promote intestinal integrity. SCFAs upregulated intestinal monocarboxylate transporters (MCTs), thereby improving their systemic delivery to reduce Th2/ILC2 mediated inflammatory response and suppress eosinophil influx and mucus production in lung. Additionally, RosA inhibited lipopolysaccharide (LPS) production and translocation, leading to reduced TLR4-NFκB mediated pulmonary inflammation and oxidative stress. CONCLUSIONS: The anti-asthmatic mechanism of oral RosA is primarily driven by modulation of gut microbiota-derived 5-HT, SCFAs, and LPS, achieving a combined synergistic effect. RosA is a safe, effective, and reliable drug candidate that could potentially replace glucocorticoids for asthma treatment.


Asunto(s)
Asma , Ácido Rosmarínico , Humanos , Inmunidad Innata , ARN Ribosómico 16S/genética , Lipopolisacáridos , Serotonina , Linfocitos , Asma/tratamiento farmacológico , Asma/metabolismo , Pulmón/metabolismo , Ácidos Grasos Volátiles/metabolismo
5.
J Pharm Biomed Anal ; 240: 115931, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38183730

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa) with noticeable drug-resistance profile is one of the most pernicious pathogens that attracts major public health concerns. Herein, a 3D printed device combined with hydrogel pellet modified with phages was designed for point-of-care testing (POCT) of this pathogen with both colorimetric and pressure readout modes. A P. aeruginosa phage belonging to the family of Podoviridae was isolated from river water and noted as vB_PaeP-JZ1 (JZ1). Due to its host specificity, phage JZ1 was used as a recognizing agent for modifying the hydrogel pellet, and the modified hydrogel pellet was assembled into the 3D printed device to act as the sensing interface. Polymyxin B (PMB) was tagged with Pd@Pt core-shell nanodendrites (Pd@PtNDs) showing excellent peroxidase-like activity to act as the colorimetric and pressure signal tracer. P. aeruginosa can be quantified within the concentration ranges of 2.6 × 103 cfu mL-1 - 2.6 × 108 cfu mL-1 and 2.6 × 102 cfu mL-1 - 2.6 × 107 cfu mL-1 with colorimetric and pressure readout modes, respectively. The both modes can achieve quantitation of P. aeruginosa within 25 min. Thus the "both-in-one" 3D printed device with dual-mode readout function offers a rapid, sensitive, and specific platform for POCT of pathogenic bacteria.


Asunto(s)
Bacteriófagos , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa , Colorimetría , Hidrogeles , Infecciones por Pseudomonas/microbiología , Impresión Tridimensional
6.
Microbiol Spectr ; 12(2): e0352623, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38206035

RESUMEN

Candida auris is an emerging yeast pathogen of major concern because of its ability to cause hospital outbreaks of invasive candidiasis and to develop resistance to antifungal drugs. A majority of C. auris isolates are resistant to fluconazole, an azole drug used for the treatment of invasive candidiasis. Mechanisms of azole resistance are multiple, including mutations in the target gene ERG11 and activation of the transcription factors Tac1b and Mrr1, which control the drug transporters Cdr1 and Mdr1, respectively. We investigated the role of the transcription factor Upc2, which is known to regulate the ergosterol biosynthesis pathway and azole resistance in other Candida spp. Genetic deletion and hyperactivation of Upc2 by epitope tagging in C. auris resulted in drastic increases and decreases in susceptibility to azoles, respectively. This effect was conserved in strains with genetic hyperactivation of Tac1b or Mrr1. Reverse transcription PCR analyses showed that Upc2 regulates ERG11 expression and also activates the Mrr1/Mdr1 pathway. We showed that upregulation of MDR1 by Upc2 could occur independently from Mrr1. The impact of UPC2 deletion on MDR1 expression and azole susceptibility in a hyperactive Mrr1 background was stronger than that of MRR1 deletion in a hyperactive Upc2 background. While Upc2 hyperactivation resulted in a significant increase in the expression of TAC1b, CDR1 expression remained unchanged. Taken together, our results showed that Upc2 is crucial for azole resistance in C. auris, via regulation of the ergosterol biosynthesis pathway and activation of the Mrr1/Mdr1 pathway. Notably, Upc2 is a very potent and direct activator of Mdr1.IMPORTANCECandida auris is a yeast of major medical importance causing nosocomial outbreaks of invasive candidiasis. Its ability to develop resistance to antifungal drugs, in particular to azoles (e.g., fluconazole), is concerning. Understanding the mechanisms of azole resistance in C. auris is important and may help in identifying novel antifungal targets. This study shows the key role of the transcription factor Upc2 in azole resistance of C. auris and shows that this effect is mediated via different pathways, including the regulation of ergosterol biosynthesis and also the direct upregulation of the drug transporter Mdr1.


Asunto(s)
Candidiasis Invasiva , Candidiasis , Fluconazol , Humanos , Fluconazol/farmacología , Antifúngicos/farmacología , Azoles/farmacología , Candida auris , Candida albicans , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ergosterol , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana
7.
Chemosphere ; 349: 140790, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38013023

RESUMEN

The reuse of arsenic (As)-contaminated paddy fields is a global challenge because long-term flooding would result in As release due to the reductive dissolution of iron minerals. Biochar amendment is a common and effective remediation technique for As-contaminated paddy soil. However, the literature is still lacking in systematic research on the function of biochar in controlling the complexation of released dissolved organic matter (DOM) and iron oxides and its synergistic impact on the availability of As in flooded paddy soil. In the present study, bamboo biochar was prepared at different pyrolysis temperatures (300, 450 and 600 °C), as BB300, BB450 and BB600. Four paddy soil treatments including BB300, BB450, BB600 applications (1% ratio, m/m, respectively) and control (CK, no biochar application) were set and incubated for 60 d in flooding condition. The results showed that As availability represented by adsorbed As species (A-As) was mitigated by BB450 amendment compared with CK. The amendment of BB450 in paddy soil facilitated the complexation of HCl extractable Fe(III)/(II) and DOM and formation of amorphous iron oxides (e.g. complexed Fe species). Moreover, the abundance of Geobacteraceae and Xanthomonadaceae, as common electroactive bacteria, was promoted in the BB450 treated paddy soil in comparison to CK, which assisted to form amorphous iron oxides. The formed amorphous iron oxides then facilitated the formation of ternary complex (As-Fe-DOM) with highly stability, which could be considered as a mechanism for As immobilization after biochar was applied to the flooding paddy soil. Thus, the synergistic effect between amorphous iron oxides and electroactive stains could make main contribution to the passivation of released As in paddy soil under long-term flooding condition. This study provided a new insight for As immobilization via regulating iron-organic ligand complexation amendment with biochar in flooding paddy soil.


Asunto(s)
Arsénico , Oryza , Sasa , Contaminantes del Suelo , Arsénico/análisis , Carbón Orgánico , Compuestos Férricos , Suelo , Ligandos , Oxidación-Reducción , Hierro , Óxidos , Contaminantes del Suelo/análisis
8.
Opt Express ; 31(25): 42524-42538, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087624

RESUMEN

X-ray microspectroscopic techniques are essential for studying morphological and chemical changes in materials, providing high-resolution structural and spectroscopic information. However, its practical data analysis for reliably retrieving the chemical states remains a major obstacle to accelerating the fundamental understanding of materials in many research fields. In this work, we propose a novel data formulation model for X-ray microspectroscopy and develop a dedicated unmixing framework to solve this problem, which is robust to noise and spectral variability. Moreover, this framework is not limited to analyzing two-state material chemistry, making it an effective alternative to conventional and widely used methods. In addition, an alternative directional multiplier method with explicit or implicit regularization is applied to obtain the solution efficiently. Our framework can accurately identify and characterize chemical states in complex and heterogeneous samples, even under challenging conditions such as low signal-to-noise ratios and overlapping spectral features. By testing six simulated datasets, our method improves the existing methods by up to 151.84% and 136.33% in terms of the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) for the chemical phase map. Extensive experimental results on simulated and real datasets demonstrate its effectiveness and reliability.

9.
Proc Natl Acad Sci U S A ; 120(47): e2309227120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37963245

RESUMEN

Spatial transcriptomics technology has revolutionized our understanding of cell types and tissue organization, opening possibilities for researchers to explore transcript distributions at subcellular levels. However, existing methods have limitations in resolution, sensitivity, or speed. To overcome these challenges, we introduce SPRINTseq (Spatially Resolved and signal-diluted Next-generation Targeted sequencing), an innovative in situ sequencing strategy that combines hybrid block coding and molecular dilution strategies. Our method enables fast and sensitive high-resolution data acquisition, as demonstrated by recovering over 142 million transcripts using a 108-gene panel from 453,843 cells from four mouse brain coronal slices in less than 2 d. Using this advanced technology, we uncover the cellular and subcellular molecular architecture of Alzheimer's disease, providing additional information into abnormal cellular behaviors and their subcellular mRNA distribution. This improved spatial transcriptomics technology holds great promise for exploring complex biological processes and disease mechanisms.


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Ratones , ARN Mensajero/genética , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 120(49): e2314542120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015849

RESUMEN

High-resolution imaging with compositional and chemical sensitivity is crucial for a wide range of scientific and engineering disciplines. Although synchrotron X-ray imaging through spectromicroscopy has been tremendously successful and broadly applied, it encounters challenges in achieving enhanced detection sensitivity, satisfactory spatial resolution, and high experimental throughput simultaneously. In this work, based on structured illumination, we develop a single-pixel X-ray imaging approach coupled with a generative image reconstruction model for mapping the compositional heterogeneity with nanoscale resolvability. This method integrates a full-field transmission X-ray microscope with an X-ray fluorescence detector and eliminates the need for nanoscale X-ray focusing and raster scanning. We experimentally demonstrate the effectiveness of our approach by imaging a battery sample composed of mixed cathode materials and successfully retrieving the compositional variations of the imaged cathode particles. Bridging the gap between structural and chemical characterizations using X-rays, this technique opens up vast opportunities in the fields of biology, environmental, and materials science, especially for radiation-sensitive samples.

11.
Sci Rep ; 13(1): 17243, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821517

RESUMEN

A virus infection can be initiated with very few or even a single infectious virion, and as such can become extinct, i.e. stochastically fail to take hold or spread significantly. There are many ways that a fully competent infectious virion, having successfully entered a cell, can fail to cause a productive infection, i.e. one that yields infectious virus progeny. Though many stochastic models (SMs) have been developed and used to estimate a virus infection's establishment probability, these typically neglect infection failure post virus entry. The SM presented herein introduces parameter [Formula: see text] which corresponds to the probability that a virion's entry into a cell will result in a productive cell infection. We derive an expression for the likelihood of infection establishment in this new SM, and find that prophylactic therapy with an antiviral reducing [Formula: see text] is at least as good or better at decreasing the establishment probability, compared to antivirals reducing the rates of virus production or virus entry into cells, irrespective of the SM parameters. We investigate the difference in the fraction of cells consumed by so-called extinct versus established virus infections, and find that this distinction becomes biologically meaningless as the probability of establishment approaches zero. We explain why the release of virions continuously over an infectious cell's lifespan, rather than as a single burst at the end of the cell's lifespan, does not result in an increased risk of infection extinction. We show, instead, that the number of virus released, not the timing of the release, affects infection establishment and associated critical antiviral efficacy.


Asunto(s)
Virosis , Virus , Humanos , Internalización del Virus , Virosis/tratamiento farmacológico , Virión , Antivirales/farmacología , Antivirales/uso terapéutico
12.
Langmuir ; 39(15): 5315-5322, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37018452

RESUMEN

Metal halide perovskites (MHPs) have been promising functional materials for developing solar cells, lasers, photodetectors, and sensors due to their outstanding optical and electrical characteristics. However, they suffer from very poor stability for their high sensitivity to some environmental factors such as temperature, UV irradiation, pH, and polar solvent, which limits their extensive practical applications. Herein, a derived metal organic framework material, Pb-ZIF-8, was prepared as a precursor via a doping protocol. Then, CH3NH3PbBr3 perovskites encapsulated in ZIF-8 (CH3NH3PbBr3@ZIF-8) with green fluorescent (FL) emission were synthesized via a facile in situ protocol by using the derived metal organic frameworks material as a source of Pb element. With the protection of encapsulated ZIF-8, the perovskites material shows good FL properties under various harsh environmental conditions, which facilitates facile application in various fields. To verify the practical application potential of CH3NH3PbBr3@ZIF-8, we utilized them as FL probes to establish a highly sensitive method for detecting glutathione. Furthermore, the rapid conversion process from non-FL Pb-ZIF-8 to FL CH3NH3PbBr3@ZIF-8 was utilized to realize encryption and decryption of confidential information. This work opens an avenue to the development of perovskites-based devices with greatly improved stability in harsh external environments.

13.
Artículo en Inglés | MEDLINE | ID: mdl-33619054

RESUMEN

Candida auris is a novel Candida species that has spread in all continents causing nosocomial outbreaks of invasive candidiasis. C. auris has the ability to develop resistance to all antifungal drug classes. Notably, many C. auris isolates are resistant to the azole drug fluconazole, a standard therapy of invasive candidiasis.Azole resistance in C. auris can result from mutations in the azole target gene ERG11 and/or overexpression of the efflux pump Cdr1. TAC1 is a transcription factor controlling CDR1 expression in C. albicans The role of TAC1 homologs in C. auris (TAC1a and TAC1b) remains to be better defined.In this study, we compared sequences of ERG11, TAC1a and TAC1b between a fluconazole-susceptible and five fluconazole-resistant C. auris isolates of clade IV. Among four of the resistant isolates, we identified a similar genotype with concomitant mutations in ERG11 (F444L) and TAC1b (S611P). The simultaneous deletion of tandemly arranged TAC1a/TAC1b resulted in a decrease of minimal inhibitory concentration (MIC) for fluconazole. Introduction of the ERG11 and TAC1b mutations separately and/or combined in the wild-type azole susceptible isolate resulted in a significant increase of azole resistance with a cumulative effect of the two combined mutations. Interestingly, CDR1 expression was not significantly affected by TAC1a/TAC1b deletion or by the presence of the TAC1b S611P mutation, suggesting the existence of Tac1-dependent and Cdr1-independent azole resistance mechanisms.We demonstrated the role of two previously unreported mutations responsible for azole resistance in C. auris, which were a common signature among four azole-resistant isolates of clade IV.

14.
Anal Chem ; 95(2): 1359-1365, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36575992

RESUMEN

Pressure has been a facile signal readout mode for developing point-of-care testing devices due to the attractive features of portability, accessibility, rapidity, and affordability. Herein, a pressure signal readout device was designed by integrating two homemade needle-type piezoresistive transducers, a controller for a thin-film piezoresistive sensor and a smartphone. Meanwhile, a bidirectional immunochromatographic test strip was designed as an immunoreaction platform for dual-analyte detection. Using PdCuPt nanoparticles with catalase-mimic activity as signal tags, the pressure signals triggered by catalyzed aerogenous reaction were monitored by the pressure signal readout device and read on a smartphone with the Bluetooth module. In this proof-of-principle work, imidacloprid and carbendazim were detected as model analytes. The dynamic ranges for quantitating imidacloprid and carbendazim are 20 pg mL-1 to 50 ng mL-1 and 50 pg mL-1 to 50 ng mL-1, respectively. The whole immunoassay process was completed within 16 min. The recovery values for imidacloprid and carbendazim spiked into herbal medicines are 82.0-110.0 and 84.0-116.0%, respectively, verifying its reliability for real sample detection. As the smartphone APP and controller for a thin-film piezoresistive sensor contain 12 signal channels, the system can be easily extended to meet the demand for high-throughput screening.


Asunto(s)
Bencimidazoles , Teléfono Inteligente , Reproducibilidad de los Resultados , Inmunoensayo/métodos , Límite de Detección
15.
ACS Sens ; 7(8): 2438-2445, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35916836

RESUMEN

Gas pressure is a promising signal readout mode in point-of-care testing for its merits such as rapidity, simplicity, affordability, and no need for sophisticated instrumentation. Herein, a gas pressure sensor for multiplexed detection of pathogenic bacteria was developed on a hydrogel platform. Spherical and square hydrogel pellets prepared by cross-linking of sodium alginate were functionalized with nisin and ConA for the capture of Staphylococcus aureus and Escherichia coli O157:H7, respectively. By using the shape-encoded functional hydrogel pellets and aptamer-modified platinum-coated gold nanoparticles (Au@PtNPs), a dual-molecule recognition mode was established for rapid and specific detection of the two pathogenic bacteria. Au@PtNPs were applied as signal probes to efficiently catalyze the decomposition of H2O2 for generating abundant O2, which was converted into an amplified gas pressure signal. In two closed containers, the significant gas pressure signals were monitored with a portable pressure meter to quantitate the two pathogenic bacteria. The sensor was successfully applied to detect the pathogenic bacteria in various environmental, biological, and food samples. Thus, the proof-of-principle work paves a new avenue for multiplexed detection of pathogenic bacteria with shape-encoded hydrogel pellets combined with gas pressure signal readout.


Asunto(s)
Escherichia coli O157 , Nanopartículas del Metal , Oro , Hidrogeles , Peróxido de Hidrógeno
16.
Biosens Bioelectron ; 216: 114637, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35988432

RESUMEN

Rapid and sensitive assay of pathogenic bacteria is critical for minimizing the risk of infectious diseases. Inspired by the interaction between bacteriophages and host bacteria, we obtained a gene sequence of tail fiber protein (TFP) from Pseudomonas aeruginosa (P. aeruginosa) bacteriophage. Then the gene sequence was used to express a recombinant TFP, which can act as a potential capture molecule for P. aeruginosa. Small ubiquitin-related modifier (SUMO) tag was fused onto the TFP fragment to overcome its unfavorable aqueous solubility. The obtained SUMO tag-fused TFP (STFP) can be uniformly distributed onto a nitrocellulose membrane to form a test line due to the improved aqueous solubility, which facilities fabrication of a lateral flow assay strip. Thus we developed a lateral flow assay method by using STFP as a capture molecule and AuCo nanoparticles-labeled aptamer as a signal tracer for point-of-care testing of P. aeruginosa. By using the test strip, P. aeruginosa can be semi quantified with color band and quantified with chemiluminescent (CL) signal catalyzed by AuCo nanoparticles. The concentration range for quantification is 3.3 × 102 CFU/mL to 3.3 × 107 CFU/mL. The test strip was applied to assay P. aeruginosa in different sample matrixes including cerebrospinal fluid, physiological salt solution, drinking water and pear juice. The results demonstrate the application potential of the STFP-based lateral flow assay for medical diagnosis, food and drug safety monitoring.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Agua Potable , Bacteriófagos/genética , Técnicas Biosensibles/métodos , Colodión , Pseudomonas aeruginosa/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Solubilidad
17.
Proc Natl Acad Sci U S A ; 119(29): e2203199119, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858350

RESUMEN

Lithium-ion battery (LIB) is a broadly adopted technology for energy storage. With increasing demands to improve the rate capability, cyclability, energy density, safety, and cost efficiency, it is crucial to establish an in-depth understanding of the detailed structural evolution and cell-degradation mechanisms during battery operation. Here, we present a laboratory-based high-resolution and high-throughput X-ray micro-computed laminography approach, which is capable of in situ visualizing of an industry-relevant lithium-ion (Li-ion) pouch cell with superior detection fidelity, resolution, and reliability. This technique enables imaging of the pouch cell at a spatial resolution of 0.5 µm in a laboratory system and permits the identification of submicron features within cathode and anode electrodes. We also demonstrate direct visualization of the lithium plating in the imaged pouch cell, which is an important phenomenon relevant to battery fast charging and low-temperature cycling. Our development presents an avenue toward a thorough understanding of the correlation among multiscale structures, chemomechanical degradation, and electrochemical behavior of industry-scale battery pouch cells.

18.
Anal Chim Acta ; 1207: 339799, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35491039

RESUMEN

As a "superbug", methicillin-resistant Staphylococcus aureus (MRSA) has long been one of the most ubiquitous drug-resistant bacteria inducing numerous nosocomial infections. To achieve effective diagnosis and following treatment decision of infectious diseases induced by MRSA, it is highly desired to establish rapid analysis and antibiotic susceptibility test methods for this pathogen. In this study, we successfully expressed a bifunctional protein by fusing green fluorescent protein and cellular wall-binding domain of bacteriophage P108. The bifunctional protein can be employed as a signal probe for broad-spectrum fluorimetry of MRSA strains because it can both bind with the target pathogen and emit intensive fluorescence. By using it as the signal probe and porcine IgG as the capture agent, MRSA can be analyzed within a dynamic range of 1.0 × 103-2.0 × 107 CFU mL-1 with a sandwich mode. The fluorimetry was also applied to test antibiotic susceptibility of this pathogen to five antibiotics, and all results are conformable with those obtained with a standard micro broth dilution method. The above results demonstrate the attractive perspective of the bifunctional protein for rapid diagnosis and effective medication of infectious diseases induced by MRSA.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Fluorometría , Proteínas Fluorescentes Verdes/genética , Infecciones Estafilocócicas/diagnóstico , Staphylococcus aureus , Porcinos
19.
Science ; 376(6592): 517-521, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35482882

RESUMEN

Improving composite battery electrodes requires a delicate control of active materials and electrode formulation. The electrochemically active particles fulfill their role as energy exchange reservoirs through interacting with the surrounding conductive network. We formulate a network evolution model to interpret the regulation and equilibration between electrochemical activity and mechanical damage of these particles. Through statistical analysis of thousands of particles using x-ray phase contrast holotomography in a LiNi0.8Mn0.1Co0.1O2-based cathode, we found that the local network heterogeneity results in asynchronous activities in the early cycles, and subsequently the particle assemblies move toward a synchronous behavior. Our study pinpoints the chemomechanical behavior of individual particles and enables better designs of the conductive network to optimize the utility of all the particles during operation.

20.
Antimicrob Agents Chemother ; 66(4): e0006722, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35343781

RESUMEN

Candida auris is an emerging yeast pathogen with a remarkable ability to develop antifungal resistance, in particular to fluconazole and other azoles. Azole resistance in C. auris was shown to result from different mechanisms, such as mutations in the target gene ERG11 or gain-of-function (GOF) mutations in the transcription factor TAC1b and overexpression of the drug transporter Cdr1. The roles of the transcription factor Mrr1 and of the drug transporter Mdr1 in azole resistance is still unclear. Previous works showed that deletion of MRR1 or MDR1 had no or little impact on azole susceptibility of C. auris. However, an amino acid substitution in Mrr1 (N647T) was identified in most C. auris isolates of clade III that were fluconazole resistant. This study aimed at investigating the role of the transcription factor Mrr1 in azole resistance of C. auris. While the MRR1N647T mutation was always concomitant to hot spot ERG11 mutations, MRR1 deletion in one of these isolates only resulted in a modest decrease of azole MICs. However, introduction of the MRR1N647T mutation in an azole-susceptible C. auris isolate from another clade with wild-type MRR1 and ERG11 alleles resulted in significant increase of fluconazole and voriconazole MICs. We demonstrated that this MRR1 mutation resulted in reduced azole susceptibility via upregulation of the drug transporter MDR1 and not CDR1. In conclusion, this work demonstrates that the Mrr1-Mdr1 axis may contribute to C. auris azole resistance by mechanisms that are independent from ERG11 mutations and from CDR1 upregulation.


Asunto(s)
Azoles , Fluconazol , Antifúngicos/farmacología , Azoles/farmacología , Candida albicans , Candida auris , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...