Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37631776

RESUMEN

Methods for detecting small infrared targets in complex scenes are widely utilized across various domains. Traditional methods have drawbacks such as a poor clutter suppression ability and a high number of edge residuals in the detection results in complex scenes. To address these issues, we propose a method based on a joint new norm and self-attention mechanism of low-rank sparse inversion. Firstly, we propose a new tensor nuclear norm based on linear transformation, which globally constrains the low-rank characteristics of the image background and makes full use of the structural information among tensor slices to better approximate the rank of the non-convex tensor, thus achieving effective background suppression. Secondly, we construct a self-attention mechanism in order to constrain the sparse characteristics of the target, which further eliminates any edge residuals in the detection results by transforming the local feature information into a weight matrix to further constrain the target component. Finally, we use the alternating direction multiplier method to decompose the newly reconstructed objective function and introduce a reweighted strategy to accelerate the convergence speed of the model. The average values of the three evaluation metrics, SSIM, BSF, and SNR, for the algorithm proposed in this paper are 0.9997, 467.23, and 11.72, respectively. Meanwhile, the proposed detection method obtains a higher detection rate compared with other algorithms under the same false alarm rate.

2.
Sensors (Basel) ; 22(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36016018

RESUMEN

Infrared target detection is often disrupted by a complex background, resulting in a high false alarm and low target recognition. This paper proposes a robust principal component decomposition model with joint spatial and temporal filtering and L1 norm regularization to effectively suppress the complex backgrounds. The model establishes a new anisotropic Gaussian kernel diffusion function, which exploits the difference between the target and the background in the spatial domain to suppress the edge contours. Furthermore, in order to suppress the dynamically changing background, we construct an inversion model that combines temporal domain information and L1 norm regularization to globally constrain the low rank characteristics of the background, and characterize the target sparse component with L1 norm. Finally, the overlapping multiplier method is used for decomposition and reconstruction to complete the target detection.Through relevant experiments, the proposed background modeling method in this paper has a better background suppression effect in different scenes. The average values of the three evaluation indexes, SSIM, BSF and IC, are 0.986, 88.357 and 18.967, respectively. Meanwhile, the proposed detection method obtains a higher detection rate compared with other algorithms under the same false alarm rate.


Asunto(s)
Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...