Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Biotechnol (NY) ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861111

RESUMEN

Traf6, an adaptor protein, exhibits non-conventional E3 ubiquitin ligase activity and was well studied as an important factor in immune systems and cancerogenesis. In mice, the traf6-null caused a perinatal death, so that the underlying pathophysiology of traf6-defeciency is still largely unclear in animals. Here, in the present study, a traf6 knockout zebrafish line (traf6-/-) was generated and could survive until adulthood, providing a unique opportunity to demonstrate the functions of traf6 gene in animals' organogenesis beyond the mouse model. The body of traf6-/- fish was found to be significantly shorter than that of the wildtype (WT). Likewise, a comparative transcriptome analysis showed that 866 transcripts were significantly altered in the traf6-/- liver, mainly involved in the immune system, metabolic pathways, and progesterone-mediated oocyte maturation. Especially, the mRNA expression of the pancreas duodenum homeobox protein 1 (pdx1), glucose-6-phosphatase (g6pcb), and the vitellogenesis genes (vtgs) were significantly decreased in the traf6-/- liver. Subsequently, the glucose was found to be accumulated in the traf6-/- liver tissues, and the meiotic germ cell was barely detected in traf6-/- testis or ovary. The findings of this study firstly implied the pivotal functions of traf6 gene in the liver and gonads' development in fish species.

2.
J Chromatogr A ; 1726: 464975, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735118

RESUMEN

In conventional chromatographic ligand screening, underperforming ligands are often dismissed. However, this practice may inadvertently overlook potential opportunities. This study aims to investigate whether these underperforming ligands can be repurposed as valuable assets. Hydrophobic charge-induction chromatography (HCIC) is chosen as the validation target for its potential as an innovative chromatographic mode. A novel dual-ligand approach is employed, combining two suboptimal ligands (5-Aminobenzimidazole and Tryptamine) to explore enhanced performance and optimization prospects. Various dual-ligand HCIC resins with different ligand densities were synthesized by adjusting the ligand ratio and concentration. The resins were characterized to assess appearance, functional groups, and pore features using SEM, FTIR, and ISEC techniques. Performance assessments were conducted using single-ligand mode resins as controls, evaluating the selectivity against human immunoglobulin G and human serum albumin. Static adsorption experiments were performed to understand pH and salt influence on adsorption. Breakthrough experiments were conducted to assess dynamic adsorption capacity of the novel resin. Finally, chromatographic separation using human serum was performed to evaluate the purity and yield of the resin. Results indicated that the dual-ligand HCIC resin designed for human antibodies demonstrates exceptional selectivity, surpassing not only single ligand states but also outperforming certain high-performing ligand types, particularly under specific salt and pH conditions. Ultimately, a high yield of 83.9 % and purity of 96.7 % were achieved in the separation of hIgG from human serum with the dual-ligand HCIC, significantly superior to the single-ligand resins. In conclusion, through rational design and proper operational conditions, the dual-ligand mode can revitalize underutilized ligands, potentially introducing novel and promising chromatographic modes.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Inmunoglobulina G , Ligandos , Humanos , Adsorción , Inmunoglobulina G/química , Inmunoglobulina G/sangre , Triptaminas/química , Cromatografía Liquida/métodos , Bencimidazoles/química , Concentración de Iones de Hidrógeno
3.
Anal Chim Acta ; 1307: 342648, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719409

RESUMEN

In contrast to the conventional fluorescence enhancement resulting from the cessation of the photoinduced electron transfer effect upon capturing nitric oxide (NO) by o-phenylenediamine, we found an interesting fluorescence quench within small molecule fluorophores characterized by intramolecular hydrogen bonding. Herein, the integration of a push-pull electron system with intramolecular hydrogen bonding onto an ultra-small fluorophore was employed to fabricate a hydrogen bond-tuned single benzene core fluorescent probe with an exceptional fluorescence quantum yield of 26 %, denoted as HSC-1. By virtue of its small size and low molecular weight (mere 192 g/mol), it demonstrated superior solubility and biocompatibility. Given the optimized conditions, HSC-1 manifested extraordinary linearity in detecting NO concentrations ranging from 0.5 to 60 µM, with an outstanding detection limit of 23.8 nM. Theoretical calculations unraveled the photophysical properties of hydrogen bonding-related probe molecules and highlighted the NO sensing mechanism. This pioneering work offers an important platform for the design of small fluorescence probes only with a single benzene core applied to NO sensing, which will potentially emerge as a new frontier in the area.

4.
Fish Shellfish Immunol ; 149: 109555, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615703

RESUMEN

Developing a low-protein feed is important for the sustainable advancement of aquaculture. The aim of this study was to investigate the effects of essential amino acid (EAA) supplementation in a low-protein diet on the growth, intestinal health, and microbiota of the juvenile blotched snakehead, Channa maculata in an 8-week trial conducted in a recirculating aquaculture system. Three isoenergetic diets were formulated to include a control group (48.66 % crude protein (CP), HP), a low protein group (42.54 % CP, LP), and a low protein supplementation EAA group (44.44 % CP, LP-AA). The results showed that significantly lower weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), and feed efficiency ratio (FER) were observed in fish that were fed LP than in the HP and LP-AA groups (P < 0.05). The HP and LP-AA groups exhibited a significant increase in intestinal villus length, villus width, and muscular thickness compared to the LP group (P < 0.05). Additionally, the HP and LP-AA groups demonstrated significantly higher levels of intestinal total antioxidant capacity (T-AOC), catalase (CAT), and superoxide dismutase (SOD) and lower levels of malondialdehyde (MDA) compared to the LP group (P < 0.05). The apoptosis rate of intestinal cells in the LP group was significantly higher than those in the LP and HP groups (P < 0.05). The mRNA expression levels of superoxide dismutase (sod), nuclear factor kappa B p65 subunit (nfκb-p65), heat shock protein 70 (hsp70), and inhibitor of NF-κBα (iκba) in the intestine were significantly higher in the LP group than those in the HP and LP-AA groups (P < 0.05). The 16s RNA analysis indicated that EAA supplementation significantly increased the growth of Desulfovibrio and altered the intestinal microflora. The relative abundances of Firmicutes and Cyanobacteria were positively correlated with antioxidant parameters (CAT and T-AOC), whereas Desulfobacterota was negatively correlated with sod and T-AOC. The genera Bacillus, Bacteroides, and Rothia were associated with the favorable maintenance of gut health. In conclusion, dietary supplementation with EAAs to achieve a balanced amino acid profile could potentially reduce the dietary protein levels from 48.66 % to 44.44 % without adversely affecting the growth and intestinal health of juvenile blotched snakeheads.


Asunto(s)
Aminoácidos Esenciales , Alimentación Animal , Suplementos Dietéticos , Microbioma Gastrointestinal , Intestinos , Animales , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Aminoácidos Esenciales/administración & dosificación , Perciformes/crecimiento & desarrollo , Perciformes/inmunología , Dieta con Restricción de Proteínas/veterinaria , Dieta/veterinaria , Distribución Aleatoria , Peces/crecimiento & desarrollo , Acuicultura , Channa punctatus
5.
Biology (Basel) ; 12(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37887041

RESUMEN

Based on obtaining mstnb gene knockout in Pelteobagrus fulvidraco, a study on the effect of the mstn gene on skeletal morphology and growth was performed by comparing the number and length of the vertebrae of mutant and wild-type fish in a sibling group of P. fulvidraco, combined with the differences in cells at the level of vertebral skeletal tissue. It was found that mstnb gene knockdown resulted in a reduction in the number of vertebrae, the length, and the intervertebral distance in P. fulvidraco, and these changes may be the underlying cause of the shorter body length in mutant P. fulvidraco. Further, histological comparison of the same sites in the mstn mutant and wild groups of P. fulvidraco also revealed that the number and density of osteocytes were greater in mstnb knockout P. fulvidraco than in wild-type P. fulvidraco. Our results demonstrated that when using genome editing technology to breed new lines, the effects of knockout need to be analyzed comprehensively and may have some unexpected effects due to insufficient study of the function of certain genes.

6.
Fish Physiol Biochem ; 49(6): 1215-1227, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857788

RESUMEN

Many fish species exhibit remarkable sexual dimorphism, with males possessing numerous advantageous traits for commercial production by aquaculture such as faster growth rate, more efficient food energy utilization for muscle development, and better breeding performance. Several studies have shown that a decrease in the number of primordial germ cells (PGCs) during early development leads predominantly to male progeny. In this study, we developed a method to obtain all-male zebrafish (Danio rerio) by targeted PGC ablation using the nitroreductase/metronidazole (NTR/Mtz) system. Embryos generated by female heterozygous Tg(nanos3:nfsB-mCherry-nanos3 3'UTR) and male wild-types (WTs) were treated with vehicle or Mtz. Compared to vehicle-treated controls, 5.0 and 10.0 mM Mtz treatment for 24 h significantly reduced the number of PGCs and yielded an exclusively male phenotype in adulthood. The gonads of offspring treated with 5.0 mM Mtz exhibited relatively normal morphology and histological characteristics. Furthermore, these males were able to chase females, spawn, and produce viable offspring, while about 20.0% of males treated with 10.0 mM Mtz were unable to produce viable offspring. The 5.0 mM Mtz treatment protocol may thus be suitable for large-scale production of fertile male offspring. Moreover, about half of these males were WT as evidenced by the absence of nfsB gene expression. It may thus be possible to breed an all-male WT fish population by Mtz-mediated PGC ablation.


Asunto(s)
Perciformes , Pez Cebra , Animales , Masculino , Femenino , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Células Germinativas , Fertilidad , Perciformes/metabolismo
7.
Biosens Bioelectron ; 240: 115632, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37647684

RESUMEN

In this study, a polyethyleneimine (PEI)/Zr4+-functionalized nanofluidic sensing platform based on nonlinear hybridization chain reaction (NHCR) was developed for PNK activity assay. With the existence of PNK, the hairpin HPNK was cleaved by λ exonuclease, liberating the initiator T-DNA. Then T-DNA triggered the nonlinear HCR in solution and the reaction products were absorbed onto the nanopore, which changed the surface charge of nanofluidic device and could be detected by current-voltage characteristic curves. Compared to traditional linear HCR, the nonlinear HCR exhibits a higher sensitivity and order of growth kinetics, making it a powerful signal amplifier in bioanalysis. Due to the powerful amplification efficiency of nonlinear HCR, high sensitivity of the nanopore and specific recognition site of PNK/λ-Exo, an ultrasensitive and selective PNK sensing approach had been developed and applied to precisely quantitate the PNK activity with a LOD of 0.0001 U/mL. Moreover, utilizing this nanofluidic system as a foundation, we constructed a logic circuit that utilized PNK, adenosine diphosphate (ADP), and (NH4)2SO4 as input elements. ADP and (NH4)2SO4 had a crucial function in facilitating the PNK to regulate the DNA logic gate. By modifying the target and inhibitors, the nanofluidic device could detect a variety of stimuli and execute more advanced logical operations.


Asunto(s)
Técnicas Biosensibles , Hibridación de Ácido Nucleico , ADN , Bioensayo , Adenosina Difosfato
8.
Anal Chim Acta ; 1252: 341057, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-36935155

RESUMEN

The accurate and ultrasensitive detection of multiple methyltransferases was in great request for clinical diagnosis and epigenetic therapy. Here, a novel fluorescence assay was proposed for ultrasensitive CpG methyltransferase (M.SssI) and DNA adenine methyltransferase (Dam) activity detection based on hyperbranched rolling circle amplification (HRCA) and DNA walkers. The biosensor showed an extremely high sensitivity due to the dual-amplification strategy of HRCA and DNA walker. The LOD of the biosensor for M.SssI and Dam methyltransferase was estimated at 0.0004 U/mL and 0.001 U/mL, respectively. Without the presence of M.SssI methyltransferase, the corresponding recognition site of hairpin HM was cleaved by HpaII endonuclease, generating a DNA fragment (T-DNA) and inducing the DNA walker-HRCA reaction. Since the HRCA products contained numerous double-strand DNA (dsDNA), SYBR Green I could be embedded in the dsDNA, leading to a high fluorescent signal. In the presence of M.SssI methyltransferase, the corresponding recognition site of hairpin HM was methylated and the HpaII endonuclease-catalyzed stem of hairpin HM dissociation was hindered, leading to no DNA fragment (T-DNA) present. Hence, the DNA walker-HRCA reaction was not initiated and the fluorescent signal of SYBR Green I remained at a low level. Similarly, DNA adenine methyltransferase (Dam) and its inhibitors could also be detected by redesigning hairpin HD with the Dam recognition sequences. Furthermore, the sensing system was applied to analyze the endogenic Dam methyltransferase in the real samples such as E. coli cell lysate.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Fluorescencia , ADN/genética , Metilasas de Modificación del ADN , Metiltransferasas , Endonucleasas
9.
Anal Chem ; 94(10): 4407-4416, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35234450

RESUMEN

DNA methylation is catalyzed by a family of DNA methyltransferases that play crucial roles in various biological processes. Therefore, an ultrasensitive methyltransferase assay is highly desirable in biomedical research and clinical diagnosis. However, conventional assays for the detection of DNA methyltransferase activity often involve radioactive labeling, costly equipment, and laborious operation. In this study, an ultrasensitive and label-free method for detecting DNA adenine methyltransferase (Dam) and CpG methyltransferase (M.SssI) was developed using the nanopore technique coupled with DNA cascade signal amplification reactions. A hairpin DNA (HD) comprising of the methylation-responsive sequences was skillfully designed. In the presence of Dam methyltransferase, the corresponding recognition site of hairpin HD was methylated and specifically cleaved by DpnI endonuclease, thus forming a DNA fragment that induces the catalytic hairpin assembly and hybridization chain reaction (CHA-HCR). The generated products could be absorbed onto the Zr4+-coated nanopore, resulting in an ion current rectification signal change. Considering the high sensitivity of the nanopore and excellent specificity toward the recognition of methyltransferase/endonuclease, our developed method could detect both Dam and M.SssI methyltransferases in the same sensing platform. Furthermore, the designed nanopore sensor could realize the multiplex detection of Dam and M.SssI methyltransferases after integration with the cascaded INHIBIT-AND logic gate. This ultrasensitive methyltransferase assay holds great promise in the field of cancer diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanoporos , Técnicas Biosensibles/métodos , ADN , Metilación de ADN , Metilasas de Modificación del ADN , Metiltransferasas/metabolismo
10.
J Chromatogr A ; 1668: 462923, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35259647

RESUMEN

Ligand is an essential part of the cost of adsorbent preparation, which needs to be carefully selected and evaluated. In this paper, we introduced ligand efficiency (Le) with three levels (recovery, preparation and cost) to form a selection strategy for evaluation of the efficiency of hydrophobic charge-induction ligand. These functions were calculated from static/dynamic binding capacity, desorption efficiency, coupling efficiency and ligand cost. Nine kinds of ligand were used to demonstrate this strategy. The coupling efficiency was determined by preparing the adsorbents with different kinds and densities of ligand. These adsorbents were characterized by FT-IR, SEM. Then adsorption equilibrium, adsorption kinetics, and frontal adsorption experiments were used to test the adsorption and desorption performance of these adsorbents. Finally, Les of recovery, preparation and cost were calculated. The results showed there were apparent differences in Les between ligand types and densities under static and dynamic adsorption conditions. 4FF-Tryptophan with 52 µmol/g adsorbent had the best performance with the lowest static/dynamic Le of recovery, preparation and ligand cost. Compared with those methods evaluated by static saturated adsorption capacity or dynamic binding capacity at 10% breakthrough, the selection strategy based on ligand efficiency is more suitable for subsequent research and industrial amplification.


Asunto(s)
Proteínas , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Proteínas/química , Espectroscopía Infrarroja por Transformada de Fourier
11.
Aquat Toxicol ; 239: 105951, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34467877

RESUMEN

Simvastatin (SV) is a common hypolipidemic drug in clinical medicine that can reduce endogenous cholesterol biosynthesis by inhibiting hydroxyl-methyl-glutaryl coenzyme A reductase. SV took a large market share in the lipid-lowering drugs and it is frequently detected in various water bodies due to its increasing consumption in past years. In the present investigation, we selected a native fish species in the Pearl River Basin in China, Mugilogobius abei (M. abei), to study the effects of SV on non-target aquatic organisms. Results showed that a significant decrease in the volume of adipocytes under SV exposure were observed on oil red O section, and the expression of HMG-CoAR decreased significantly. The mRNA and protein expression of PPARα were significantly up-regulated, the expressions of other genes related to lipid metabolism were up-regulated to varying degrees as well. There was a positive correlation between the concentrations of SV and the protein expressions of plasma phospholipid transfer protein (PLTP) and cholesterolester transfer protein (CETP). In addition, the frozen sections showed that SV led to ROS accumulation in liver in a time and concentration dependent manner. The mRNA and protein expressions of Nrf2 were significantly up-regulated after 24 hours of SV exposure. Some biomarkers associated with antioxidant such as Trx2, TrxR and MDA content were positively correlated with the exposure concentration and time, while the content of GSH decreased sharply. It is noteworthy that the environmentally relevant concentration (0.5 µg/L) of SV exposure caused delayed embryonic development and deformations, decreased hatching rates. We conclude that SV promotes fat metabolism, gives rise to oxidative stress and has significant toxicity on embryo development in M. abei.


Asunto(s)
Simvastatina , Contaminantes Químicos del Agua , Animales , Desarrollo Embrionario , Estrés Oxidativo , PPAR alfa/genética , Transducción de Señal , Simvastatina/toxicidad , Contaminantes Químicos del Agua/toxicidad
12.
Talanta ; 220: 121420, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32928431

RESUMEN

In this paper, an ultrasensitive nanochannel sensor has been proposed for label-free Ochratoxin A (OTA) assay in combination with graphene oxide (GO) and catalyzed hairpin assembly (CHA). The high-performance sensor is segmented into two parts. One is composed of graphene oxide (GO) and DNA probes. In the presence of target OTA, OTA works as a catalyst to trigger the self-assembly pathway of the two probes and initiate the cycling of CHA circuits, which results in numerous double-stranded DNAs (dsDNA) in solution. The excess ssDNA probes are removed by GO. The other part is composed of biomimetic nanochannel coated with polyethyleneimine (PEI) and Zr4+, which can quantify the concentration of OTA by detecting the dsDNA in solution. The nanofluidic device has a detection limit of as low as 6.2 pM with an excellent selectivity. The nanochannel based assay was used to analyse food samples (red wine) with satisfied results. Thus, the proposed analytical method will provide a new approach the detection of OTA and can be applied for quality control to ensure food safety.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Ocratoxinas , Biomimética , Catálisis , Contaminación de Alimentos/análisis , Límite de Detección , Ocratoxinas/análisis
13.
Anal Chem ; 92(8): 5952-5959, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32207618

RESUMEN

Nanochannel-based analytical techniques have great potential applications for nucleic acid sequencing and high sensitivity detection of biological molecules. However, the sensitivity of conventional solid-state nanochannel sensors is hampered by a lack of effective signal amplification strategies, which has limited its utility in the field of analytical chemistry. Here we selected a solid-state nanochannnel modified with polyethylenimine and Zr4+ in combination with graphene oxide as the sensing platform. The high-performance sensor is based upon the change of the surface charge of the nanochannel, which is resulted from DNA cascade signal amplification in solution. The target miRNA (miR-122) can be indirectly quantitated with a detection limit of 97.2 aM with an excellent selectivity. Depending on the nucleic acid's hybridization and configuration transform, the designed nanochannel sensing systems can realize the intelligent detection of multiple liver cancer-related miRNA (miR-122 and miR Let-7a) integrating with cascaded INHIBIT-OR logic gate to provide theoretical guidance and technical support for clinical diagnosis and therapeutic evaluation of liver cancer.


Asunto(s)
Materiales Biomiméticos/química , Técnicas Biosensibles , Neoplasias Hepáticas/diagnóstico , MicroARNs/análisis , Nanopartículas/química , Técnicas Biosensibles/instrumentación , Humanos , MicroARNs/genética , Técnicas de Amplificación de Ácido Nucleico
14.
Chemosphere ; 252: 126378, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32199161

RESUMEN

Biofilm based systems and the hybrid between activated sludge and biofilms have been popularly applied for wastewater treatment. Unlike the suspended biomass, the biofilm concentration and kinetics on the media cannot be easily measured. In this study, a novel and easy-to-use approach has been developed based on pulse-flow respirometer to characterize the biofilm stoichiometry and kinetics in situ. With the new designed breathing reactor, the mutual interference between the magnetic stirring and biofilm media that happened in the conventional breathing reactor was solved. Moreover, Microsoft Excel based programs had been developed to fit the oxygen uptake rate curves with dynamic nonlinear regression. With this new approach, the yield coefficient, maximum oxidation capacity, and half-saturation constant of substrate for the heterotrophic biofilms in a fix bed reactor were determined to be 0.46 g-VSS/g-COD, 67.0 mg-COD/(h·L-media), and 4.4 mg-COD/L, respectively. Those parameters for biofilm ammonia oxidizers from a moving bed biofilm reactor were determined to be 0.17 g-VSS/g-N, 18.6 mg-N/(h·L-media), and 1.2 mg-N/L, respectively, and they were 0.11 g-VSS/g-N, 20.9 mg-N/(h·L-media), and 0.98 mg-N/L for nitrite oxidizers in the same biofilms. This study also found that the maximum specific substrate utilization rate for detached biofilms increased by 3.2 times, indicating that maintaining biofilm integrity was very important in the kinetic tests. Using this approach, the biofilm kinetics on the media can be regularly measured for treatment optimization.


Asunto(s)
Biopelículas , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Biomasa , Procesos Heterotróficos , Cinética , Aguas del Alcantarillado/química , Aguas Residuales
15.
J Colloid Interface Sci ; 566: 46-59, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31986308

RESUMEN

Nitrogen doped tubular magnetic carbons embedded with nickel nanoparticles (Ni@NTMCs) were prepared via a simple pyrolysis process and employed as the effective adsorbents for the Cr(VI) removal. Ni@NTMCs with as high as 10.63 at.% N doping exhibited the excellent Cr(VI) removal capacities of 24.4 and 250 mg g-1 in neutral and acidic solution, respectively. Adsorption kinetics and isotherm study revealed that the monolayer chemical adsorption was the rate-controlling step for the Cr(VI) removal. The high removal performance can be ascribed to the combination of adsorption and reduction reaction between Cr(VI) ions, and Ni nanoparticles. N dopant and edge carbons acted as the Cr(VI) adsorption site. The surface Ni nanoparticles mainly made contributions to the reduction process. The embedded Ni nanoparticles steadily provided magnetism for the separation and helpful for the recycles stability, showing a high acid corrosion resistance in this study.

16.
Fish Shellfish Immunol ; 96: 262-269, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31816414

RESUMEN

Norfloxacin nicotinate (NOR-N), an adduct of norfloxacin (NOR) and nicotinic acid, has been widely used for replacing NOR in animal husbandry and fishery industry. Nowadays, increasing evidences showed that NOR could pose toxic effects on fish and other aquatic organisms, but as its adduct, whether NOR-N could cause adverse effects on aquatic organisms is still unclear. To evaluate the toxic effects of NOR-N on the early life stage of zebrafish, we determined the changes in embryonic development (hatching rate, body length, malformation rate and mortality), antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx)) activities, malondialdehyde (MDA) content and gene expression levels related to antioxidant enzymes (Cu/Zn-sod, Mn-sod, CAT and Gpx) and innate immune system (tumor necrosis factor α (TNFα), interferon (IFN), Interleukin-1 beta (IL-1ß), IL-8, CXCL-clc, CC-chemokine, lysozyme (Lzy) and complement factors (C3)) after embryonic exposure to NOR-N till 96 hpf. The results showed that NOR-N exposure could decreased the hatching rate and body length, and increased abnormality and mortality as concentration-dependent during embryonic development process. NOR-N induced oxidative stress in zebrafish larvae through increasing the contents of MDA and the activities of SOD, CAT and Gpx, as well as the mRNA levels of genes related to these antioxidant enzymes. Moreover, the expression of TNFα, IFN, IL-1ß, IL-8, CXCL-clc, CC-chemokine, Lzy and C3 genes were significantly up-regulated after exposure to high concentration (5 and/or 25 mg/L) of NOR-N till 96 hpf, indicating that the innate immune system in zebrafish larvae was disturbed by NOR-N. Overall, our results suggested that NOR-N caused development toxicity, oxidative stress and immunotoxicity on the early life stage of zebrafish. Thus, widespread application of NOR-N might pose potential ecotoxicological risk on aquatic ecosystems.


Asunto(s)
Antibacterianos/toxicidad , Inmunidad Innata/efectos de los fármacos , Norfloxacino/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Pez Cebra/inmunología , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Embrión no Mamífero/inmunología , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/inmunología , Ácidos Nicotínicos/toxicidad , Norfloxacino/toxicidad , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
17.
Nanoscale ; 11(11): 5048-5057, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30839977

RESUMEN

The integration of multi-level DNA logic gates for biological diagnosis is far from being fully realized. In particular, the simplification of logical analysis to implement advanced logic diagnoses is still a critical challenge for DNA computing and bioelectronics. Here, we developed a magnetic bead/DNA system to construct a library of logic gates, enabling the sensing of multiplex target miRNAs. In this assay, the miRNA-catalyzed hairpin assembly (CHA) was successfully applied to construct two/three-input concatenated logic circuits with excellent specificity extended to design a highly sensitive multiplex detection system. Significantly, the CHA-based multiplex detection system can distinguish individual target miRNAs (such as miR-21, miR-155, and miR let-7a) under a logic function control, which presents great applications in the development of rapid and intelligent detection. Another novel feature is that the multiplex detection system can be reset by heating the output system and the magnetic separation of the computing modules. Overall, the proposed logic diagnostics with high amplification efficiency is simple, fast, low-cost, and resettable, and holds great promise in the development of biocomputing, multiparameter sensing, and intelligent disease diagnostics.


Asunto(s)
Técnicas Biosensibles/métodos , Computadores Moleculares , MicroARNs/análisis , Catálisis , ADN/química , Fluoresceína/química , Oro/química , Humanos , Nanopartículas de Magnetita/química , MicroARNs/sangre , Conformación de Ácido Nucleico
18.
Talanta ; 194: 803-808, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30609609

RESUMEN

In this work, a novel fluorescence (FL) probe for selective and sensitive detection of Cys with colorimetric and FL dual signal changes was reported. The probe was synthesized by two step of sulfonamide reaction coupling between a sulfonyl benzoxadiazole (SBD) dye and dansyl chloride linked with rigid piperazine group. The probe showed a specific off-on response to Cys in aqueous solution with nanomolar LOD, and without interference by a range of amino acids and several competing analytes. Upon addition of Cys, the probe will undergo sequential substitution and intramolecular rearrangement reactions, yielding a 4-amino SBD derivative, which results in generation of strong yellow fluorescence emission at 575 nm accompanied by a two-step red shift in the absorption spectral. Moreover, it can be used for imaging of endogenous Cys in living cells.


Asunto(s)
Colorimetría/métodos , Cisteína/análisis , Cisteína/química , Colorantes Fluorescentes/química , Límite de Detección , Supervivencia Celular , Compuestos de Dansilo/química , Humanos , Células MCF-7 , Sulfonamidas/química
19.
J Fish Dis ; 42(1): 109-117, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30474192

RESUMEN

Aeromonas schubertii is a major epidemiological agent that threatens cultured snakeheads (Channidae) and has caused great economic losses in fish-farming industries in China in recent years. In present study, a specific TaqMan minor groove binder (MGB) probe fluorescence real-time quantitative PCR (qPCR) assay was developed to rapidly detect and quantify A. schubertii. A pair of qPCR primers and a TaqMan MGB probe were selected from the rpoD gene, which were shown to be specific for A. schubertii. A high correlation coefficient (R2  = 0.9998) in a standard curve with a 103% efficiency was obtained. Moreover, the qPCR method's detection limit was as low as 18 copies/µl, which was 100 times more sensitive than that of conventional PCR. The detection results for the A. schubertii in pond water and fish tissue were consistent with those of the viable counts. Bacterial load changes detected by qPCR in different tissues of snakeheads infected with A. schubertii showed that the gills and intestines may be the entry for A. schubertii, and the spleen and kidney are major sites for A. schubertii replication. The established method in present study should be a useful tool for the early surveillance and quantitation of A. schubertii.


Asunto(s)
Aeromonas/aislamiento & purificación , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Aeromonas/genética , Animales , Carga Bacteriana , Cartilla de ADN , Peces/microbiología , Fluorescencia , Estanques/microbiología , Sensibilidad y Especificidad , Microbiología del Agua
20.
Sci Total Environ ; 651(Pt 1): 399-409, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30240922

RESUMEN

Simvastatin is one of the most commonly cholesterol-lowering prescribed drugs all over the world. With the increase of consumption of these pharmaceuticals and subsequent their discharge into the aquatic environment in recent years, they are present at detectable levels in most sewage effluents. Unfortunately, limited information is provided about their potential impacts on aquatic organisms, especially on the detoxification-related metabolism in fish. In the present study, one local native benthic fish (Mugilogobius abei) in southern China was employed as test species and exposed to SV (0.5 µg L-1, 5 µg L-1, 50 µg L-1 and 500 µg L-1) for 72 h. The transcriptional expression of nucleus transcriptional factor pregnane X receptor (PXR) and its downstream targeted genes including multixenobiotics resistance protein or permeability glycoprotein (P-gp), cytochrome 1A (CYP1A), cytochrome P450 3A (CYP3A), glutathione-S-transferase (GST) and the expression of associated microRNA such as miR-27, miR-34 and miR-148 in Mugilogobius abei were investigated. Result showed that the expressions of P-gp, CYP 1A, CYP 3A, GST and PXR were induced to some extend under simvastatin exposure for 72 h. A positive correlation was observed between PXR and CYP1A, CYP3A and P-gp. While for microRNA, a negative relationship was found between miR-34a and CYP3A, CYP1A. The expression of miR-148a was significantly induced under the exposure of SV (50 µg L-1), which was positive related to the transcriptional expression of PXR. For enzyme activity, erythromycin N-demethylase (ERND) significantly increased at 24 h and the activity of catalase (CAT) and superoxide dismutase (SOD) exhibited different trends. CAT was slightly inhibited at 24 h exposure but SOD was significantly induced in high concentration. Glutathione-S-transferase (GST) activity was significant inhibited after 72 h exposure. The reductive small molecule glutathione (GSH) content showed obvious decrease, while the quantity of malondialdehyde (MDA) increased significantly in high concentrations of SV exposure. GSH and MDA showed a typical negative correlation to some degree. Moreover, simvastatin caused histological changes in the liver tissues of M. abei, especially the size of adipocyte significantly decreased. The present study indicated that environmentally relevant concentration SV may affect the PXR signaling pathway in M. abei and pose potential ecological risks to non-target organisms like fish.


Asunto(s)
Anticolesterolemiantes/toxicidad , Proteínas de Peces/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Perciformes/genética , Simvastatina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Proteínas de Peces/metabolismo , Hígado/patología , Perciformes/metabolismo , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...