Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Med Mol Morphol ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38316697

RESUMEN

Interleukin 32 (IL-32) is a proinflammatory cytokine secreted from several kinds of cancer cells. In the present study, we investigated the significance of IL-32 in lung adenocarcinoma by immunohistochemistry and bioinformatics analysis. IL-32 was positive in cancer cells of 21 cases (9.2%) of total 228 cases. Increased IL-32 gene expression was linked to worse clinical course in TCGA analysis, however, IL-32 expression in immunohistochemistry was not associated to clinical course in our cohort. It was also found that high IL-32 expression was seen in cases with increased lymphocyte infiltration. In vitro studies indicated that IFN-γ induced gene expression of IL-32 and PD1-ligands in lung adenocarcinoma cell lines. IL-32, especially IL-32ß, also induced overexpression of PD1-ligands in human monocyte-derived macrophages. Additionally, Cancer-cell-derived IL-32 was elevated by stimulation with anticancer agents. In conclusion, IL-32 potentially induced by inflammatory conditions and anticancer therapy and contribute to immune escape of cancer cells via development the immunosuppressive microenvironment. IL-32 might be a target molecule for anti-cancer therapy.

2.
Pediatr Surg Int ; 40(1): 55, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347163

RESUMEN

PURPOSE: In this research, we analyzed the expression of serpinB9 in hepatoblastoma and investigated the factors which enhance its expression. METHOD: SerpinB9 expression in hepatoblastoma cell lines and macrophages co-cultured with each other or stimulated by anticancer agents was examined using RT-qPCR and western blotting. Immunohistochemistry for SerpinB9 in hepatoblastoma specimens was performed. Single-cell RNA-sequence data for hepatoblastoma from an online database were analyzed to investigate which types of cells express SerpinB9. RESULT: HepG2, a hepatoblastoma cell line, exhibited increased expression of SerpinB9 when indirectly co-cultured with macrophages. Immunohistochemistry for the specimens demonstrated that serpinB9 is positive not in hepatoblastoma cells but in macrophages. Single-cell RNA sequence analysis in tissues from hepatoblastoma patients showed that macrophages expressed SerpinB9 more than tumor cells did. Co-culture of macrophages with hepatoblastoma cell lines led to the enhanced expression of SerpinB9 in both macrophages and cell lines. Anticancer agents induced an elevation of SerpinB9 in hepatoblastomas cell lines. CONCLUSION: In hepatoblastoma, SerpinB9 is thought to be more highly expressed in macrophages and enhanced by interaction with hepatoblastoma cell.


Asunto(s)
Antineoplásicos , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Línea Celular , Hepatoblastoma/patología , Inmunohistoquímica , Neoplasias Hepáticas/patología , Microambiente Tumoral/genética
3.
Med Mol Morphol ; 57(1): 68-75, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37991604

RESUMEN

Serpinb9 is an inhibitor of granzyme B and is potentially involved in the immune escape of tumor cells. In the present study, bioinformatics analysis using open databases suggested that SerpinB9 is overexpressed in testicular embryonal carcinoma. Immunohistological analysis was performed on 28 cases of testicular germ cell tumors to investigate the relationship between SerpinB9 expression in testicular germ cell tumors and the tumor immune environment. SerpinB9 was significantly upregulated in the non-seminoma group and inversely correlated with the number of tumor-infiltrating CD8-positive cells. In addition, yolk sac tumors were characterized by the loss of human leukocyte antigen-class I expression. These findings suggest that SerpinB9 contributes to the immune escape of testicular germ cell tumors. Targeting therapy for SerpinB9 might therefore be useful in immunotherapy for testicular germ cell tumors resistant to immune checkpoint inhibitors.


Asunto(s)
Carcinoma Embrionario , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Humanos , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Carcinoma Embrionario/metabolismo , Carcinoma Embrionario/patología , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo
4.
Cancer Genomics Proteomics ; 21(1): 54-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38151286

RESUMEN

BACKGROUND/AIM: CXCL10, a member of the CXC chemokine family, plays a crucial role in immune response by facilitating the chemotaxis of CXCR3-positive immune cells. We examined the expression of CXCL10 to unravel its functional significance in colorectal cancer. MATERIALS AND METHODS: Bioinformatics analysis was performed to investigate CXCL10 expression and its clinicopathological relevance. Subsequently, we examined the correlation between the serum levels of CXCL10 and its expression within cancer tissues. RESULTS: Analysis of the TCGA database revealed that elevated CXCL10 expression in CRC tissues correlates with improved long-term survival and is inversely associated with lymph node infiltration and metastasis. Insights from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes further established a connection between increased CXCL10 and co-regulated gene expression with enhanced immune activation and regulation, mediated by the inhibition of the NOD-like receptor signaling pathway. Single-cell analysis pinpointed myeloid cells and macrophages as the primary sources of CXCL10. Immunohistochemical assessments revealed that a subset of cancer cells and macrophages are positive for CXCL10 expression. CXCL10-positive cells are predominantly located at the invasive front of the tumor. Intriguingly, our findings reveal an inverse correlation between serum CXCL10 levels and its expression in cancer tissues. CONCLUSION: The expression of CXCL10 may play a role in mediating the inflammatory responses at the invasive front in colorectal cancer and is observed to be inversely correlated with serum CXCL10 levels. It is pivotal to elucidate the distinct roles of CXCL10 in colorectal cancer, particularly different functions of cancer-tissue CXCL10 from serum CXCL10.


Asunto(s)
Quimiocina CXCL10 , Neoplasias Colorrectales , Humanos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Transducción de Señal , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología
5.
An Acad Bras Cienc ; 95(3): e20220762, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37909562

RESUMEN

With the higher requirements of various tactical and technical indicators of the weapon systems, the current research on the ignition and combustion characteristics of different types of solid propellants is not comprehensive. In more complex and harsh environmental conditions, the pressure affects the ignition and combustion characteristics. Therefore, the paper studies the ignition and combustion characteristics of the modified double-base propellants (MDB propellants) and fuel-rich propellants (FR propellants) under low-pressure environment. Combining experiment and theory, the ignition delay time and burning rate of two kinds of solid propellants are compared and analyzed at low pressure by the laser ignition experimental device. The results displayed that the burning flames of the FR and MDB propellant presented evident V-shape and cylindrical, respectively. The flame brightness decreased with the decrease in pressure. With the increase of pressure and heat flux, the ignition delay time of the MDB propellant and the FR propellant decreased. By comparison, Model 2 of the ignition delay time was more effective for the estimation of the ignition delay time of the FR propellant. The experimental results are compared with the three burning rate models, which are the Vielle formula (Model 1), Summerfield formula (Model 2), and B-number burning rate formula (Model 3). The results showed the burning rate was more in accord with Model 3.

6.
Pediatr Surg Int ; 39(1): 275, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37751001

RESUMEN

PURPOSE: This study investigated the expression of interleukin 32 (IL-32) in hepatoblastoma, the most common primary pediatric liver tumor, and its possible roles in tumorigenesis. METHODS: IL-32 expression was investigated in two hepatoblastoma cell lines (Hep G2 and HuH 6) in the steady state and after co-culture with macrophages by RNA-seq analysis and RT-qPCR, and after stimulation with chemotherapy. Cultured macrophages were stimulated by IL-32 isoforms followed by RT-qPCR and western blot analysis. IL-32 immunohistochemical staining (IHC) was performed using specimens from 21 hepatoblastoma patients. Clustering analysis was also performed using scRNA-seq data downloaded from Gene Expression Omnibus. RESULTS: The IL-32 gene is expressed by hepatoblastoma cell lines; expression is upregulated by paracrine cell-cell communication with macrophages, also by carboplatin and etoposide. IL-32 causes protumor activation of macrophages with upregulation of PD-L1, IDO-1, IL-6, and IL-10. In the patient pool, IHC was positive only in 48% of cases. However, in the downloaded dataset, IL-32 gene expression was negative. CONCLUSION: IL-32 was detected in hepatoblastoma cell lines, but not in all hepatoblastoma patients. We hypothesized that stimulation such as chemotherapy might induce expression of IL-32, which might be a critical mediator of chemoresistance in hepatoblastoma through inducing protumor activation in macrophages.


Asunto(s)
Hepatoblastoma , Interleucinas , Neoplasias Hepáticas , Humanos , Western Blotting , Comunicación Celular , Hepatoblastoma/genética , Interleucinas/genética , Neoplasias Hepáticas/genética
7.
J Med Chem ; 66(5): 3356-3371, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36826833

RESUMEN

The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family, which includes JNK1-JNK3. Interestingly, JNK1 and JNK2 show opposing functions, with JNK2 activity favoring cell survival and JNK1 stimulating apoptosis. Isoform-selective small molecule inhibitors of JNK1 or JNK2 would be useful as pharmacological probes but have been difficult to develop due to the similarity of their ATP binding pockets. Here, we describe the discovery of a covalent inhibitor YL5084, the first such inhibitor that displays selectivity for JNK2 over JNK1. We demonstrated that YL5084 forms a covalent bond with Cys116 of JNK2, exhibits a 20-fold higher Kinact/KI compared to that of JNK1, and engages JNK2 in cells. However, YL5084 exhibited JNK2-independent antiproliferative effects in multiple myeloma cells, suggesting the existence of additional targets relevant in this context. Thus, although not fully optimized, YL5084 represents a useful chemical starting point for the future development of JNK2-selective chemical probes.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Proteína Quinasa 9 Activada por Mitógenos , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación
8.
Cell Rep Phys Sci ; 4(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-38213501

RESUMEN

Measurements of kinase activity are important for kinase-directed drug development, analysis of inhibitor structure and function, and understanding mechanisms of drug resistance. Sensitive, accurate, and miniaturized assay methods are crucial for these investigations. Here, we describe a label-free, high-throughput mass spectrometry-based assay for studying individual kinase enzymology and drug discovery in a purified system, with a focus on validated drug targets as benchmarks. We demonstrate that this approach can be adapted to many known kinase substrates and highlight the benefits of using mass spectrometry to measure kinase activity in vitro, including increased sensitivity. We speculate that this approach to measuring kinase activity will be generally applicable across most of the kinome, enabling research on understudied kinases and kinase drug discovery.

10.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35806100

RESUMEN

Thermal unfolding methods are commonly used as a predictive technique by tracking the protein's physical properties. Inherent protein thermal stability and unfolding profiles of biotherapeutics can help to screen or study potential drugs and to find stabilizing or destabilizing conditions. Differential scanning calorimetry (DSC) is a 'Gold Standard' for thermal stability assays (TSA), but there are also a multitude of other methodologies, such as differential scanning fluorimetry (DSF). The use of an external probe increases the assay throughput, making it more suitable for screening studies, but the current methodologies suffer from relatively low sensitivity. While DSF is an effective tool for screening, interpretation and comparison of the results is often complicated. To overcome these challenges, we compared three thermal stability probes in small GTPase stability studies: SYPRO Orange, 8-anilino-1-naphthalenesulfonic acid (ANS), and the Protein-Probe. We studied mainly KRAS, as a proof of principle to obtain biochemical knowledge through TSA profiles. We showed that the Protein-Probe can work at lower concentration than the other dyes, and its sensitivity enables effective studies with non-covalent and covalent drugs at the nanomolar level. Using examples, we describe the parameters, which must be taken into account when characterizing the effect of drug candidates, of both small molecules and Designed Ankyrin Repeat Proteins.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Bioensayo , Rastreo Diferencial de Calorimetría , Fluorometría/métodos , Estabilidad Proteica
11.
J Mol Biol ; 434(17): 167626, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35595166

RESUMEN

Allosteric mechanisms are pervasive in nature, but human-designed allosteric perturbagens are rare. The history of KRASG12C inhibitor development suggests that covalent chemistry may be a key to expanding the armamentarium of allosteric inhibitors. In that effort, irreversible targeting of a cysteine converted a non-deal allosteric binding pocket and low affinity ligands into a tractable drugging strategy. Here we examine the feasibility of expanding this approach to other allosteric pockets of RAS and kinase family members, given that both protein families are regulators of vital cellular processes that are often dysregulated in cancer and other human diseases. Moreover, these heavily studied families are the subject of numerous drug development campaigns that have resulted, sometimes serendipitously, in the discovery of allosteric inhibitors. We consequently conducted a comprehensive search for cysteines, a commonly targeted amino acid for covalent drugs, using AlphaFold-generated structures of those families. This new analysis presents potential opportunities for allosteric targeting of validated and understudied drug targets, with an emphasis on cancer therapy.


Asunto(s)
Antineoplásicos , Terapia Molecular Dirigida , Neoplasias , Inhibidores de Proteínas Quinasas , Proteínas Quinasas , Proteínas ras , Antineoplásicos/química , Antineoplásicos/farmacología , Cisteína/metabolismo , Humanos , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/química , Proteínas ras/antagonistas & inhibidores , Proteínas ras/química
12.
Med Mol Morphol ; 55(3): 236-247, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35597882

RESUMEN

Tumor-associated macrophages (TAMs) have protumor functions in various cancers. However, their significance in hepatoblastoma, the most common liver tumor in children, remains unclear. The aim of this study was to explore the potential roles of TAMs in hepatoblastoma. Immunohistochemical analysis revealed that the density of CD204-positive TAMs was significantly higher in the embryonal component than in other histological subtypes of hepatoblastoma. An in vitro co-culture study with Huh6 cells and human monocyte-derived macrophages (HMDMs) showed that macrophage-colony-stimulating factor receptor (M-CSFR) was strongly up-regulated in the Huh6 cells that were directly co-cultured with HMDMs. The expressions of M-CSFR ligands (interleukin-34 and M-CSF) were also increased by co-culture with HMDMs. The proliferation of HepG2 cells (another hepatoblastoma cell line expressing M-CSFR) was inhibited by an M-CSFR inhibitor. M-CSFR was found to be highly expressed in the embryonal component and in recurrent lesions. The number of CD204-positive macrophages was also higher in the M-CSFR-positive areas than in the M-CSFR-negative areas. Thus, M-CSFR expression appeared to be induced by cell-cell contact with macrophages in hepatoblastoma cells, and M-CSFR inhibitor is potentially effective against M-CSFR-positive hepatoblastoma, especially recurrent cases.


Asunto(s)
Comunicación Celular , Hepatoblastoma , Neoplasias Hepáticas , Macrófagos , Receptor de Factor Estimulante de Colonias de Macrófagos , Línea Celular Tumoral , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo
13.
Nat Commun ; 13(1): 1109, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232997

RESUMEN

Immune stimulation fuels cell signaling-transcriptional programs inducing biological responses to eliminate virus-infected cells. Yet, retroviruses that integrate into host cell chromatin, such as HIV-1, co-opt these programs to switch between latent and reactivated states; however, the regulatory mechanisms are still unfolding. Here, we implemented a functional screen leveraging HIV-1's dependence on CD4+ T cell signaling-transcriptional programs and discovered ADAP1 is an undescribed modulator of HIV-1 proviral fate. Specifically, we report ADAP1 (ArfGAP with dual PH domain-containing protein 1), a previously thought neuronal-restricted factor, is an amplifier of select T cell signaling programs. Using complementary biochemical and cellular assays, we demonstrate ADAP1 inducibly interacts with the immune signalosome to directly stimulate KRAS GTPase activity thereby augmenting T cell signaling through targeted activation of the ERK-AP-1 axis. Single cell transcriptomics analysis revealed loss of ADAP1 function blunts gene programs upon T cell stimulation consequently dampening latent HIV-1 reactivation. Our combined experimental approach defines ADAP1 as an unexpected tuner of T cell programs facilitating HIV-1 latency escape.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Infecciones por VIH , VIH-1 , Sistema de Señalización de MAP Quinasas , Proteínas del Tejido Nervioso , Proteínas Proto-Oncogénicas p21(ras) , Linfocitos T , Factor de Transcripción AP-1 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfocitos T CD4-Positivos , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Factor de Transcripción AP-1/metabolismo , Activación Viral , Latencia del Virus
14.
Nat Struct Mol Biol ; 28(10): 847-857, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34625747

RESUMEN

The protein K-Ras functions as a molecular switch in signaling pathways regulating cell growth. In the human mitogen-activated protein kinase (MAPK) pathway, which is implicated in many cancers, multiple K-Ras proteins are thought to assemble at the cell membrane with Ras effector proteins from the Raf family. Here we propose an atomistic structural model for such an assembly. Our starting point was an asymmetric guanosine triphosphate-mediated K-Ras dimer model, which we generated using unbiased molecular dynamics simulations and verified with mutagenesis experiments. Adding further K-Ras monomers in a head-to-tail fashion led to a compact helical assembly, a model we validated using electron microscopy and cell-based experiments. This assembly stabilizes K-Ras in its active state and presents composite interfaces to facilitate Raf binding. Guided by existing experimental data, we then positioned C-Raf, the downstream kinase MEK1 and accessory proteins (Galectin-3 and 14-3-3σ) on and around the helical assembly. The resulting Ras-Raf signalosome model offers an explanation for a large body of data on MAPK signaling.


Asunto(s)
Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Galectinas/química , Galectinas/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , MAP Quinasa Quinasa 1/metabolismo , Microscopía Electrónica , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutagénesis , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Reproducibilidad de los Resultados , Transducción de Señal , Factores de Transcripción/química , Factores de Transcripción/metabolismo
15.
Cell Chem Biol ; 27(10): 1229-1240.e4, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32755567

RESUMEN

Doublecortin-like kinase 1 (DCLK1) is critical for neurogenesis, but overexpression is also observed in multiple cancers and is associated with poor prognosis. Nevertheless, the function of DCLK1 in cancer, especially the context-dependent functions, are poorly understood. We present a "toolkit" that includes the DCLK1 inhibitor DCLK1-IN-1, a complementary DCLK1-IN-1-resistant mutation G532A, and kinase dead mutants D511N and D533N, which can be used to investigate signaling pathways regulated by DCLK1. Using a cancer cell line engineered to be DCLK1 dependent for growth and cell migration, we show that this toolkit can be used to discover associations between DCLK1 kinase activity and biological processes. In particular, we show an association between DCLK1 and RNA processing, including the identification of CDK11 as a potential substrate of DCLK1 using phosphoproteomics.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/metabolismo , Línea Celular , Quinasas Similares a Doblecortina , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Modelos Moleculares , Estructura Molecular , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , ARN/química
16.
Cancer Res ; 80(17): 3719-3731, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32605999

RESUMEN

Assembly of RAS molecules into complexes at the cell membrane is critical for RAS signaling. We previously showed that oncogenic KRAS codon 61 mutations increase its affinity for RAF, raising the possibility that KRASQ61H, the most common KRAS mutation at codon 61, upregulates RAS signaling through mechanisms at the level of RAS assemblies. We show here that KRASQ61H exhibits preferential binding to RAF relative to PI3K in cells, leading to enhanced MAPK signaling in in vitro models and human NSCLC tumors. X-ray crystallography of KRASQ61H:GTP revealed that a hyperdynamic switch 2 allows for a more stable interaction with switch 1, suggesting that enhanced RAF activity arises from a combination of absent intrinsic GTP hydrolysis activity and increased affinity for RAF. Disruption of KRASQ61H assemblies by the RAS oligomer-disrupting D154Q mutation impaired RAF dimerization and altered MAPK signaling but had little effect on PI3K signaling. However, KRASQ61H oligomers but not KRASG12D oligomers were disrupted by RAF mutations that disrupt RAF-RAF interactions. KRASQ61H cells show enhanced sensitivity to RAF and MEK inhibitors individually, whereas combined treatment elicited synergistic growth inhibition. Furthermore, KRASQ61H tumors in mice exhibited high vulnerability to MEK inhibitor, consistent with cooperativity between KRASQ61H and RAF oligomerization and dependence on MAPK signaling. These findings support the notion that KRASQ61H and functionally similar mutations may serve as predictive biomarkers for targeted therapies against the MAPK pathway. SIGNIFICANCE: These findings show that oncogenic KRASQ61H forms a cooperative RAS-RAF ternary complex, which renders RAS-driven tumors vulnerable to MEKi and RAFi, thus establishing a framework for evaluating RAS biomarker-driven targeted therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Proto-Oncogénicas p21(ras)/genética , Quinasas raf/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Femenino , Células HEK293 , Xenoinjertos , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Mutación , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
17.
EMBO Rep ; 21(7): e48035, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32410369

RESUMEN

Negative regulation of immunoreceptor signaling is required for preventing hyperimmune activation and maintaining immune homeostasis. The roles of p38IP in immunoreceptor signaling remain unclear. Here, we show that p38IP suppresses T-cell receptor (TCR)/LPS-activated NF-κB and p38 by targeting TAK1 kinase and that p38IP protein levels are downregulated in human PBMCs from rheumatoid arthritis (RA) patients, inversely correlating with the enhanced activity of NF-κB and p38. Mechanistically, p38IP interacts with TAK1 to disassemble the TAK1-TAB (TAK1-binding protein) complex. p38IP overexpression decreases TCR-induced binding of K63-linked polyubiquitin (polyUb) chains to TAK1 but increases that to TAB2, and p38IP knockdown shows the opposite effects, indicating unanchored K63-linked polyUb chain transfer from TAB2 to TAK1. p38IP dynamically interacts with TAK1 upon stimulation, because of the polyUb chain transfer and the higher binding affinity of TAK1 and p38IP for polyUb-bound TAB2 and TAK1, respectively. Moreover, p38IP scaffolds the deubiquitinase USP4 to deubiquitinate TAK1 once TAK1 is activated. These findings reveal a novel role and the mechanisms of p38IP in controlling TCR/LPS signaling and suggest that p38IP might participate in RA pathogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Lipopolisacáridos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal , Proteasas Ubiquitina-Específicas
18.
Nat Chem Biol ; 16(6): 635-643, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32251410

RESUMEN

Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to develop a selective, in vivo-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA-sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Movimiento Celular , Proteína Doblecortina , Quinasas Similares a Doblecortina , Ensayos de Selección de Medicamentos Antitumorales , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacocinética , Proteómica , Ratas , Relación Estructura-Actividad , Pez Cebra , Neoplasias Pancreáticas
19.
Birth Defects Res ; 112(10): 708-717, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32187889

RESUMEN

RAS proteins are commonly mutated in cancerous tumors, but germline RAS mutations are also found in RASopathy syndromes such as Noonan syndrome (NS) and cardiofaciocutaneous (CFC) syndrome. Activating RAS mutations can be subclassified based on their activating mechanisms. Understanding the structural basis for these mechanisms may provide clues for how to manage associated health conditions. We determined high-resolution X-ray structures of the RASopathy mutant KRASP34R seen in NS and CFCS. GTP and GDP-bound KRASP34R crystallized in multiple forms, with each lattice consisting of multiple protein conformations. In all GTP-bound conformations, the switch regions are not compatible with GAP binding, suggesting a structural mechanism for the GAP insensitivity of this RAS mutant. However, GTP-bound conformations are compatible with intrinsic nucleotide hydrolysis, including one that places R34 in a position analogous to the GAP arginine finger or intrinsic arginine finger found in heterotrimeric G proteins, which may support intrinsic GTP hydrolysis. We also note that the affinity between KRASP34R and RAF-RBD is decreased, suggesting another possible mechanism for dampening of RAS signaling. These results may provide a foothold for development of new mutation-specific strategies to address KRASP34R -driven diseases.


Asunto(s)
Síndrome de Noonan , Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras , Guanosina Trifosfato , Humanos , Hidrólisis , Proteínas ras/metabolismo
20.
Cell Chem Biol ; 27(1): 19-31.e6, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31883964

RESUMEN

KRAS is the most frequently mutated oncogene found in pancreatic, colorectal, and lung cancers. Although it has been challenging to identify targeted therapies for cancers harboring KRAS mutations, KRASG12C can be targeted by small-molecule inhibitors that form covalent bonds with cysteine 12 (C12). Here, we designed a library of C12-directed covalent degrader molecules (PROTACs) and subjected them to a rigorous evaluation process to rapidly identify a lead compound. Our lead degrader successfully engaged CRBN in cells, bound KRASG12Cin vitro, induced CRBN/KRASG12C dimerization, and degraded GFP-KRASG12C in reporter cells in a CRBN-dependent manner. However, it failed to degrade endogenous KRASG12C in pancreatic and lung cancer cells. Our data suggest that inability of the lead degrader to effectively poly-ubiquitinate endogenous KRASG12C underlies the lack of activity. We discuss challenges for achieving targeted KRASG12C degradation and proposed several possible solutions which may lead to efficient degradation of endogenous KRASG12C.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Antineoplásicos/química , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...