Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 359: 120979, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692033

RESUMEN

If pharmaceutical wastewater is not managed effectively, the presence of residual antibiotics will result in significant environmental contamination. In addition, inadequate utilization of agricultural waste represents a squandering of resources. The objective of this research was to assess the efficacy of iron-doped biochar (Fe-BC) derived from peanut shells in degrading high concentrations of Tetracycline (TC) wastewater through activated peroxymonosulfate. Fe-BC demonstrated significant efficacy, achieving a removal efficiency of 87.5% for TC within 60 min without the need to adjust the initial pH (20 mg/L TC, 2 mM PMS, 0.5 g/L catalyst). The degradation mechanism of TC in this system involved a dual action, namely Reactive Oxygen Species (ROS) and electron transfer. The primary active sites were the Fe species, which facilitated the generation of SO4•-, •OH, O2•-, and 1O2. The presence of Fe species and the C=C structure in the Fe-BC catalyst support the electron transfer. Degradation pathways were elucidated through the identification of intermediate products and calculation of the Fukui index. The Toxicity Estimator Software Tool (T.E.S.T.) suggested that the intermediates exhibited lower levels of toxicity. Furthermore, the system exhibited exceptional capabilities in real water and circulation experiments, offering significant economic advantages. This investigation provides an efficient strategy for resource recycling and the treatment of high-concentration antibiotic wastewater.


Asunto(s)
Carbón Orgánico , Hierro , Especies Reactivas de Oxígeno , Tetraciclina , Aguas Residuales , Tetraciclina/química , Carbón Orgánico/química , Especies Reactivas de Oxígeno/química , Aguas Residuales/química , Hierro/química , Contaminantes Químicos del Agua/química , Peróxidos/química , Transporte de Electrón
2.
Water Res ; 250: 121049, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157599

RESUMEN

Human activities have led to an alarming increase in pollution, resulting in widespread water contamination. A comprehensive understanding of the quantitative relationship between anthropogenic pollutant discharges and the escalating anthropogenic disturbances and environmental efforts is crucial for effective water quality management. Here we establish a Model for Estimating Anthropogenic pollutaNts diScharges (MEANS) and simulate the long-term dynamics of various types of anthropogenic discharges in China based on an unprecedented spatio-temporal dynamic parameter dataset. Our findings reveal that from 1980 to 2020, anthropogenic discharges exhibited an overall trend of initially increasing and subsequently decreasing, with the peak occurring around 2005. During this period, the dominant pollution sources in China shifted from urban to rural areas, thereby driving the transition of hotspot pollutants from nitrogen to phosphorus in the eastern regions. The most significant drivers of anthropogenic pollutant discharges gradually shifted from population size and dietary structure to wastewater treatment and agricultural factors. Furthermore, we observed that a significant portion of China's regions still exceed the safety thresholds for pollutant discharges, with excessive levels of total phosphorus (TP) being particularly severe. These findings highlight the need for flexible management strategies in the future to address specific pollution levels and hotspots in different regions. Our study underscores the importance of considering the complex interplay between anthropogenic disturbances, environmental efforts, and long-term anthropogenic pollutant discharges for effective water pollution control.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente/métodos , Saneamiento , Calidad del Agua , China , Fósforo/análisis , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Dieta
3.
Water Res ; 247: 120779, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37897993

RESUMEN

Riverine ecosystems are a significant source of nitrous oxide (N2O) worldwide, but how they respond to human and natural changes remains unknown. In this study, we developed a compound model chain that integrates mechanism-based modeling and machine learning to understand N2O transfer patterns within land, rivers, and the atmosphere. The findings reveal a decrease in N2O emissions in the Yangtze River basin from 4.7 Gg yr-1 in 2000 to 2.8 Gg yr-1 in 2019, with riverine emissions accounting for 0.28% of anthropogenic nitrogen discharges from land. This unexpected reduction is primarily attributed to improved water quality from human-driven nitrogen control, while natural factors contributed to a 0.23 Gg yr-1 increase. Notably, urban rivers exhibited a more rapid N2O efflux ( [Formula: see text] ), with upstream levels nearly 3.1 times higher than rural areas. We also observed nonlinear increases in [Formula: see text] with nitrogen discharge intensity, with urban areas showing a gradual and broader range of increase compared to rural areas, which exhibited a sharper but narrower increase. These nonlinearities imply that nitrogen control measures in urban areas lead to stable reductions in N2O emissions, while rural areas require innovative nitrogen source management solutions for greater benefits. Our assessment offers fresh insights into interpreting riverine N2O emissions and the potential for driving regionally differentiated emission reductions.


Asunto(s)
Nitrógeno , Ríos , Humanos , Nitrógeno/análisis , Ecosistema , Monitoreo del Ambiente , Óxido Nitroso/análisis , Atmósfera , China
4.
Water Res ; 242: 120292, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37413751

RESUMEN

Legacy nitrogen (N) originating from net N inputs (NNI) may pose ongoing threats to riverine water quality worldwide and even cause serious time-lags between water quality restoration and NNI declines. A better understanding of legacy N effects on riverine N pollutions in different seasons is essential to improve riverine water quality. Here, we investigated contributions of legacy N on riverine dissolved inorganic N (DIN) changes in different seasons and quantified spatio-seasonal time-lags in the Songhuajiang River basin (SRB), a hotspot of NNI with four distinct seasons, by exploring long-term (1978-2020) NNI-DIN relationships. Results firstly showed a significant seasonal difference in NNI, with the highest value observed in spring (average, 2184.1 kg/km2), 1.2, 5.0, and 4.6 times higher than that in summer, autumn, and winter, respectively. Cumulative legacy N had dominated riverine DIN changes, with a relative contribution of approximately 64% in 2011-2020, causing time-lags of 11-29 years across the SRB. The longest seasonal lags existed in spring (average, 23 years) owing to greater impacts of legacy N to riverine DIN changes in this season. Mulch film application, soil organic matter accumulation, N inputs, and snow cover were identified as the key factors that strengthened seasonal time-lags by collaboratively enhancing legacy N retentions in soils. Furthermore, a machine learning-based model system suggested that timescales for water quality improvement (DIN, ≤1.5 mg/L) varied considerably (from 0 to >29 years, Improved N Management-Combined scenario) across the SRB, with greater lag effects contributing to slower recovery. These findings can provide a more comprehensive insight into sustainable basin N management in the future.


Asunto(s)
Nitrógeno , Ríos , Nitrógeno/análisis , Estaciones del Año , Calidad del Agua , Mejoramiento de la Calidad , Monitoreo del Ambiente , Suelo
5.
Chemosphere ; 329: 138622, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37037357

RESUMEN

Heavy metals in water are critical global environmental problems. In particular, the anionic heavy metal chromium (Cr) has carcinogenic and genotoxic risks on human health. To this end, an ultralight and flexible nanofibrillated cellulose (NFC)/chitosan (CS) aerogel was developed only by freeze-drying combined with physical thermal cross-linking for efficient one step co-removal of Cr(VI) and Cr(III). The maximum adsorption capacity of Cr(VI) and total Cr calculated according to the Langmuir model was 197.33 and 134.12 mg/g, respectively. Even in the presence of competing soluble organics, anions and oil contaminants, the resulting NFC/CS-5 aerogels showed excellent selectivity. The aerogel exhibited outstanding mechanical integrity, remaining intact after 17 compressions in air and underwater. Meanwhile, after 5 adsorption-desorption cycles, the aerogel was easy to regenerate and maintained a high regeneration efficiency of 80.25%. Importantly, self-assembled NFC/CS-5 aerogel filter connected with the peristaltic pump could purify 752 mL of industrial wastewater with Cr(VI) pre-concentration capacity of 49.71 mg/g. XPS and FT-IR verified that electrostatic interactions, reduction and complexation acted as the main driving forces for the adsorption process. Moreover, such aerogel possessed broad application prospects for alleviating heavy metal pollution in agriculture.


Asunto(s)
Quitosano , Metales Pesados , Contaminantes Químicos del Agua , Humanos , Celulosa , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Cromo , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Cinética
6.
Carbohydr Polym ; 311: 120752, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028855

RESUMEN

The over-reliance on tetracycline antibiotics (TC) in the animal husbandry and medical field has seriously affected the safety of the ecological environment. Therefore, how to effectively treat tetracycline wastewater has always been a long-term global challenge. Here, we developed a novel polyethyleneimine (PEI)/Zn-La layered double hydroxides (LDH)/cellulose acetate (CA) beads with cellular interconnected channels to strengthen the TC removal. The results of the exploration on its adsorption properties illustrated that the adsorption process exhibited a favorable correlation with the Langmuir model and the pseudo-second-order kinetic model, namely monolayer chemisorption. Among the many candidates, the maximum adsorption capacity of TC by 10 %PEI-0.8LDH/CA beads was 316.76 mg/g. Apart from that, the effects of pH, interfering species, actual water matrix and recycling on the adsorption of TC by PEI-LDH/CA beads were also analyzed to verify their superior removal capability. The potential for industrial-scale applications was expanded through fixed-bed column experiments. The proven adsorption mechanisms mainly included electrostatic interaction, complexation, hydrogen bonding, n-π EDA effect and cation-π interaction. The self-floating high-performance PEI-LDH/CA beads exploited in this work provided fundamental support for the practical application of antibiotic-based wastewater treatment.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Hidróxidos/química , Tetraciclina/química , Adsorción , Contaminantes Químicos del Agua/química , Cinética
7.
Environ Sci Pollut Res Int ; 30(21): 60920-60931, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37042916

RESUMEN

The microalgae-based system attracts more attention in wastewater treatment for high quality effluent, low carbon emission, and resource utilization. Light is the key factor for algae growth, but the light masking in sewage will cause low efficiency of the system. This study designed laboratory scale experiments with Chlorella to investigate the influence of cerium on the nutrient removal by algae wastewater treatment system under different light intensities. The best removal rates of NH4-N, TP, and COD were 72.43%, 88.87%, and 68.08% under 50 µmol/(m 2·s) light intensity and 1 mg/L Ce. Low concentration of Ce could activate protein synthesis, electron transfer, and antioxidase, while excessive Ce might cause toxicity which could be relieved by strong light for energy supply and further activating superoxide dismutase (SOD) and catalase (CAT). Comparing to other similar experiences, this system reached an equal or greater performance on nutrients removal with better efficiency in light utilization. It might provide a new idea for microalgae-based system development.


Asunto(s)
Cerio , Chlorella , Microalgas , Purificación del Agua , Aguas Residuales , Biomasa , Nitrógeno
8.
Environ Int ; 169: 107508, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36108502

RESUMEN

Unprecedented urbanization-induced population migration in China severely affects the scale and geographic distribution of anthropogenic pollutant discharge. Understanding how pollutant discharge patterns respond to population migration can help guide future efforts to maintain water sustainability. Here, based on a new calculation framework with 18 dynamic parameters designed for anthropogenic discharges, we finely tracked and visualized the effects of population migration on the spatial and temporal changes in anthropogenic discharge from 1980 to 2019 in the Minjiang River basin. The results indicate that the increasing effect of population migration on anthropogenic discharges peaked in 2002 and started to contribute to pollutant reduction from 2010 onward. The direct impact of population migration only contributes to the shift of anthropogenic discharges from rural to urban areas, while the migration bonus is the key factor leading to the reduction in anthropogenic discharges. Population migration is highly beneficial for chemical oxygen demand (COD) reduction, which has contributed to a shift from COD to NH4+-N and total phosphorus (TP) as hotspot pollutants in the whole basin (NH4+-N in urban areas and TP in rural areas). Moreover, pollution reduction resulting from the demographic bonus phenomenon has remained limited only to urban areas. Since approximately 2010, the per capita amount and total amount of anthropogenic pollutant discharges in rural areas have exceeded those in urban areas; in particular, the per capita COD and TP discharges in rural areas reached four times those in urban areas. This suggests that future pollution control strategies should give more attention to rural areas and focus on the differentiation and targeting of urban and rural areas.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Fósforo/análisis , Ríos , Agua , Contaminantes Químicos del Agua/análisis
9.
Water Res ; 222: 118839, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35870396

RESUMEN

Manganese (Mn)-containing composite metal adsorbents are very effective at removing arsenite (As(III)) from contaminated water, however, the low removal speed and oxidation efficiency have limited their further application. In this study, a nonhomogeneous catalytic oxidation-adsorption system was constructed by coupling iron-manganese composite oxide (FeMnOx) with sulfite (S(IV)) to enhance the recovery of oxidative capacity and accelerate the removal of As(III). Experimental results showed that the FeMnOx/S(IV) system decreased the As(III) concentration from 1079 to <10 µg/L within 10 min and almost completely oxidized As(III) to As(V). In contrast, FeMnOx alone removed only 82.4% of As(III) within 30 min, and 60.0% of the adsorbed As(III) was not oxidized. Meanwhile, the adsorption capacity of FeMnOx/S(IV) system for As(III) was considerably higher than that of the only-FeMnOx system (76.5 > 46.3 mg/g). The efficient and fast As(III) removal was attributed to the SO5•- radical generated by S(IV) acting as the driving force for the redox cycle between As(III) and Mn(II/III/IV). Several environmental factors (e.g., solution pH and inorganic anions) and the reusability and practicality of FeMnOx were systematically investigated, and the results further confirmed the superiority of the FeMnOx/S(IV) system in As(III) removal. In particular, the proposed FeMnOx nanocellulose aerogel effectively purified arsenic-contaminated groundwater using a fixed-bed column. Thus, FeMnOx-S(IV) coupling is very promising for the purification of arsenic-contaminated water bodies.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Arsénico/análisis , Hierro , Manganeso , Oxidación-Reducción , Óxidos , Sulfitos , Agua , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
10.
J Hazard Mater ; 422: 126908, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34418837

RESUMEN

Here, we prepared a novel nanostructured Fe-Cu-Mn composite oxide (FCMOx) adsorbent using an ultrasonic coprecipitation method. The maximum adsorption capacity of As(III) and As(V) reached 158.5 and 115.2 mg/g under neutral conditions, respectively. The effects of several environmental factors (coexisting ions, solution pH, etc.) on the removal of inorganic arsenic using FCMOx were studied through batch experiments. The results showed that except for PO43- and high initial pH, it was not significantly affected by ionic strength and other existing anions, implying a higher selectivity and adaptability. Combined with EPR, FTIR, and XPS analysis, we concluded that the Cu component and the reactive oxygen species (ROS) it generates played a decisive role in maintaining the stability of the redox cycle between Mn(IV)/Mn(III)/Mn(II) and enhancing the oxidation efficiency of As(III). Meanwhile, the adsorption mechanism of As(V) was mainly through the replacement of the FCMOx surface -OH to form stable inner-sphere arsenic complexes, while the removal mechanism of As(III) may involve the process of synergistic oxidation and chemisorption coupling. Additionally, the effective removal of As from the simulated As-contaminated water and its satisfactory reuse performance make FCMOx adsorbents favorable candidates for the removal of As-contaminated water in the future.

11.
Chemosphere ; 286(Pt 1): 131575, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34325264

RESUMEN

Metabolic uncoupling technology was one of the methods widely used to on-site control the production of excess sludge in wastewater treatment processes. However, the uncoupler effects on soluble microbial products (SMP), microbial activity, and environment impact have few been reported. This study showed that sludge yield was reduced by 33.3% at 2,6-dichlorophenol (2,6-DCP) concentrations of 10 mg/L. The addition of 2,6-DCP also reduced the content of polysaccharide and protein in SMP, and the three-dimension excitation emission matrix (3D-EEM) suggested that the fluorescence intensities of humic acid-like, fulvic acid-like, and tryptophan protein-like substances decreased, proving that 2,6-DCP addition will weaken the interaction between microorganisms and the environmental matrix. Moreover, 2,6-DCP addition will change the microbial morphology and community of activated sludge. The active or respiring bacteria portion was lessened, and sludge flocs become dispersed, but it will not affect its settling performance. Surprisingly, 2,6-DCP has certain biodegradability and could be used as an environmentally friendly metabolic uncoupler under low-concentration dosing conditions. This study systematically evaluated the effect of 2,6-DCP on sludge production, SMP contents, microbial morphology, microbial community, demonstrating the environmental impact and application feasibility in the wastewater treatment systems.


Asunto(s)
Clorofenoles , Microbiota , Purificación del Agua , Reactores Biológicos , Clorofenoles/toxicidad , Aguas del Alcantarillado
12.
Sci Total Environ ; 809: 152124, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34871676

RESUMEN

Removal and recovery of phosphorus (P) from wastewater is beneficial to both environmental protection and resource sustainability. Enriching the low concentration of P in wastewater will greatly facilitate the effective recovery of P. To enhance the adsorption performance and recyclability of adsorbents for low concentration P-containing wastewater, a novel three-dimensional (3D) graphene/La(OH)3-nanorod aerogel (GLA) was prepared by a unique self-assembly process in this study. Benefiting from the large specific surface area of graphene aerogel, which provides sufficient loading sites for the favorable dispersion of La(OH)3 nanorods, the GLA achieves an excellent P adsorption capacity of 76.85 mg/g. It is also highly selective for P, with adsorption capacity reduced by only 14% and 11% under the interference of high concentration of dissolved organic matter or multiple competing anions respectively. Further mechanistic investigation revealed that the whole adsorption process consists of three stages: (1) ion-exchange process; (2) LaP inter-sphere coordination process; and (3) crystal evolution process. In the continuous flow adsorption-desorption cycles, the P concentration was concentrated ~25 times that of the feeding water (2 mg P/L). To our knowledge, this is the first time that La-modified graphene aerogel has been studied for P recovery. This provides a new method for the P removal and recovery of low concentration P-containing wastewater.


Asunto(s)
Grafito , Nanotubos , Contaminantes Químicos del Agua , Adsorción , Materia Orgánica Disuelta , Cinética , Lantano , Fosfatos , Aguas Residuales
13.
Water Res ; 181: 115843, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32422450

RESUMEN

In this study, a coupled system of algal-sludge and membrane bioreactor (AS-MBR) was established for fouling control, and meanwhile the performance of wastewater treatment was enhanced. Results indicated that the AS-MBR increased the COD, NH4+-N, TN and PO43- -P removal efficiencies from 91.7% to 95.9%, 90.8%-96.9%, 22.0% to 34.3% and 18.4%-32.6%, respectively. Further analysis suggested that in the AS-MBR, the total specific oxygen utilization rate (SOUR), the SOUR of ammonia oxidizing bacteria and the SOUR of nitrite oxidizing bacteria were 26.6%, 58.5% and 52.4% higher than the control, respectively, indicating the improvement of microbial activities in AS-MBR. Additionally, the membrane fouling rates in the AS-MBR were 52.6% and 32.2% lower than the control in the slow and rapid fouling processes, respectively. A further mechanism investigation demonstrated that the concentrations of extracellular polymeric substance (EPS) were decreased by 19.8% and 22.1% in the mixed liquid and the fouling layer, respectively, after the inoculation of algae, which was expected to have a positive effect on the higher permeability and longer operation cycle of the membrane in the AS-MBR. More regular floc morphology was observed for the fouling layer on the membrane of AS-MBR, with the polysaccharides and proteins forming large clusters and channels in the fouling layer that likely decreased the filtration resistance. Consequently, high-throughput sequencing analysis revealed that the microbial community in the AS-MBR had higher abundances of bacteria and algae related to nutrients and organic matters degradation, which was beneficial for the improvement of wastewater treatment and alleviation of membrane fouling.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Reactores Biológicos , Membranas Artificiales , Aguas Residuales
14.
Chemosphere ; 226: 883-890, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31509917

RESUMEN

Phosphorus release is one of the disadvantages during worm predation, which has an adverse effect on wastewater treatment. In order to investigate and reveal the effects and mechanisms of worm predation on phosphorus transformation, batch experiments were conducted on a long-running worm reactor (WR). Denitrifying phosphorus removal (DPR) was observed in WR for the first time owing to the special reactor configuration and operating conditions. After DPR in WR, the concentration of supernatant phosphorus increased to 42.2 ±â€¯1.1 mg L-1 owing to bacterial phosphorus release and worm predation, which further promoted DPR in the subsequent cycle. DPR rate in the WR was 12.3 times higher than that in the blank reactor (BR). In addition, the synergistic effects of worm predation and bacterial metabolism on sludge reduction and nutrients transformation were analyzed. The sludge reduction of WR was 84.5% higher than that of BR. Bacterial metabolism played an important role in the removal of supernatant nutrients, which consumed 60.2% of total nitrogen and 55.5% of chemical oxygen demand derived from the reduced sludge. The study suggested that under certain conditions, WR could be functionalized as a bacteria selection tank to further improve the wastewater treatment efficiency. Bacterial metabolism was essential for supernatant nutrients removal during worm predation.


Asunto(s)
Bacterias/metabolismo , Biomasa , Reactores Biológicos/microbiología , Desnitrificación , Oligoquetos/fisiología , Fósforo/aislamiento & purificación , Aguas del Alcantarillado/microbiología , Animales , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Nitrógeno/análisis , Fósforo/análisis , Conducta Predatoria , Aguas Residuales/química
15.
Bioresour Technol ; 292: 122000, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31442831

RESUMEN

In order to improve the nutrient removal capacity of the carriers in the integrated fixed-film activated sludge (IFAS) system, a novel electrochemically active carrier was developed in this study. The nutrient removal performance of the carrier under different operating conditions was deeply investigated based on response surface methodology. The higher concentration of mixed liquor suspended solid (MLSS) and lower dissolved oxygen (DO) value inhibited ammonium (NH4+-N) removal performance of the carrier, while promoted total nitrogen (TN) depletion. Lower influent C/N ratio favored denitrification of the carrier. In addition, it was found that the enhanced removal of NH4+-N and TN in IFAS depended not only on the increase of carrier biomass, but also on the electrochemical activity of the novel carrier. Under the most effective conditions, the novel carrier could improve the TN removal efficiency by 19.7% compared with the activated sludge process.


Asunto(s)
Biopelículas , Nutrientes , Reactores Biológicos , Desnitrificación , Nitrógeno , Aguas del Alcantarillado
16.
Environ Int ; 127: 615-624, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30986743

RESUMEN

Membrane fouling is one of the biggest challenges in the widespread application of membrane bioreactors. In this study, a combined system of anaerobic-anoxic-oxic membrane bioreactor (A2O-MBR) and worm reactor (WR) was established for fouling control. In A2O-MBR-WR, the membrane filtration cycle was prolonged by 66.7% due to the confluence of microaerobic treatment and worm predation in WR with the interaction between WR and A2O-MBR. Compared with conventional A2O-MBR, membrane rejection of soluble and colloidal foulants (SCF) in the combined system was decreased by 26.0%, which could be attributed to the higher biodegradability of SCF and the higher bacterial activity in A2O-MBR. Although floc size in A2O-MBR was reduced due to sludge disintegration and worm predation in WR, changes of floc surface properties could counteract this negative effect on fouling. Complex effects of sludge flocs on membrane fouling were further analyzed by the interaction energy between sludge flocs and the clean/fouled membrane based on extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The energy barriers indicated that flocs in A2O-MBR-WR were difficult to adhere to the membrane and were more likely to detach. Moreover, high-throughput sequencing analysis revealed that the microbial community of the cake layer in the combined system was more even and had a higher proportion of foulants degradation related bacteria, which was beneficial for fouling mitigation. The combination of A2O-MBR and WR has shown significant advantages in membrane fouling mitigation.


Asunto(s)
Reactores Biológicos , Bacterias , Aguas del Alcantarillado
17.
Bioresour Technol ; 251: 311-319, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29289875

RESUMEN

This study combined sludge MBR technology with algae to establish an effective wastewater treatment and low membrane fouling system (ASB-MBR). Compared with control-MBR (C-MBR), the amelioration of microbial activity and the improvement of sludge properties and system environment were achieved after introducing algae resulting in high nutrients removal in the combined system. Further statistical analysis revealed that the symbiosis of algae and sludge displayed more remarkable impacts on nutrients removal than either of them. Additionally, membrane permeability was improved in ASB-MBR with respect to the decreased concentration, the changed of characteristics and the broken particular functional groups of extracellular polymeric substances (EPSs). Moreover, the algae inoculation reduced sludge diversity and shifted sludge community structure. Meantime, the stimulated bacteria selectively excite algal members that would benefit for the formation of algal-bacterial consortia. Consequently, the stimulated or inhibited of some species might be responsible for the performance of ASB-MBR.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Bacterias , Membranas Artificiales , Eliminación de Residuos Líquidos , Aguas Residuales
18.
J Environ Sci (China) ; 54: 246-255, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28391936

RESUMEN

The chemical oxygen demand (COD) and NH3-N removal, membrane fouling, sludge characteristics and microbial community structure in a membrane bioreactor (MBR) coupled with worm reactors (SSBWR) were evaluated for 210days. The obtained results were compared to those from a conventional MBR (C-MBR) operated in parallel. The results indicated that the combined MBR (S-MBR) achieved higher COD and NH3-N removal efficiency, slower increase in membrane fouling, better sludge settleability and higher activities of the related enzymes in the activated sludge. Denaturing gradient gel electrophoresis was used to analyze the microbial community structures in the C-MBR and the S-MBR. The microbial community structure in the S-MBR was more diverse than that in the C-MBR. Additionally, the slow-growing microbes such as Saprospiraceae, Actinomyces, Frankia, Clostridium, Comamonas, Pseudomonas, Dechloromonas and Flavobacterium were enriched in the S-MBR, further accounting for the sludge reduction, membrane fouling alleviation and wastewater treatment.


Asunto(s)
Reactores Biológicos/microbiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Microbiología del Agua
19.
Environ Sci Pollut Res Int ; 24(6): 5106-5117, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26856866

RESUMEN

Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor for electrochemical denitrification, yet there is little knowledge about how to apply them into current wastewater treatment process to achieve efficient nitrogen removal. In this study, two dual-chamber MFCs were integrated with an aerobic membrane bioreactor to construct a novel membrane bioelectrochemical reactor (MBER) for simultaneous nitrification and denitrification under specific aeration. The effects of chemical oxygen demand (COD) loading rate, COD/N ratio, hydraulic retention time (HRT), and external resistance on the system performance were investigated. High effluent quality was obtained in the MBER in terms of COD and ammonium. During the operation, denitrification simultaneously occurred with nitrification at the bio-cathode of the MBER, achieving a maximal nitrogen removal efficiency of 84.3 %. A maximum power density of 1.8 W/m3 and a current density of 8.5 A/m3 were achieved with a coulombic efficiency of 12.1 %. Furthermore, compared to the control system, the MBER exhibited lower membrane fouling tendency due to mixed liquor volatile suspended solids (MLVSSs) and extracellular polymeric substance (EPS) reductions, EPSp/EPSc ratio decrease, and particle size increase of the sludge. These results suggest that the MBER holds potential for efficient nitrogen removal, electricity production, and membrane fouling mitigation.


Asunto(s)
Reactores Biológicos , Desnitrificación , Nitrificación , Compuestos de Amonio , Fuentes de Energía Bioeléctrica , Análisis de la Demanda Biológica de Oxígeno , Electrodos , Nitratos , Nitrógeno/análisis , Aguas del Alcantarillado/química , Aguas Residuales/química
20.
Water Sci Technol ; 74(9): 2202-2210, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27842040

RESUMEN

A membrane bioreactor (MBR) coupled with a worm reactor (SSBWR) was designed as SSBWR-MBR for sewage treatment and excess sludge reduction. However, total phosphorus (TP) release caused by worm predation in the SSBWR could increase the effluent TP concentration in the SSBWR-MBR. To decrease the amount of TP excreted, chemical treatment reactor was connected after the SSBWR-MBR to remove the excess phosphorus (P). The effects of chemical treatment at different time intervals on the performance of the SSBWR-MBR were assessed. The results showed that a maximum TP removal efficiency of 21.5 ± 1.0% was achieved in the SSBWR-MBR after chemical treatment. More importantly, a higher sulfate concentration induced by chemical treatment could promote TP release in the SSBWR, which provided further TP removal from the SSBWR-MBR. Additionally, chemical oxygen demand (COD) removal efficiency of the SSBWR-MBR was increased by 1.3% after effective chemical treatment. In the SSBWR-MBR, the chemical treatment had little effects on NH3-N removal and sludge production. Eventually, chemical treatment also alleviated the membrane fouling in the SSBWR-MBR. In this work, the improvement on TP, COD removal and membrane fouling alleviation was achieved in the SSBWR-MBR using additional chemical treatment.


Asunto(s)
Reactores Biológicos , Fósforo/química , Análisis de la Demanda Biológica de Oxígeno , Membranas Artificiales , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...