Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202410250, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887820

RESUMEN

Photocatalysts based on single atoms (SAs) modification can lead to unprecedented reactivity with recent advances. However, the deactivation of SAs-modified photocatalysts remains a critical challenge in the field of photocatalytic CO2 reduction. In this study, we unveil the detrimental effect of CO intermediates on Cu single atoms (Cu-SAs) during photocatalytic CO2 reduction, leading to clustering and deactivation on TiO2. To address this, we developed a novel Cu-SAs anchored on Au porous nanoparticles (CuAu-SAPNPs-TiO2) via a vectored etching approach. This system not only enhances CH4 production with a rate of 748.8 µmol·g-1·h-1 and 93.1% selectivity but also mitigates Cu-SAs clustering, maintaining stability over 7 days. This sustained high performance, despite the exceptionally high efficiency and selectivity in CH4 production, highlights the CuAu-SAPNPs-TiO2 overarching superior photocatalytic properties. Consequently, this work underscores the potential of tailored SAs-based systems for efficient and durable CO2 reduction by reshaping surface adsorption dynamics and optimizing the thermodynamic behavior of the SAs.

2.
J Colloid Interface Sci ; 671: 441-448, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815379

RESUMEN

Alkaline water electrolysis is apreferred technology for large-scale green hydrogen production. For most active transition metal-based catalysts during anodic oxygen evolution reaction (OER), the atomic structure of the anodic catalysts' surface often undergoes reconstruction to optimize the reaction path and enhance their catalytic activity. The design and maintenance of highly active sites during this reconstruction process remain critical and challenging for most OER catalysts. In this study, we explored the effects of crystal structures in pre-catalysts on surface reconstruction at low applied potential. Through experimental observation and theoretical calculation, we found out that catalysts with specific crystal structures exhibit superior surface remodeling ability, which enables them to better adapt to the conditions of the oxygen evolution reaction and achieve efficient catalysis. The discharge process enables the formation of abundant phosphorus vacancies on the surface, which in turn affects the efficiency of the entire oxygen evolution reaction. The optimized crystal structure of the catalyst results in an increase as high as 58.5 mA/cm2 for Ni5P4, which is twice as high as that observed for Ni2P. These results provide essential theoretical foundations and technical guidance for designing more efficient catalysts for oxygen evolution reactions.

3.
ACS Appl Mater Interfaces ; 16(21): 27511-27522, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752668

RESUMEN

Electron transfer is considered to be a typical parameter that affects the catalytic activity of nanozymes. However, there is still controversy regarding whether higher or lower electron transfer numbers are beneficial for improving the catalytic activity of nanozymes. To address this issue, we propose the introduction of Pd doping as an important electron regulation strategy to tune electron transfer between Pt and ZIF-8 carriers (PtxPd1@ZIF-8). We observe a volcano-shaped relationship between the electron transfer number and catalytic activity, reaching its peak at Pt4Pd1@ZIF-8. Mechanism studies indicate that as the electron transfer number from Pt to ZIF-8 carriers increases, the d-band center of the active site Pt increases, reducing the occupancy of antibonding states and enhancing the adsorption capacity of the key intermediate (*O). However, a further increase in the adsorption of *O energy makes it difficult to desorb and participate in the next reaction, thus exhibiting volcanic activity. The optimized Pt4Pd1@ZIF-8 nanozyme is applied to develop an immunoassay for the detection of zearalenone, achieving a detection limit of 0.01 µg/L, which is 6 times higher than that of the traditional enzyme-linked immunosorbent assay. This work not only reveals the potential regulatory mechanism of electron transfer on the catalytic activity of nanozymes but also improves the performance of nanozyme-based biosensors.


Asunto(s)
Estructuras Metalorgánicas , Paladio , Platino (Metal) , Catálisis , Platino (Metal)/química , Paladio/química , Estructuras Metalorgánicas/química , Transporte de Electrón , Inmunoensayo/métodos
4.
Dalton Trans ; 53(21): 9011-9020, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38726692

RESUMEN

The development of efficient non-noble metal electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions remains a critical challenge. Herein, we report a N-doped carbonaceous component-engineered Co3O4 (NCEC) catalyst synthesized via the sol-gel method. Dopamine hydrochloride (DA)-derived nitrogen-doped carbonaceous components were found to boost the OER performance of Co3O4. The optimized catalyst can reach an overpotential as low as 330 mV in 1 M H2SO4 at a current density of 10 mA cm-2 and maintains a good long-term stability of 60 hours. In particular, we found that the thermodynamic overpotential was inversely proportional to the content of oxidized N and pyridinic N, whereas it was directly proportional to the pyrrolic-N content. Our experiments and density functional theory (DFT) calculations confirm that the optimized catalyst exhibits enhanced charge transfer and the oxidized N species on Co3O4 is responsible for the high catalytic activity. Our study suggests that the performance of NCEC in acidic media can be further optimized by enhancing the content of oxidized N species.

5.
Nat Commun ; 15(1): 2422, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499562

RESUMEN

Owing to the specific electronic-redistribution and spatial proximity, diatomic catalysts (DACs) have been identified as principal interest for efficient photoconversion of CO2 into C2H4. However, the predominant bottom-up strategy for DACs synthesis has critically constrained the development of highly ordered DACs due to the random distribution of heteronuclear atoms, which hinders the optimization of catalytic performance and the exploration of actual reaction mechanism. Here, an up-bottom ion-cutting architecture is proposed to fabricate the well-defined DACs, and the superior spatial proximity of CuAu diatomics (DAs) decorated TiO2 (CuAu-DAs-TiO2) is successfully constructed due to the compact heteroatomic spacing (2-3 Å). Owing to the profoundly low C-C coupling energy barrier of CuAu-DAs-TiO2, a considerable C2H4 production with superior sustainability is achieved. Our discovery inspires a novel up-bottom strategy for the fabrication of well-defined DACs to motivate optimization of catalytic performance and distinct deduction of heteroatom synergistically catalytic mechanism.

6.
J Colloid Interface Sci ; 658: 671-677, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134675

RESUMEN

Surface reconstruction is widely existed on the surface of transition metal-based catalysts under operando oxygen evolution reaction (OER) condition. The design and optimize the reconstruction process are essential to achieve high electrochemical active surface and thus facilitate the reaction kinetics, whereas still challenge. Herein, we exploit electrolyte engineering to regulate reconstruction on the surface of Fe2O3 catalysts under operando OER conditions. The intentional added cations in electrolyte can participate the reconstruction process and realize a desirable crystalline to amorphous structure conversion, contributing abundant well-defined active sites. Spectroscopic measurements and density functional theory calculation provide insight into the underlying role of amorphous structure for electron transfer, mass transport, and intermediate adsorption. With the assistant of Co2+ cations, the enhanced current density as large as 17.9 % can be achieved at 2.32 V (vs RHE). The present results indicate the potential of electrolyte engineering for regulating the reconstruction process and provide a generalized in-situ strategy for advanced catalysts design.

7.
Dalton Trans ; 52(41): 14747-14751, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37814527

RESUMEN

Indium (In) ions were diffused into a TiO2 (In-TiO2) photoelectrode via a facile and efficient flame doping method resulting in improved photo-induced carrier separation. The dopant concentration was systematically investigated, and a volcano-type relationship between the dopant concentration and photoelectrochemical (PEC) performance was observed. The optimum incident photon-to-current efficiency and photocurrent density of In-TiO2 were 38.6% and 0.70 mA cm-2 at 1.23 V, respectively, 2.1 and 11.2 times the values of pristine TiO2, respectively. In doping resulted in improved charge separation and lower surface adsorption energies for reactant molecules, as evidenced by experimental and computational methods.

8.
Angew Chem Int Ed Engl ; 62(48): e202313787, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37843427

RESUMEN

Development of highly efficient and metal-free photocatalysts for bacterial inactivation under natural light is a major challenge in photocatalytic antibiosis. Herein, we developed an acidizing solvent-thermal approach for inserting a non-conjugated ethylenediamine segment into the conjugated planes of 3,4,9,10-perylene tetracarboxylic anhydride to generate a photocatalyst containing segregated π-conjugation units (EDA-PTCDA). Under natural light, EDA-PTCDA achieved 99.9 % inactivation of Escherichia coli and Staphylococcus aureus (60 and 45 min), which is the highest efficiency among all the natural light antibacterial reports. The difference in the surface potential and excited charge density corroborated the possibility of a built-in electron-trap effect of the non-conjugated segments of EDA-PTCDA, thus forming a highly active EDA-PTDA/bacteria interface. In addition, EDA-PTCDA exhibited negligible toxicity and damage to normal tissue cells. This catalyst provides a new opportunity for photocatalytic antibiosis under natural light conditions.


Asunto(s)
Electrones , Luz , Staphylococcus aureus , Catálisis
9.
Chem Commun (Camb) ; 59(71): 10632-10635, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37580959

RESUMEN

Here we describe a symmetrical waveform alternating current strategy that provides a solution for obtaining gradient oxygen vacancies (VO) in situ. The unique gradient VO provides multiple stairs to reduce the reaction kinetics and thus contributes to a total increase of up to 84.7% in current density.

10.
Chem Commun (Camb) ; 59(23): 3435-3438, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36857644

RESUMEN

A novel pretreatment strategy that can regulate the amount of oxygen vacancies (Ovac) across the wormlike-BiVO4 photoanode by photochemical and electrochemical co-processing. Upon decorating NiFeOx as an oxygen evolution cocatalyst for promoting the surface oxidation kinetics, a record-high photocurrent density of 6.42 mA cm-2 is obtained at 1.23 vs. RHE (100 mW cm-2).

11.
Inorg Chem ; 62(4): 1561-1569, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36636990

RESUMEN

In electrochemical decomposition of water, the slow kinetics of the anodic oxygen evolution reaction (OER) is a challenge for efficient hydrogen production. Heterointerface engineering is a desirable way to rationally design electrocatalysts for the OER. Herein, we designed and fabricated a nanoparticle flower-like NiCoFe(oxy)hydroxide catalyst in situ grown on the surface of Ni3S2/NF to construct a heterojunction via combining hydrothermal and electrodeposition methods. The heterostructure exhibits a smaller overpotential of 254 mV at a large current density of 100 mA cm-2 in 1 M KOH than that of pristine NiCoFeOxHy/NF (356 mV) and Ni3S2/NF (471 mV). Tafel and electrochemical impedance spectroscopy further showed a favorable kinetics during electrolysis. The role of the substrate Ni3S2 was explored via density functional theory calculations. Our calculations found that SOx on the Ni3S2 surface is a strong nucleophilic group and the synergy effect between Fe and SOx could break *OOH to reduce the Gibbs energy. We also found that the contribution of SOx in sulfates to the OER activity could be negligible. Furthermore, a series of comparative samples were prepared to test this synergy effect. Our experiments indicated that the introduction of Ni3S2 is beneficial. The present contribution provides an important helpful insight into the design and fabrication of novel and highly efficient heterostructure electrocatalysts by introducing nucleophilic groups at the interface.

12.
Inorg Chem ; 62(5): 2470-2479, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36701249

RESUMEN

The state-of-the-art transition-based electrocatalysts in alkaline media generally suffer from unavoidable surface reconstruction during oxygen evolution reaction measurements, leading to the collapse and loss of the crystalline matrix. Low potential discharge offers a gentle way for surface reconstruction and thus realizes the manipulation of the real active site. Nevertheless, the absence of a fundamental understanding focus on this discharge region renders the functional phase, either the crystalline or amorphous matrix, for the controllable reconstruction still undecidable. Herein, we report a scenario to employ different crystalline matrices as electrocatalysts for discharge region reconstruction. The representative low crystalline Ni2P (LC-Ni2P) possesses a relatively weak surface structure compared with highly crystalline or amorphous Ni2P (HC-Ni2P or A-Ni2P), which contributes abundant oxygen vacancies after the discharge process. The fast discharge behavior of LC-Ni2P leads to the uniform distribution of these vacancies and thus endows the inner interface with reactant activating functionality. A high increase in current density of 36.7% is achieved at 2.32 V (vs RHE) for the LC-Ni2P electrode. The understanding of the discharge behavior in this study, on different crystalline matrices, presents insights into the establishment of controllable surface reconstruction for an effective oxygen evolution reaction.

13.
ChemSusChem ; 16(6): e202202069, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36537011

RESUMEN

Developing an efficient catalyst for formic acid (FA) dehydrogenation is a promising strategy for safe hydrogen storage and transportation. Herein, we successfully developed trimetallic NiAuPd heterogeneous catalysts through a galvanic replacement reaction and a subsequent chemical reduction process to boost hydrogen generation from FA decomposition at room temperature by coupling Fermi level engineering with plasmonic effect. We demonstrated that Ni worked as an electron reservoir to donate electrons to Au and Pd driven by Fermi level equilibrium whereas plasmonic Au served as an optical absorber to generate energetic hot electrons and a charge-redistribution mediator. Ni and Au worked cooperatively to promote the charge heterogeneity of surface-active Pd sites, leading to enhanced chemisorption of formate-related intermediates and eventually outstanding activity (342 mmol g-1 h-1 ) compared with bimetallic counterpart. This work offers excellent insight into the rational design of efficient catalysts for practical hydrogen energy exploitation.

14.
J Colloid Interface Sci ; 624: 261-269, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35660895

RESUMEN

Electrochemical carbon dioxide (CO2) reduction reaction (E-CO2RR) to formate with high selectivity driven by renewable electricity is one of the most promising routes to carbon neutrality. Herein, we developed a novel indium (In)-doped bismuth subcarbonate (BOC) nanosheets (BOC-In-x NSs) through transformation of In-doped bismuth (Bi) nanoblocks (Bi-In-x NBs). The BOC-In-0.1 NSs achieved a maximum Faraday efficiency of formate (FEformate) nearly 100% with high stability (22 h) and an appreciable average FEformate of 93.5% in a wide potential window of 450 mV. The experimental and theoretical calculations indicate that the incorporation of In into BOC nanosheets enhanced the adsorption of CO2 and the intermediates during the process of E-CO2RR, and reduced the energy barrier for the formation of formate.


Asunto(s)
Bismuto , Dióxido de Carbono , Carbonatos , Técnicas Electroquímicas , Formiatos , Indio
15.
Chem Commun (Camb) ; 58(53): 7423-7426, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35695858

RESUMEN

Herein, we demonstrate a facile strategy for constructing an efficient and stable hydrogen evolution reaction (HER) catalyst, i.e. a tin porphyrin axially-coordinated 2D covalent organic polymer (SnTPPCOP). SnTPPCOP exhibits promising HER activity with a low overpotential of 147 mV at 10 mA cm-2 due to its unique structural properties, ranking among the best records reported recently.

16.
J Colloid Interface Sci ; 608(Pt 1): 175-185, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34634543

RESUMEN

Exploring novel structures consisting of multiple highly active components is a crucial challenge for supercapacitor applications. Using an in-situ self-templated method, we demonstrate the controlled fabrication of a fibrous hierarchical nanocomposite made of carbon microfibers covered with a layer of metal-organic framework (MOF) derived from nickel-cobalt layered double-hydroxide (NiCo-LDH) nanosheets decorated with (NiCo)Se2 nanoparticles. The (NiCo)Se2 nanoparticles attached tightly onto the surface of the two-dimensional NiCo-LDH, both of which were generated by the decomposition of the NiCo-based MOF, and exhibited multiple active sites that contributed to improved electrical conductivity, high capacity, and structural stability. Density functional theory calculations revealed that the density of states near the Fermi level was significantly enhanced, favoured OH- adsorption, and promoted the kinetics of the electrochemical reaction. Benefiting from the intrinsic synergetic contributions from the hierarchical nanoscale structure, the electrode made from the nanocomposite delivered an impressive capacity of 1394.2 F g-1 (702.7 C g-1) at 1 A g-1. Furthermore, a hybrid supercapacitor based on the developed nanocomposite demonstrated an energy density of 50.6 W h kg-1 and a power density of 800 W kg-1 with high cyclic stability. Our results suggest that the hierarchical nanocomposite can be a powerful electrode for advanced next-generation supercapacitors.

17.
J Colloid Interface Sci ; 608(Pt 3): 2650-2659, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774319

RESUMEN

Developing nonmetallic carbon-based electrocatalysts that are affordable and have high activity and stability for carbon dioxide (CO2) reduction to syngas is a new and challenging strategy for solving the energy crisis. Here, we prepared a highly active ultrathin nitrogen (N)-doped carbon nanosheet (UNCN) electrocatalyst. By tuning the applied potential of the UNCN-900 (900 represents the carbonization temperature) electrode, we could tune the H2/CO ratio in clean syngas within a wide range with extra-high Faradic efficiency (FE). The maximum FECO reached 91%, which represented the highest value among the reported nonmetallic carbon-based electrocatalysts for CO2 reduction to syngas. According to the results of experiments and density functional theory calculations, we proved that pyridinic-N in UNCNs-900 is the active site of the CO2 reduction reaction (CO2RR) and that graphitic-N may be the active site for the hydrogen evolution reaction. These results provide a useful case for electrochemical CO2 reduction to syngas with a tunable H2/CO ratio using nonmetallic carbon-based electrocatalysts.

18.
J Colloid Interface Sci ; 610: 427-437, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34929513

RESUMEN

Achieving a high volumetric energy density supercapacitor is of great significance for portable energy storage devices while still a major challenge. Herein, we design and fabricate self-supporting electrodes using CoZnNi oxyphosphide nanoarrays sandwiched graphene/carbon nanotube (CZNP/GC) film with highly exposed active sites. Benefitting from the modified electronic structures, high accessible surface areas, and the integrated structure, the well-designed CZNP/GC electrode exhibits an ultra-high volumetric capacitance of 2096.4 F cm-3 at a current density of 1 A g-1. Moreover, a high-performance negative electrode of carbon/rGO/CNTs (C/GC) is also fabricated using the same CoZn-metal-organic frameworks precursor. The assembled asymmetric supercapacitor CZNP/GC//C/GC displays an ultra-high volumetric energy density of 71.8 W h L-1 at 960 W L-1. After 6000 charge-discharge cycles, the device still maintains 85.6% of the original capacitance. The density functional theory calculation is studied and the negative adsorption energy proves that the OH- adsoption process onto the surface of as-prepared electrode is thermodynamically favorable, facilitating the electrochemical reaction. This work provides a new option in constructing tailorable electrodes with a well-defined hierarchical structure for supercapacitor and beyond.

19.
J Phys Condens Matter ; 34(9)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34826828

RESUMEN

Antimony selenide, Sb2Se3, has been attracted widespread attention in photovoltaic applications due to its high absorption coefficient and suitable band gap. However, the influence of uniaxial strain and electric field on the electronic and photovoltaic properties of multilayer Sb2Se3is still unknown. Here, the quantitative relationship, such as strain-property, electric field-property, as well as thickness-property, is explored via first-principles calculations. Our results demonstrate that the band gap and photovoltaic parameters (Jsc,Voc, FF and PCE) of multilayer Sb2Se3are not only affected by the uniaxial strain and electric field, but can also be tuned via the coupling of thickness with strain and electric field. The band-gap of multilayer Sb2Se3is linear dependent on uniaxial strain and external electric field. We found that the effect of strain on the photovoltaic parameters could be negligible as compared with the effect of thickness. However, the effect of electric field is thickness dependent, 1-2 layer(s) thin films are not affected while the impact of electric field increases with the increasing thickness. The quantitative strain (electric field)-properties relation of multilayer Sb2Se3suggesting that Sb2Se3films have a potential application in the field of strain and electric field sensors.

20.
Angew Chem Int Ed Engl ; 60(36): 20042-20048, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34254417

RESUMEN

The fundamental understanding of the surface reconstruction induced by the applied potential is of great significance for enhancing the oxygen evolution reaction (OER). Here, we show that a previously overlooked discharge current in the low applied potential region also leads to in situ electrochemical activation of a nitrogen-doped nickel oxyhydroxide surface. We exploit the fact that doping of heteroatoms weakens the surface structure, and hence, a weak discharge current originating from the capacitive nature of nickel oxyhydroxide has a strong structure-reforming ability to promote the formation of nitrogen and oxygen vacancies. The current density at 1.4 V (vs. Hg/HgO) can dramatically increase by as much as 31.3 % after discharge in the low applied potential region. This work provides insight into in situ enhancement of the OER and suggests that the low applied potential region must be a primary consideration in evaluating the origin of the activity of electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...