Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 15: 1367801, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566851

RESUMEN

Objective: To explore the construction and application in the practice of green channel in No. 971 Naval Hospital of PLA (No. 971 Hospital mode) for the treatment of acute ischemic stroke (AIS). Methods: This retrospective study involved a cohort of 694 suspected stroke patients from December 2022 to November 2023 undergoing emergency treatment for stroke at our institution. Among them, 483 patients were treated with standard green channel (the control group), and 211 patients adopted the No. 971 Hospital mode for treatment (the study group). The biggest difference between the two groups was that the treatment process started before admission. We compared the effectiveness of the emergency treatment between the two groups and the thrombolysis treatment. Results: Compared with control group, the accuracy rate of determining stroke and the rate of thrombolysis were significantly higher (p = 0.002, 0.039) and the door to doctor arrival time (DAT) and the door to CT scan time (DCT) of the study group was significantly shorter (all p < 0.001). There were 49 patients (10.1%) and 33 patients (15.6%) from the control group and study group receiving thrombolysis, respectively. The DAT, DCT, imaging to needle time (INT), and door to needle time (DNT) of patients receiving thrombolysis in the study group were significantly shorter than that in the control group (all p < 0.01). The NIHSS in the study group after the thrombolysis was lower than that in the control group (p = 0.042). Conclusion: No. 971 Hospital model can effectively shorten DAT, DCT, INT, and DNT, and improve the effectiveness of thrombolysis and prognoses of AIS patients.

2.
Math Biosci Eng ; 21(2): 2254-2281, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38454682

RESUMEN

In the context of accelerated development of the digital economy, whether enterprises can drive green total factor productivity (GTFP) through digital technology has become the key to promoting high-quality development of the economy and achieving the goal of "dual-carbon", However, the relationship between digital transformation and GTFP is still controversial in existing studies. Based on the data of 150 listed companies in China's A-share energy industry from 2011 to 2021, this study empirically analyzes the impact of digital transformation on GTFP using a fixed-effect model. The study shows an inverted U-shaped nonlinear effect of digital transformation on enterprises' GTFP, and the conclusion still holds after a series of robustness tests. Mechanism analysis shows that enterprise investment efficiency and labour allocation efficiency play a significant mediating role in the above inverted U-shaped relationship, in which the inverted U-shaped relationship between digital transformation and GTFP mainly stems from the influence of enterprise investment efficiency. Heterogeneity analysis finds that the inverted U-shaped relationship between digital transformation and GTFP of enterprises is more significant in large-scale enterprises, new energy enterprises and enterprises in central and western regions. The study's findings provide important insights for enterprises to promote digital transformation and realize the green and high-quality development of the energy industry.

3.
Plant Physiol Biochem ; 209: 108544, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520965

RESUMEN

Flower abscission is an important developmental process that can significantly reduce the yield of horticultural plants. We previously reported that SmMYB113 is a key transcription factor promoting anthocyanin biosynthesis and improve fruit quality. However, the overexpression of SmMYB113 in eggplant increased flower drop rate and reduced fruit yield. Here, we elucidate the regulatory mechanisms of SmMYB113 on flower abscission in eggplant. RNA-seq analysis indicated that the regulation of flower abscission by SmMYB113 was associated with altered expression of genes related to ethylene biosynthesis and signal transduction, including ethylene biosynthetic genes SmACS1, SmACS8 and SmACO4. Then, the ethylene content in flowers and the function of ethephon (ETH, which promotes fruit ripening) and 1-Methylcyclopropene (1-MCP, which acts as an ethylene perception inhibitor) were analyzed, which revealed that SmMYB113 directly regulates ethylene-dependent flower abscission. Yeast one-hybrid and dual-luciferase assays revealed that SmMYB113 could directly bind to the promoters of SmACS1, SmACS8, and SmACO4 to activate their expression. Through construction of a yeast two-hybrid (Y2H) screening library, the protein SmERF38 was found to interact with SmMYB113, and verified by Y2H, bimolecular fluorescence complementation (BiFC), and luciferase complementation assay. Furthermore, dual-luciferase assays showed that SmERF38 enhanced the role of SmMYB113 on the promoters of SmACS1. Our results provided new insight into the molecular mechanism of flower abscission in eggplant.


Asunto(s)
Solanum melongena , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo , Flores/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
New Phytol ; 242(3): 1275-1288, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38426620

RESUMEN

Rhizosphere microbiomes are pivotal for crop fitness, but the principles underlying microbial assembly during root-soil interactions across soils with different nutrient statuses remain elusive. We examined the microbiomes in the rhizosphere and bulk soils of maize plants grown under six long-term (≥ 29 yr) fertilization experiments in three soil types across middle temperate to subtropical zones. The assembly of rhizosphere microbial communities was primarily driven by deterministic processes. Plant selection interacted with soil types and fertilization regimes to shape the structure and function of rhizosphere microbiomes. Predictive functional profiling showed that, to adapt to nutrient-deficient conditions, maize recruited more rhizobacteria involved in nutrient availability from bulk soil, although these functions were performed by different species. Metagenomic analyses confirmed that the number of significantly enriched Kyoto Encyclopedia of Genes and Genomes Orthology functional categories in the rhizosphere microbial community was significantly higher without fertilization than with fertilization. Notably, some key genes involved in carbon, nitrogen, and phosphorus cycling and purine metabolism were dominantly enriched in the rhizosphere soil without fertilizer input. In conclusion, our results show that maize selects microbes at the root-soil interface based on microbial functional traits beneficial to its own performance, rather than selecting particular species.


Asunto(s)
Alphaproteobacteria , Microbiota , Zea mays/microbiología , Microbiología del Suelo , Suelo/química , Rizosfera , Fertilización
5.
Front Microbiol ; 15: 1304985, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550872

RESUMEN

Soil nitrogen (N) availability is one of the limiting factors of crop productivity, and it is strongly influenced by global change and agricultural management practices. However, very few studies have assessed how the winter drought affected soil N availability during the subsequent growing season under chemical fertilization. We conducted a field investigation involving snow removal to simulate winter drought conditions in a Mollisol cropland in Northeast China as part of a 6-year fertilization experiment, and we examined soil physicochemical properties, microbial characteristics, and N availability. Our results demonstrated that chemical fertilization significantly increased soil ammonium and total N availability by 42.9 and 90.3%, respectively; a combined winter drought and fertilization treatment exhibited the highest soil N availability at the end of the growing season. As the growing season continued, the variation in soil N availability was explained more by fertilization than by winter drought. The Mantel test further indicated that soil Olsen-P content and microbial carbon use efficiency (CUE) were significantly related to soil ammonium availability. A microbial community structure explained the largest fraction of the variation in soil nitrate availability. Microbial CUE showed the strongest correlation with soil N availability, followed by soil available C:P and bacteria:fungi ratios under winter drought and chemical fertilization conditions. Overall, we clarified that, despite the weak effect of the winter drought on soil N availability, it cannot be ignored. Our study also identified the important role of soil microorganisms in soil N transformations, even in seasonally snow-covered northern croplands.

6.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 5014-5023, 2023 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-38147998

RESUMEN

In recent years, the biopharmaceutical industry has developed rapidly, creating urgent demand for high-quality, innovative, and application-oriented talents. In the context of "first-class undergraduate education", it is of great significance to reform and explore biopharmaceutics blended learning to foster professional talents who can adapt to the industrial development. The blended teaching of biopharmaceutics course in Hubei University was based on small private online course (SPOC) and ChaoXing platform, aiming to meet the first-class "AIC (advanced, innovation, challenge)". The course strengthened the three phases of teaching: before, during, and after class, and innovated teaching methods actively to achieve curriculum goals, and integrated typical cases organically. In addition, the course improved the discriminative power of assessment by strengthening the formative performance evaluation. Moreover, the course provided guidance for students to improve the learning efficiency through investigating the students' learning behavior and employing the marginal utility curve to analyze the characteristics of group activities. Furthermore, the course also offered students personalized learning guidance based on their career planning. The reform of biopharmaceutics blended teaching has achieved significant outcomes, such as improving students' satisfaction, students' innovation and entrepreneurship ability, and curriculum construction level, thus may serve as a reference for the teaching reform and research of the related courses.


Asunto(s)
Biofarmacia , Curriculum , Humanos , Aprendizaje , Estudiantes
7.
Hortic Res ; 10(10): uhad181, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37885819

RESUMEN

Eggplant (Solanum melongena L.) is a highly nutritious vegetable. Here, the molecular mechanism of color formation in eggplants was determined using six eggplant cultivars with different peel colors and two SmMYB113-overexpressing transgenic eggplants with a purple peel and pulp. Significant differentially expressed genes (DEGs) were identified by RNA-sequencing analysis using the following criteria: log2(sample1/sample2) ≥ 0.75 and q-value ≤ 0.05. Two analytical strategies were used to identify genes related to the different peel color according to the peel color, flavonoids content, delphinidins/flavonoids ratio, and the content of anthocyanins. Finally, 27 novel genes were identified to be related to the color difference among eggplant peels and 32 novel genes were identified to be related to anthocyanin biosynthesis and regulated by SmMYB113. Venn analysis revealed that SmCytb5, SmGST, SmMATE, SmASAT3, and SmF3'5'M were shared among both sets of novel genes. Transient expression assay in tobacco suggested that these five genes were not sufficient for inducing anthocyanin biosynthesis alone, but they play important roles in anthocyanin accumulation in eggplant peels. Yeast one-hybrid, electrophoretic mobility shift assay and dual-luciferase assays indicated that the expression of the five genes could be directly activated by SmMYB113 protein. Finally, a regulatory model for the mechanism of color formation in eggplant was proposed. Overall, the results of this study provide useful information that enhances our understanding of the molecular mechanism underlying the different color formation in eggplant.

8.
ISME J ; 17(11): 1872-1883, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37607984

RESUMEN

The microbiome function responses to land use change are important for the long-term prediction and management of soil ecological functions under human influence. However, it has remains uncertain how the biogeographic patterns of soil functional composition change when transitioning from natural steppe soils (NS) to agricultural soils (AS). We collected soil samples from adjacent pairs of AS and NS across 900 km of Mollisol areas in northeast China, and the soil functional composition was characterized using shotgun sequencing. AS had higher functional alpha-diversity indices with respect to KO trait richness and a higher Shannon index than NS. The distance-decay slopes of functional gene composition were steeper in AS than in NS along both spatial and environmental gradients. Land-use conversion from steppe to farmland diversified functional gene profiles both locally and spatially; it increased the abundances of functional genes related to labile carbon, but decreased those related to recalcitrant substrate mobilization (e.g., lignin), P cycling, and S cycling. The composition of gene functional traits was strongly driven by stochastic processes, while the degree of stochasticity was higher in NS than in AS, as revealed by the neutral community model and normalized stochasticity ratio analysis. Alpha-diversity of core functional genes was strongly related to multi-nutrient cycling in AS, suggesting a key relationship to soil fertility. The results of this study challenge the paradigm that the conversion of natural to agricultural habitat will homogenize soil properties and biology while reducing local and regional gene functional diversity.


Asunto(s)
Microbiota , Suelo , Humanos , Microbiología del Suelo , Agricultura , China , Productos Agrícolas
9.
Sci Rep ; 13(1): 10149, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349368

RESUMEN

A three-dimensional CFD simulation model was established to study the characteristics of flow, drifts and salt deposition from 6 super-large seawater cooling towers in a power station. In the model, site meteorological data, design parameters of cooling tower, general layout, environmental characteristics, are considered. The results show that: (1) when the wind direction is parallel to the towers, the streams overlap, reducing deposition of drifts and salt onto the ground. (2) The drifts with particle size greater than 550 µm cannot float out of cooling towers. (3) In normal operation of 6 such cooling towers, the resulting salt deposition will not cause serious damage to plants.


Asunto(s)
Aire Acondicionado , Microbiología del Agua , Frío , Agua de Mar , Ríos
10.
Langmuir ; 39(19): 6756-6766, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37130050

RESUMEN

In this paper, an improved Extreme Gradient Boosting (XGBoost) algorithm based on the Graph Isomorphic Network (GIN) for predicting the adsorption performance of metal-organic frameworks (MOFs) is developed. It is shown that the graph isomorphic layer of this algorithm can directly learn the feature representation of materials from the connection of atoms in MOFs. Then, XGBoost can be used to predict the adsorption performance of MOFs based on feature representation. In this sense, it is not only possible to achieve end-to-end prediction directly from the structure of MOFs to adsorption performance but also to ensure the accuracy of prediction. The comparison between Grand Canonical Monte Carlo (GCMC) simulation and prediction supports the performance and effectiveness of the proposed algorithm.

11.
Chem Biodivers ; 20(2): e202201091, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36715462

RESUMEN

Three neolignan glycosides, including a new compound (7S,8R)-dihydro-3'-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1'-benzofuranpropanol-9-O-ß-D-xylopyranoside (1), were isolated from the root of Nothopanax davidii. Their structures were determined by extensive spectroscopic analyses, particularly NMR, HR-ESI-MS, and ECD experiments, and the absolute configuration of 2 was first definitively determined. The anti-tumor activity was assessed on four tumor cells by MTT assay, the anti-inflammatory activity was determined by inhibition of NO production in LPS reduced RAW264.7 cells, and the interaction with iNOS was predicted by molecular docking. At the dose of 100 µM, the three neolignan glycosides showed no cytotoxic activity against HepG2, HCT116, HeLa and A549 human tumor cells, but significantly inhibited LPS induced NO generation in RAW264.7 cells with inhibition rates of 31.53 %, 23.95 %, and 20.79 %, respectively, showing weak anti-inflammatory activity, possibly due to their binding to key residues of iNOs involved in inhibitor binding.


Asunto(s)
Glicósidos , Lignanos , Humanos , Glicósidos/química , Lignanos/química , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Estructura Molecular
12.
Front Microbiol ; 14: 1349747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38282737

RESUMEN

It is known that the dynamics of multiple ecosystem functions (i. e., multifunctionality) are positively associated with microbial diversity and/or biodiversity. However, how the relationship between microbial species affects ecosystem multifunctionality remains unclear, especially in the case of changes in precipitation patterns. To explore the contribution of biodiversity and microbial co-occurrence networks to multifunctionality, we used rainfall shelters to simulate precipitation enhancement in a cold steppe in Northeast China over two consecutive growing seasons. We showed that an increased 50% precipitation profoundly reduced bacterial diversity and multidiversity, while inter-annual differences in precipitation did not shift microbial diversity, plant diversity, or multidiversity. Our analyses also revealed that increased annual precipitation significantly increased ecosystem, soil, nitrogen, and phosphorous cycle multifunctionality. Neither increased precipitation nor inter-annual differences in precipitation had a significant effect on carbon cycle multifunctionality, probably due to the relatively short period (2 years) of our experiment. The co-occurrence network of bacterial and fungal communities was the most dominant factor affecting multifunctionality, the numbers of negative interactions but not positive interactions were linked to multifunctionality. In particular, our results provided evidence that microbial network topological features are crucial for maintaining ecosystem functions in grassland ecosystems, which should be considered in related studies to accurately predict the responses of ecosystem multifunctionality to predicted changes in precipitation patterns.

13.
Front Plant Sci ; 13: 1067618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507440

RESUMEN

Continuous cropping of soybean leads to soil environment deterioration and soil-borne disease exacerbation, which in turn limits the sustainability of agricultural production. Chitin amendments are considered promising methods for alleviating soybean continuous cropping obstacles; however, the underlying mechanisms of soil sickness reduction remain unclear. In this study, soil amendments with pure and crude chitin at different addition dosages were employed to treat diseased soil induced by continuous cropping of soybean for five years. Chitin amendments, especially crude chitin, remarkably increased soil pH, available phosphorus (AP), potassium (AK) and nitrate nitrogen ( NO 3 - -N) contents, and improved soybean plant growth and soil microbial activities (FDA). Additionally, chitin application significantly enriched the relative abundances of the potential biocontrol bacteria Sphingomonas, Streptomyces, and Bacillus and the fungi Mortierella, Purpureocillium, and Metarhizium while depleted those of the potential plant pathogens Fusarium, Cylindrocarpon and Paraphoma. Moreover, chitin amendments induced looser pathogenic subnetwork structures and less pathogenic cooperation with other connected microbial taxa in the rhizosphere soils. The structural equation model (SEM) revealed that pure and crude chitin amendments promoted soybean plant growth by indirectly regulating soil pH-mediated soil microbial activities and potentially beneficial microbes, respectively. Therefore, the reduction strategies for continuous cropping obstacles by adding pure and crude chitin were distinct; pure chitin amendments showed general disease suppression, while crude chitin exhibited specific disease suppression. Overall, chitin amendments could suppress potential plant pathogens and improve soil health, thereby promoting soybean growth, which provides new prospects for cultivation practices to control soybean continuous cropping obstacles.

14.
Phys Rev E ; 106(3-2): 035103, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36266793

RESUMEN

Thermocapillary convection is a common flow in space. Experiments regarding thermocapillary convection were previously carried out in a large-scale liquid bridge with a diameter of 20 mm on the Tiangong-2 space station, and the transition process to chaos was systematically studied. Under microgravity conditions, gravity is greatly weakened, and the transition process of the flow is very slow. This allows for the opportunity to study the bifurcation process in detail. It has been found that there are abundant nonlinear physical phenomena associated with the changing geometric parameters in thermocapillary convection systems. The transition mechanisms interact with each other, leading to various transition routes. The phase space trajectories, the Lyapunov exponents, and correlation dimensions are calculated to distinguish the chaotic state under a variety of conditions. Through the chaotic dynamics analysis, the chaotic characteristics of the entire transition process are quantitatively discussed.

15.
ACS Synth Biol ; 11(10): 3451-3459, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36219824

RESUMEN

ß-Nicotinamide mononucleotide (NMN) has been widely used as a nutraceutical for self-medication. The one-step conversion of nicotinamide riboside (NR) to ß-NMN has been considered to be the most promising synthetic route for ß-NMN. Here, human nicotinamide riboside kinase 2 (NRK-2) was functionally displayed on the cell surface of Saccharomyces cerevisiae EBY100, forming a whole-cell biocatalyst (Whole-cell NRK-2). Whole-cell NRK-2 could convert nicotinamide riboside (NR) to ß-NMN efficiently in the presence of ATP and Mg2+, with a maximal activity of 64 IU/g (dry weight) and a Km of 3.5 µM, similar to that of free NRK-2 reported previously. To get the best reaction conditions for ß-NMN synthesis, the amounts of NR, ATP, and Mg2+ used, pH, and temperature for the synthetic reaction were optimized. Using Whole-cell NRK-2 as the catalyst under the optimized conditions, ß-NMN synthesized from NR reached a maximal conversion rate of 98.2%, corresponding to 12.6 g/L of ß-NMN in the reaction mixture, which was much higher than those of synthetic processes reported. Additionally, Whole-cell NRK-2 had good pH stability and thermostability, required no complicated treatments before or after use, and could be reused in sequential production. Therefore, this study provided a safe, stable, highly effective, and low-cost biocatalyst for the preparation of ß-NMN, which has great potential in industrial production.


Asunto(s)
Mononucleótido de Nicotinamida , Saccharomyces cerevisiae , Humanos , Adenosina Trifosfato , Catálisis , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Saccharomyces cerevisiae/metabolismo , Biocatálisis
16.
Nat Commun ; 13(1): 3361, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35688828

RESUMEN

Microbiomes are important for crop performance. However, a deeper knowledge of crop-associated microbial communities is needed to harness beneficial host-microbe interactions. Here, by assessing the assembly and functions of maize microbiomes across soil types, climate zones, and genotypes, we found that the stem xylem selectively recruits highly conserved microbes dominated by Gammaproteobacteria. We showed that the proportion of bacterial taxa carrying the nitrogenase gene (nifH) was larger in stem xylem than in other organs such as root and leaf endosphere. Of the 25 core bacterial taxa identified in xylem sap, several isolated strains were confirmed to be active nitrogen-fixers or to assist with biological nitrogen fixation. On this basis, we established synthetic communities (SynComs) consisting of two core diazotrophs and two helpers. GFP-tagged strains and 15N isotopic dilution method demonstrated that these SynComs do thrive and contribute, through biological nitrogen fixation, 11.8% of the total N accumulated in maize stems. These core taxa in xylem sap represent an untapped resource that can be exploited to increase crop productivity.


Asunto(s)
Microbiota , Fijación del Nitrógeno , Bacterias , Nitrógeno , Raíces de Plantas/microbiología , Plantas , Microbiología del Suelo , Xilema , Zea mays
17.
Sci Total Environ ; 838(Pt 3): 156413, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35660449

RESUMEN

Long-term continuous cropping of soybean can generate the development of disease-suppressive soils. However, whether the changes in microbial communities, especially for archaea, contribute to controlling soil sickness and improving crop yields remains poorly understood. Here, real-time PCR and high-throughput sequencing were employed to investigate the changes in soil archaeal communities in both bulk and rhizosphere soils under four cropping systems, including the continuous cropping of soybeans for a short-term of 3 and 5 years (CC3 and CC5, respectively) and for a long-term of 13 years (CC13), as well as a soybean-maize rotation for 5 years (CR5). The results showed that CC13 and CR5 significantly increased archaeal abundance, reduced the alpha-diversity of archaeal communities, and changed soil archaeal community structures compared to CC3 and CC5. Microbial co-occurrence network analysis revealed that CC13 led to the higher resistant microbial community and lower the relative abundance of potential plant pathogens in the network compared to CC3 and CC5. Correlation analysis showed that the microbial resistance index was negatively correlated with the relative abundance of potential plant pathogens and positively correlated with soybean yields in both bulk and rhizosphere soils. Intriguingly, the random forest (RF) analysis showed that archaea contributed the most to soil microbial resistance even though they were not at the core positions of the network. Overall, structural equation models (SEMs) revealed that high resistant microbial community could directly or indirectly improved soybean yields by regulating the relative abundance of plant pathogens and the soil nutrients, suggesting that the regulation of soil microbial taxa may play an important role in maintaining agricultural productivity under continuous cropping of soybean.


Asunto(s)
Archaea , Microbiota , Rizosfera , Suelo/química , Microbiología del Suelo , Glycine max
18.
Front Mol Biosci ; 9: 831632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35274006

RESUMEN

Uveitis, a group of intraocular inflammatory diseases, is one of the major causes of severe visual impairment among the working-age population. This study aimed to screen potential urinary biomarkers for uveitis based on proteome analysis. An experimental autoimmune uveitis (EAU) rat model induced by bovine interphotoreceptor retinoid-binding protein (IRBP) was used to mimic uveitis. In discovery phase, a total of 704 urinary proteins were identified via data-independent acquisition (DIA) proteomic technique, of which 76 were significantly changed (34, 36, and 37 on days 5, 8, and 12, respectively, after bovine IRBP immunization). Gene Ontology annotation of the differential proteins indicates that acute-phase response, innate immune response, neutrophil aggregation, and chronic inflammatory response were significantly enriched. Protein-protein interaction network indicates that these differential urinary proteins were biologically connected in EAU, as a group. In validation phase, 17 proteins having human orthologs were verified as the potential markers associated with uveitis by parallel reaction monitoring (PRM) targeted quantitative analysis. Twelve differential proteins changed even when there were no clinical manifestations or histopathological ocular damage. These 12 proteins are potential biomarkers for early diagnosis of uveitis to prevent the development of visual impairment. Five differential proteins changed at three time-points and showed progressive changes as the uveitis progressed, and another five differential proteins changed only on day 12 when EAU severity peaked. These 10 proteins may serve as potential biomarkers for prognostic evaluation of uveitis. Our findings revealed that the urinary proteome could sensitively reflect dynamic pathophysiological changes in EAU, and represent the first step towards the application of urinary protein biomarkers for uveitis.

19.
Front Plant Sci ; 13: 843996, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356109

RESUMEN

To understand the color formation mechanism in eggplant (Solanum melongena L.) peel, a metabolomic analysis was performed in six cultivars with different peel colors. A total of 167 flavonoids, including 16 anthocyanins, were identified based on a UPLC-MS/MS approach. Further analysis revealed that the delphinidins/flavonoids ratio was consistent with the purple coloration of eggplant peels, and SmF3'5'H expression level was consistent with the delphinidin 3-O-glucoside and delphinidin 3-O-rutinoside contents, the main anthocyanins in the purple-peels eggplant cultivars identified in this study. SmMYB113 overexpression promoted anthocyanins accumulation in eggplant peels and pulps. Metabolomic analysis revealed that delphinidins were still the main anthocyanins class in the peels and pulps of SmMYB113-OE4, but most anthocyanins were glycosylated at the 5-position of the B-ring. Our results provide new insights into the anthocyanin composition of eggplant peels and demonstrate the importance of SmMYB113 in stimulating anthocyanin biosynthesis in eggplant fruits.

20.
Mikrochim Acta ; 188(12): 439, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845528

RESUMEN

Highly specific novel glycopeptide-based fluorescent molecularly imprinting polymers (g-FMIPs) were constructed to recognize and determine the target glycoprotein in complex biological samples. The glycopeptide of ovalbumin (OVA), with the unique structural characteristics of glycan and peptide, and potential application in improving the specificity recognition of g-FMIPs, was selected as the template molecule. The nitrogen-doped graphene quantum dots (N-GQDs) were introduced for fluorescence response. The obtained g-FMIPs possessed rapid binding kinetics and high adsorption capacity. Notably, the g-FMIPs exhibited remarkable selectivity and sensitivity with a high imprinting factor of 6.57, good linearity of 0.625 - 5.00 µM, and limit of detection of 0.208 µM. After treatment with g-FMIPs, the concentration of OVA in eluted solution was 1.07 µM. The obtained recoveries at 1.43 µM, 2.86 µM, and 4.29 µM spiked concentrations were 97.2%, 93.5%, and 101%, respectively, and the relative standard deviations were 2.6%, 4.2%, and 1.1%, respectively. In summary, the proposed strategy will expand the MIPs construction method and its application prospects in precision recognition and sensitive detection of trace glycoproteins from complex biosamples.


Asunto(s)
Glicoproteínas/metabolismo , Impresión Molecular/métodos , Polímeros/metabolismo , Fluorescencia , Glicopéptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...