Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; : 107788, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303914

RESUMEN

The incidence of germinal center B-cell-like type diffuse large B-cell lymphoma (GCB DLBCL) is steadily increasing, with a known hereditary component. Although some molecular mechanisms in GCB DLBCL have been elucidated, understanding remains incomplete, limiting the effectiveness of targeted therapies. In GCB DLBCL patients, abnormally high expression of zeste homologs 2 (EZH2) is noted, and the compensatory effect of EZH1 following EZH2 inhibition contributes to poor prognosis. This highlights the potential of dual targeting of EZH1/2 as a promising strategy. In this study, we developed a novel inhibitor, EZH-1-P2, targeting EZH1/2, and evaluated its anti-tumor effects on DLBCL cells. Mechanistically, inhibition of EZH1/2 affects the epigenetic regulation of gene expression related to p53, impacting cell cycle progression and GCB DLBCL cell growth. Additionally, while EZH1/2 inhibition impacts NOTCH signaling, the precise mechanism by which it affects M2-type tumor-associated macrophage (M2-TAM) polarization and germinal center expansion requires further investigation. Our research introduces EZH-1-P2 as a novel inhibitor with potential as a candidate for GCB DLBCL therapy, although further studies are needed to fully elucidate its mechanisms.

2.
mBio ; 15(9): e0138524, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39162560

RESUMEN

Infection with respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract disease in young children and older people. Despite intensive efforts over the past few decades, no direct-acting small-molecule agents against RSV are available. Most small-molecule candidates targeting the RSV fusion (F) protein pose a considerable risk of inducing drug-resistant mutations. Here, we explored the in vitro and in vivo virological properties of the K394R variant, a cross-resistant mutant capable of evading multiple RSV fusion inhibitors. Our results demonstrated that the K394R variant is highly fusogenic in vitro and more pathogenic than the parental strain in vivo. The small molecule (2E,2'E)-N,N'-((1R,2S,3S)-3-hydroxycyclohexane-1,2-diyl)bis(3-(2-bromo-4-fluorophenyl) acrylamide) (CL-A3-7), a structurally optimized compound derived from a natural caffeoylquinic acid derivative, substantially reduced in vitro and in vivo infections of both wild-type RSV and the K394R variant. Mechanistically, CL-A3-7 significantly inhibited virus-cell fusion during RSV entry by blocking the interaction between the viral F protein and the cellular insulin-like growth factor 1 receptor (IGF1R). Collectively, these results indicate severe disease risks caused by the K394R variant and reveal a new anti-RSV mechanism to overcome K394R-associated resistance. IMPORTANCE: Respiratory syncytial virus (RSV) infection is a major public health concern, and many small-molecule candidates targeting the viral fusion (F) protein are associated with a considerable risk of inducing drug-resistant mutations. This study investigated virological features of the K394R variant, a mutant strain conferring resistance to multiple RSV fusion inhibitors. Our results demonstrated that the K394R variant is highly fusogenic in cell cultures and more pathogenic than the parental strain in mice. The small-molecule inhibitor CL-A3-7 substantially reduced in vitro and in vivo infections of both wild-type RSV and the K394R variant by blocking the interaction of viral F protein with its cellular receptor, showing a new mechanism of action for small-molecules to inhibit RSV infection and overcome K394R-associated resistance.


Asunto(s)
Antivirales , Farmacorresistencia Viral , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Proteínas Virales de Fusión , Internalización del Virus , Internalización del Virus/efectos de los fármacos , Animales , Humanos , Antivirales/farmacología , Farmacorresistencia Viral/genética , Farmacorresistencia Viral/efectos de los fármacos , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Proteínas Virales de Fusión/antagonistas & inhibidores , Ratones , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/fisiología , Ratones Endogámicos BALB C , Línea Celular , Femenino
3.
Nat Commun ; 15(1): 6311, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060258

RESUMEN

Respiratory syncytial virus (RSV) hijacks cholesterol or autophagy pathways to facilitate optimal replication. However, our understanding of the associated molecular mechanisms remains limited. Here, we show that RSV infection blocks cholesterol transport from lysosomes to the endoplasmic reticulum by downregulating the activity of lysosomal acid lipase, activates the SREBP2-LDLR axis, and promotes uptake and accumulation of exogenous cholesterol in lysosomes. High cholesterol levels impair the VAP-A-binding activity of ORP1L and promote the recruitment of dynein-dynactin, PLEKHM1, or HOPS VPS39 to Rab7-RILP, thereby facilitating minus-end transport of autophagosomes and autolysosome formation. Acidification inhibition and dysfunction of cholesterol-rich lysosomes impair autophagy flux by inhibiting autolysosome degradation, which promotes the accumulation of RSV fusion protein. RSV-F storage is nearly abolished after cholesterol depletion or knockdown of LDLR. Most importantly, the knockout of LDLR effectively inhibits RSV infection in vivo. These findings elucidate the molecular mechanism of how RSV co-regulates lysosomal cholesterol reprogramming and autophagy and reveal LDLR as a novel target for anti-RSV drug development.


Asunto(s)
Autofagia , Colesterol , Lisosomas , Receptores de LDL , Infecciones por Virus Sincitial Respiratorio , Proteínas de Transporte Vesicular , Replicación Viral , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Lisosomas/metabolismo , Colesterol/metabolismo , Humanos , Animales , Receptores de LDL/metabolismo , Receptores de LDL/genética , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Ratones , Complejo Dinactina/metabolismo , Retículo Endoplásmico/metabolismo , Dineínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Virus Sincitial Respiratorio Humano/fisiología , Autofagosomas/metabolismo , Proteínas Virales de Fusión/metabolismo , Proteínas Virales de Fusión/genética , Células HeLa , Células A549
4.
mBio ; 14(5): e0211023, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796013

RESUMEN

IMPORTANCE: Respiratory syncytial virus (RSV) is the leading etiological agent of lower respiratory tract illness. However, efficacious vaccines or antiviral drugs for treating RSV infections are currently not available. Indeed, RSV depends on host cells to provide energy needed to produce progeny virions. Glycolysis is a series of oxidative reactions used to metabolize glucose and provide energy to host cells. Therefore, glycolysis may be helpful for RSV infection. In this study, we show that RSV increases glycolysis by inducing the stabilization, transcription, translation, and activation of hypoxia-inducible factor (HIF)-1α in infected cells, which is important for the production of progeny RSV virions. This study contributes to understanding the molecular mechanism by which HIF-1α-mediated glycolysis controls RSV infection and reveals an effective target for the development of highly efficient anti-RSV drugs.


Asunto(s)
Enfermedades Transmisibles , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Virus Sincitial Respiratorio Humano/genética , Glucólisis
6.
Int J Biol Macromol ; 225: 873-885, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36402393

RESUMEN

Biomimetics plays an important role in cancer treatment since it can prolong the circulation of nanoparticles, enhance their delivery and retention in target tissues, and reduce the systemic toxicity of drugs and their carriers. In this study, we developed a biomimetic nanosystem consisting of chemotherapeutic and immunotherapeutic agents wrapped in cell membranes. Specifically, the anti-tumor drug doxorubicin (DOX) was loaded into a bacterial-derived immunomodulatory agent (low molecular weight curdlan, lCUR), and the lCUR-DOX was further wrapped in the red blood cell membrane for camouflage and prolonged circulation. The successful preparation of the lCUR-DOX@RBC nanosystem was supported by various optical and morphological characterizations. In vitro studies indicated that the nanosystem can escape uptake by macrophages, inhibit the invasion of tumor cells, and reprogram M2 macrophages with an immunosuppressive phenotype into M1 macrophages with an immunopromoting phenotype via the MAPK signaling pathway while promoting the phagocytosis of macrophages. In vivo studies showed that the nanosystem effectively inhibits tumor growth in the A-375 tumor-bearing mouse model. Taken together, the above results support further development of the lCUR-DOX@RBC platform for cancer immunochemotherapy in clinical applications.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Preparaciones Farmacéuticas , Doxorrubicina , Neoplasias/patología , Membrana Eritrocítica , Inmunoterapia , Nanopartículas/uso terapéutico , Línea Celular Tumoral
7.
Cancer Gene Ther ; 30(2): 221-235, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36369341

RESUMEN

The enhancer of zeste homolog 2 (EZH2) and its highly related homolog EZH1 are considered to be epigenetic silencing factors, and they play key roles in the growth and differentiation of cells as the core components of polycomb repressive complex 2 (PRC2). EZH1 and EZH2 are known to have a role in human malignancies, and alterations in these two genes have been implicated in transformation of human malignancies. Inhibition of EZH1/2 has been shown to result in tumor regression in humans and has been studied and evaluated in the preclinical setting and in multiple clinical trials at various levels. Our work thus contributes to the understanding of the relationship between regulatory molecules associated with EZH1/2 proteins and tumor progression, and may provide new insights for mechanism-based EZH1/2-targeted therapy in tumors.


Asunto(s)
Neoplasias , Complejo Represivo Polycomb 2 , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Neoplasias/genética , Neoplasias/terapia , Epigénesis Genética
8.
Front Chem ; 10: 1024670, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518977

RESUMEN

RIO kinase 2 has emerged as a critical kinase for ribosome maturation, and recently it has also been found to play a fundamental role in cancer, being involved in the occurrence and progression of glioblastoma, liver cancer, prostate cancer, non-small cell lung cancer, and acute myeloid leukemia. However, our knowledge in this regard is fragmented and limited and it is difficult to determine the exact role of RIO kinase 2 in tumors. Here, we conducted an integrated pan-cancer analysis comprising 33 cancer-types to determine the function of RIO kinase 2 in malignancies. The results show that RIO kinase 2 is highly expressed in all types of cancer and is significantly associated with tumor survival, metastasis, and immune cell infiltration. Moreover, RIO kinase 2 alteration via DNA methylation, and protein phosphorylation are involved in tumorigenesis. In summary, RIO kinase two serves as a promising target for the identification of cancer and increases our understanding of tumorigenesis and cancer progression and enhancing the ultimate goal of improved treatment for these diseases.

9.
J Virol ; 96(23): e0145322, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36416586

RESUMEN

Phosphoinositide-3 kinase (PI3K) signaling regulates many cellular processes, including cell survival, differentiation, proliferation, cytoskeleton reorganization, and apoptosis. The actin cytoskeleton regulated by PI3K signaling plays an important role in plasma membrane rearrangement. Currently, it is known that respiratory syncytial virus (RSV) infection requires PI3K signaling. However, the regulatory pattern or corresponding molecular mechanism of PI3K signaling on cell-to-cell fusion during syncytium formation remains unclear. This study synthesized a novel PI3K inhibitor PIK-24 designed with PI3K as a target and used it as a molecular probe to investigate the involvement of PI3K signaling in syncytium formation during RSV infection. The results of the antiviral mechanism revealed that syncytium formation required PI3K signaling to activate RHO family GTPases Cdc42, to upregulate the inactive form of cofilin, and to increase the amount of F-actin in cells, thereby causing actin cytoskeleton reorganization and membrane fusion between adjacent cells. PIK-24 treatment significantly abolished the generation of these events by blocking the activation of PI3K signaling. Moreover, PIK-24 had an obvious binding activity with the p85α regulatory subunit of PI3K. The anti-RSV effect similar to PIK-24 was obtained after knockdown of p85α in vitro or knockout of p85α in vivo, suggesting that PIK-24 inhibited RSV infection by targeting PI3K p85α. Most importantly, PIK-24 exerted a potent anti-RSV activity, and its antiviral effect was stronger than that of the classic PI3K inhibitor LY294002, PI-103, and broad-spectrum antiviral drug ribavirin. Thus, PIK-24 has the potential to be developed into a novel anti-RSV agent targeting cellular PI3K signaling. IMPORTANCE PI3K protein has many functions and regulates various cellular processes. As an important regulatory subunit of PI3K, p85α can regulate the activity of PI3K signaling. Therefore, it serves as the key target for virus infection. Indeed, p85α-regulated PI3K signaling facilitates various intracellular plasma membrane rearrangement events by modulating the actin cytoskeleton, which may be critical for RSV-induced syncytium formation. In this study, we show that a novel PI3K inhibitor inhibits RSV-induced PI3K signaling activation and actin cytoskeleton reorganization by targeting the p85α protein, thereby inhibiting syncytium formation and exerting a potent antiviral effect. Respiratory syncytial virus (RSV) is one of the most common respiratory pathogens, causing enormous morbidity, mortality, and economic burden. Currently, no effective antiviral drugs or vaccines exist for RSV infection. This study contributes to understanding the molecular mechanism by which PI3K signaling regulates syncytium formation and provides a leading compound for anti-RSV infection drug development.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia , Células Gigantes , Inhibidores de las Quinasa Fosfoinosítidos-3 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Actinas/metabolismo , Antivirales/farmacología , Células Gigantes/virología , Virus Sincitial Respiratorio Humano/fisiología , Proteínas de Unión al GTP rho/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología
10.
Fitoterapia ; 163: 105348, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36368611

RESUMEN

Seven new cassaine diterpenoids (1-7) along with four known ones (8-11) were isolated from the seeds of Erythrophleum fordii Oliv. (Leguminosae). Their chemical structures were elucidated by extensive spectroscopic data interpretation and chemical methods. Compound 1 is a rare unsymmetrical dimer, which is formed by the linking of another cassaine diterpenoid acid glycoside to the 6-hydroxyl group of the sugar unit in a cassaine amide glycoside through an ester bond. Compound 2 is a cassaine diterpenoid acid derivative featuring an unusual Z double bond at C-13 and C-15. The in vitro antiviral and anti-inflammatory activities of 1-11 were evaluated. The results showed that compounds 1, 2 and 3 showed significant antiviral activities against human respiratory syncytial virus (RSV) with IC50s of 6.3, 7.8, and 9.4 µM, respectively. Compound 9 significantly suppressed the expression of nuclear factor-kappa B (NF-κB) with an IC50 value of 2.6 µM.


Asunto(s)
Diterpenos , Fabaceae , Humanos , Glicósidos/farmacología , Antivirales/farmacología , Estructura Molecular , Fabaceae/química , Semillas , Antiinflamatorios/farmacología
11.
Chin J Integr Med ; 28(5): 410-418, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34581940

RESUMEN

OBJECTIVE: To reveal the neuroprotective effect and the underlying mechanisms of a mixture of the main components of Panax notoginseng saponins (TSPN) on cerebral ischemia-reperfusion injury and oxygen-glucose deprivation/reoxygenation (OGD/R) of cultured cortical neurons. METHODS: The neuroprotective effect of TSPN was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry and live/dead cell assays. The morphology of dendrites was detected by immunofluorescence. Middle cerebral artery occlusion (MCAO) was developed in rats as a model of cerebral ischemia-reperfusion. The neuroprotective effect of TSPN was evaluated by neurological scoring, tail suspension test, 2,3,5-triphenyltetrazolium chloride (TTC) and Nissl stainings. Western blot analysis, immunohistochemistry and immunofluorescence were used to measure the changes in the Akt/mammalian target of rapamycin (mTOR) signaling pathway. RESULTS: MTT showed that TSPN (50, 25 and 12.5 µ g/mL) protected cortical neurons after OGD/R treatment (P<0.01 or P<0.05). Flow cytometry and live/dead cell assays indicated that 25 µ g/mL TSPN decreased neuronal apoptosis (P<0.05), and immunofluorescence showed that 25 µ g/mL TSPN restored the dendritic morphology of damaged neurons (P<0.05). Moreover, 12.5 µ g/mL TSPN downregulated the expression of Beclin-1, Cleaved-caspase 3 and LC3B-II/LC3B-I, and upregulated the levels of phosphorylated (p)-Akt and p-mTOR (P<0.01 or P<0.05). In the MCAO model, 50 µ g/mL TSPN improved defective neurological behavior and reduced infarct volume (P<0.05). Moreover, the expression of Beclin-1 and LC3B in cerebral ischemic penumbra was downregulated after 50 µ g/mL TSPN treatment, whereas the p-mTOR level was upregulated (P<0.05 or P<0.01). CONCLUSION: TSPN promoted neuronal survival and protected dendrite integrity after OGD/R and had a potential therapeutic effect by alleviating neurological deficits and reversing neuronal loss. TSPN promoted p-mTOR and inhibited Beclin-1 to alleviate ischemic damage, which may be the mechanism that underlies the neuroprotective activity of TSPN.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Panax notoginseng , Daño por Reperfusión , Saponinas , Animales , Beclina-1 , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Glucosa , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Mamíferos/metabolismo , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oxígeno , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Daño por Reperfusión/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo
12.
J Virol ; 95(20): e0120521, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34379500

RESUMEN

The fusion glycoprotein (F) is essential for respiratory syncytial virus (RSV) entry and has become an attractive target for anti-RSV drug development. Despite the promising prospect of RSV F inhibitors, issues of drug resistance remain challenging. In this study, we established a dual-luciferase protocol for RSV fusion inhibitor discovery. A small-molecule inhibitor, salvianolic acid R (LF-6), was identified to inhibit virus-cell and cell-cell fusion mediated by the RSV F protein. Sequence analysis of the resultant resistant viruses identified a K394R mutation in the viral F protein. The K394R mutant virus also conferred cross-resistance to multiple RSV fusion inhibitors, including several inhibitors undergoing clinical trials. Our study further showed that K394R mutation not only increased the triggering rate of F protein in prefusion conformation but also enhanced the fusion activity of F protein, both of which were positively correlated with resistance to fusion inhibitors. Moreover, the K394R mutation also showed cooperative effects with other escape mutations to increase the fusion activity of F protein. By substitution of K394 into different amino acids, we found that K394R or K394H substitution resulted in hyperfusiogenic F proteins, whereas F variants with other substitutions exhibited less fusion activity. Both K394R and K394H in F protein exhibited cross-resistance to RSV fusion inhibitors. Collectively, these findings reveal a positive correlation between the membrane fusion activity of F protein and the resistance of corresponding inhibitors. All of the results demonstrate that K394R in F protein confers cross-resistance to fusion inhibitors through destabilizing F protein and increasing its membrane fusion activity. IMPORTANCE Respiratory syncytial virus (RSV) causes serious respiratory tract disease in children and the elderly. Therapeutics against RSV infection are urgently needed. This study reports the discovery of a small-molecule inhibitor of RSV fusion glycoprotein by using a dual-luciferase protocol. The escape mutation (K394R) of this compound also confers cross-resistance to multiple RSV fusion inhibitors that have been reported previously, including two candidates currently in clinical development. The combination of K394R with other escape mutations can increase the resistance of F protein to these inhibitors through destabilizing F protein and enhancing the membrane fusion activity of F protein. By amino acid deletion or substitution, we found that a positively charged residue at the 394th site is crucial for the fusion ability of F protein, as well as for the cross-resistance against RSV fusion inhibitors. These results reveal the mechanism of cross-resistance conferred by the K394R mutation and the possible cross-resistance risk of RSV fusion inhibitors.


Asunto(s)
Virus Sincitiales Respiratorios/genética , Proteínas Virales de Fusión/genética , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , China , Células HEK293 , Células Hep G2 , Humanos , Mutación/genética , Infecciones por Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/genética
13.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32718963

RESUMEN

Phosphoinositide-3 kinase signaling modulates many cellular processes, including cell survival, proliferation, differentiation, and apoptosis. Currently, it is known that the establishment of respiratory syncytial virus infection requires phosphoinositide-3 kinase signaling. However, the regulatory pattern of phosphoinositide-3 kinase signaling or its corresponding molecular mechanism during respiratory syncytial virus entry remains unclear. Here, the involvement of phosphoinositide-3 kinase signaling in respiratory syncytial virus entry was studied. PIK-24, a novel compound designed with phosphoinositide-3 kinase as a target, had potent anti-respiratory syncytial virus activity both in vitro and in vivo PIK-24 significantly reduced viral entry into the host cell through blocking the late stage of the fusion process. In a mouse model, PIK-24 effectively reduced the viral load and alleviated inflammation in lung tissue. Subsequent studies on the antiviral mechanism of PIK-24 revealed that viral entry was accompanied by phosphoinositide-3 kinase signaling activation, downstream RhoA and cofilin upregulation, and actin cytoskeleton rearrangement. PIK-24 treatment significantly reversed all these effects. The disruption of actin cytoskeleton dynamics or the modulation of phosphoinositide-3 kinase activity by knockdown also affected viral entry efficacy. Altogether, it is reasonable to conclude that the antiviral activity of PIK-24 depends on the phosphoinositide-3 kinase signaling and that the use of phosphoinositide-3 kinase signaling to regulate actin cytoskeleton rearrangement plays a key role in respiratory syncytial virus entry.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Ratones , Fosfatidilinositoles , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Transducción de Señal , Internalización del Virus
14.
Biochem Pharmacol ; 172: 113771, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31863779

RESUMEN

The inhibition of angiogenesis is suggested to be an attractive strategy for cancer therapeutics. Heat shock protein 90 (Hsp90) is closely related to tumorigenesis as it regulates the stabilization and activated states of many client proteins that are essential for cell survival and tumor growth. Here, we investigated the mechanism whereby AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and tumor angiogenesis. Based on our results, AT-533 suppressed the tube formation, cell migration, and invasion of human umbilical vein endothelial cells (HUVECs), and was more effective than the Hsp90 inhibitor, 17-AAG. Furthermore, AT-533 inhibited angiogenesis in the aortic ring, Matrigel plug, and chorioallantoic membrane (CAM) models. Mechanically, AT-533 inhibited the activation of VEGFR-2 and the downstream pathways, including Akt/mTOR/p70S6K, Erk1/2 and FAK, in HUVECs, and the viability of breast cancer cells and the HIF-1α/VEGF signaling pathway under hypoxia. In vivo, AT-533 also inhibited tumor growth and angiogenesis by inducing apoptosis and the HIF-1α/VEGF signaling pathway in breast cancer cells. Taken together, our findings indicate that the Hsp90 inhibitor, AT-533, suppresses breast cancer growth and angiogenesis by blocking the HIF-1α/VEGF/VEGFR-2 signaling pathway. AT-533 may thus be a potentially useful drug candidate for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Indazoles/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Indazoles/uso terapéutico , Ratones , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
15.
J Nat Prod ; 82(10): 2818-2827, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31550154

RESUMEN

Guided by 1H NMR spectroscopic experiments using the aromatic protons as probes, 11 macrocyclic diterpenes (1-11) were isolated from the aerial parts of Euphorbia helioscopia. Their full three-dimensional structures, including absolute configurations, were established unambiguously by spectroscopic analysis and single-crystal X-ray crystallographic experiments. Among the isolated compounds, compound 1 is the third member thus far of a rare class of Euphorbia diterpenes featuring an unusual 5/10 fused ring system, and 2-4 are new jatrophane diterpenes. Based on the NMR data of the jatrophane diterpenes obtained in this study as well as those with crystallographic structures reported in the literature, the correlations of the chemical shifts of the relevant carbons and the configurations of C-2, C-13, and C-14 of their flexible macrocyclic ring were considered. Moreover, the anti-inflammatory activities of 1-11 were investigated by monitoring their inhibitory effects on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells. Compound 1 showed an IC50 of 7.4 ± 0.6 µM, which might be related to the regulation of the NF-κB signaling pathway by suppressing the translocation of the p65 subunit and the consequent reduction of IL-6 and TNF-α secretions.


Asunto(s)
Antiinflamatorios/aislamiento & purificación , Diterpenos/aislamiento & purificación , Euphorbia/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Cristalografía por Rayos X , Diterpenos/química , Diterpenos/farmacología , Espectroscopía de Resonancia Magnética , Ratones , FN-kappa B/fisiología , Componentes Aéreos de las Plantas/química , Células RAW 264.7
16.
Chem Biodivers ; 16(6): e1900192, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31107589

RESUMEN

Five new trans-2,3,5,4'-tetrahydroxystilbene 2-O-ß-d-glucopyranoside (TSG)-based stilbene glycoside oligomers (1-5) were isolated from the roots of Polygonum multiflorum. Their structures were elucidated by comprehensive spectroscopic analyses and chemical evidences. The absolute configurations of 1, 2, 4, and 5 were established by quantum-chemical electronic circular dichroism (ECD) calculations. Putative biosynthetic pathways of 1-5 were proposed using TSG as the key precursor. In addition, compounds 1 (multiflorumiside H) and 3 (multiflorumiside J) exhibited moderate inhibitory activities against NO production in LPS-stimulated RAW264.7 cells.


Asunto(s)
Fallopia multiflora/química , Glicósidos/química , Oligosacáridos/química , Raíces de Plantas/química , Estilbenos/química , Animales , Dicroismo Circular , Fallopia multiflora/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Conformación Molecular , Óxido Nítrico/metabolismo , Oligosacáridos/aislamiento & purificación , Oligosacáridos/farmacología , Raíces de Plantas/metabolismo , Células RAW 264.7
17.
Chem Biodivers ; 16(7): e1900202, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31115136

RESUMEN

Asprellosides A-K, nine new ursane-type triterpenoid glycosides (1-9), and two new oleanane-type triterpenoid glycosides (10 and 11), including six rare sulfated triterpenoid glycosides, were isolated from the roots of Ilex asprella. Their structures were determined on the basis of comprehensive spectroscopic analysis and chemical methods. Among these compounds, asprelloside B (2) and asprelloside C (3) are the first examples of triterpenoid glycosides bearing a rare 3,4-O-disulfo-xylopyranosyl residue. All the saponins isolated showed no significant effects against respiratory syncytial virus (RSV) and lipopolysaccharide-induced nitric oxide production in Raw264.7 macrophages.


Asunto(s)
Antivirales/farmacología , Glicósidos/farmacología , Ilex/química , Óxido Nítrico/antagonistas & inhibidores , Virus Sincitiales Respiratorios/efectos de los fármacos , Triterpenos/farmacología , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Glicósidos/química , Glicósidos/aislamiento & purificación , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Óxido Nítrico/biosíntesis , Raíces de Plantas/química , Células RAW 264.7 , Triterpenos/química , Triterpenos/aislamiento & purificación
18.
Oxid Med Cell Longev ; 2019: 9675450, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019655

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell apoptosis-inducing factor that can induce apoptosis in a variety of cancer cells. However, resistance to TRAIL in cancer cells is a huge obstacle in creating effective TRAIL-targeted clinical therapies. Thus, agents that can either enhance the effect of TRAIL or overcome its resistance are needed. In this study, we combined TRAIL with SNX-2112, an Hsp90 inhibitor we previously developed, to explore the effect and mechanism that SNX-2112 enhanced TRAIL-induced apoptosis in cervical cancer cells. Our results showed that SNX-2112 markedly enhanced TRAIL-induced cytotoxicity in HeLa cells, and this combination was found to be synergistic. Additionally, we found that SNX-2112 sensitized TRAIL-mediated apoptosis caspase-dependently in TRAIL-resistant HeLa cells. Mechanismly, SNX-2112 downregulated antiapoptosis proteins, including Bcl-2, Bcl-XL, and FLIP, promoted the accumulation of reactive oxygen species (ROS), and increased the expression levels of p-JNK and p53. ROS scavenger NAC rescued SNX-2112/TRAIL-induced apoptosis and suppressed SNX-2112-induced p-JNK and p53. Moreover, SNX-2112 induced the upregulation of death-receptor DR5 in HeLa cells. The silencing of DR5 by siRNA significantly decreased cell apoptosis by the combined effect of SNX-2112 and TRAIL. In addition, SNX-2112 inhibited the Akt/mTOR signaling pathway and induced autophagy in HeLa cells. The blockage of autophagy by bafilomycin A1 or Atg7 siRNA abolished SNX-2112-induced upregulation of DR5. Meanwhile, ROS scavenger NAC, JNK inhibitor SP600125, and p53 inhibitor PFTα were used to verify that autophagy-mediated upregulation of DR5 was regulated by the SNX-2112-stimulated activation of the ROS-JNK-p53 signaling pathway. Thus, the combination of SNX-2112 and TRAIL may provide a novel strategy for the treatment of human cervical cancer by overcoming cellular mechanisms of apoptosis resistance.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias del Cuello Uterino/patología , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/efectos de los fármacos
19.
Food Funct ; 10(5): 2605-2617, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31020299

RESUMEN

The rhizome of Alpinia officinarum Hance, a popular spice used as a condiment in China and Europe, has various reported bioactivities, including anticancer, anti-inflammatory and antioxidant effects. However, its anti-angiogenic activity has not previously been reported. In this study, a diarylheptanoid was isolated from Alpinia officinarum and identified as 1-phenyl-7-(4-hydroxy-3-methoxyphenyl)-4E-en-3-heptanone (PHMH). We demonstrated that PHMH exerts anti-angiogenic activity both in vitro and in vivo. PHMH inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro, and also suppressed VEGF-induced sprout formation of rat aorta ex vivo. Furthermore, PHMH was found to block VEGF-induced vessel formation in mice and suppress angiogenesis in both zebrafish and chorioallantoic membrane models. Mechanistic studies indicated that PHMH inhibited VEGF-induced VEGF receptor-2 (VEGFR-2) auto-phosphorylation and resulted in the blockage of VEGFR-2-mediated signaling cascades in HUVECs, including the Akt/mTOR, ERK1/2, and FAK pathways. Our findings provide new insights into the potential application of PHMH as a therapeutic agent for anti-angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Diarilheptanoides/administración & dosificación , Medicamentos Herbarios Chinos/administración & dosificación , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Alpinia , Inhibidores de la Angiogénesis/química , Animales , Movimiento Celular/efectos de los fármacos , China , Diarilheptanoides/química , Medicamentos Herbarios Chinos/química , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/fisiopatología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Pez Cebra
20.
J Ethnopharmacol ; 242: 111575, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30391397

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lophatherum gracile, an important medicinal plant, is used traditionally in the treatment of cough associated with lung heat and inflammation. In this study, an ethanol extract of L. gracile (DZY) was shown to inhibit respiratory syncytial virus (RSV) infection and RSV-induced inflammation in vitro and in vivo. These findings provide a strong and powerful support for the traditional use of L. gracile in the treatment of RSV-related diseases. AIM OF THE STUDY: To determine the anti-RSV activities of DZY and its ingredients, and explore the relationship between RSV infection and inflammation. MATERIALS AND METHODS: DZY was extracted from L. gracile and its major ingredients were determined by high-performance liquid chromatography (HPLC). RSV-infected HEp-2 and RAW264.7 cell models were established to assess the inhibitory effect of DZY on RSV replication and nitric oxide (NO) production in vitro. Three-week-old BALB/c mice challenged intranasally with RSV were used to establish RSV-infected animal mode. The mice were respectively administered DZY at high-, middle-, and low-dose in different groups. The anti-RSV activity of DZY was evaluated by detecting viral load, lung lesion, CD4+ and CD8+ T cell population, and interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ expression in the lung tissue. RESULTS: In HEp-2 cell line, DZY effectively inhibited RSV infection in a dose-dependent manner with IC50 values of 20 µg/mL against RSV (Long strain) and IC50 values of 25 µg/mL against RSV (A2 strain). The anti-RSV activity of DZY was mainly determined by isoorientin, swertiajaponin, 3, 5-di-caffeoylquinic acid, and 3, 4-di-caffeoylquinic acid. Moreover, DZY suppressed NO production induced by RSV in vitro. In vivo, oral administration of DZY significantly reduced the viral load and ameliorated lesions in the lung tissue. A probable antiviral mechanism was mediated by slightly improving the ratio of CD4+/CD8+ T cells and inhibiting the mRNA and protein expression of IL-1ß, TNF-α, and IFN-γ. CONCLUSIONS: (1) DZY exhibits anti-RSV activities both in vitro and in vivo. (2) RSV infection can trigger a series of inflammatory reactions; thus, ameliorating inflammation is helpful to control the course of disease caused by RSV. These findings provide the rationale and scientific evidence behind the extensive use of L. gracile in traditional medicine for the treatment of diseases potentially caused by RSV.


Asunto(s)
Antivirales/uso terapéutico , Extractos Vegetales/uso terapéutico , Poaceae , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Animales , Antivirales/química , Antivirales/toxicidad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Citocinas/inmunología , Etanol/química , Humanos , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Fitoquímicos/análisis , Fitoquímicos/uso terapéutico , Fitoquímicos/toxicidad , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Hojas de la Planta , Tallos de la Planta , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Solventes/química , Carga Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA