Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Sci Rep ; 14(1): 10540, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719945

RESUMEN

Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.


Asunto(s)
Bacteriófagos , Bivalvos , Branquias , Metagenómica , Animales , Metagenómica/métodos , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Branquias/microbiología , Branquias/virología , Branquias/metabolismo , Bivalvos/microbiología , Bivalvos/virología , Bivalvos/genética , Perfilación de la Expresión Génica , Transcriptoma , Viroma/genética , Bacterias/genética , Bacterias/clasificación , Simbiosis/genética , Metagenoma
2.
Chemosphere ; 355: 141860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565377

RESUMEN

Soil salinization is a major environmental hazard that limits land availability. Human-induced salt pollutants (HISPs) are regularly presented in large quantities on the contaminated site (such as brine leakages and salt-water spills), causing a devastating shock with high salt stress to the ecosystem. For instance, Saskatchewan resulted in a 48% drop in wheat production and a 0.3% decline in provincial GDP. As the calcium-modified biochar can potentially ameliorate the negative effects of HISPs on plants and improve the plant, phytoremediation with calcium-modified biochar can have increased detoxification of hazardous pollutants from sites. Therefore, the objective of our study was to develop a biochar-assisted phytoremediation employing diverse approaches to calcium modification for the sustainable removal of HISPs. The co-pyrolyzed calcium biochar achieved a remarkable removal rate of 18.06%, reducing salinity from 9.44 to 7.81 dS/m. During a 90-day long-term phytoremediation, the overall reduction rate of calcium-modified biochar stimulated the germination and growth of Thinopyrum ponticum. The result of post-treatment further indicated that co-pyrolyzed biochar with Ca transferred salt into the plant compared to Ca-coated biochar, which only immobilized HISPs on its surface. These results offer two different treatment approaches for diverse situations involving HISPs contamination, addressing current in-situ spills and providing a calcium-related biochar technology for further research in desalination.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Humanos , Biodegradación Ambiental , Calcio , Ecosistema , Carbón Orgánico , Calcio de la Dieta , Suelo , Plantas
3.
Drug Des Devel Ther ; 18: 1321-1338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681206

RESUMEN

Purpose: Cinobufotalin injection has obvious curative effects on liver cancer patients with less toxicity and fewer side effects than other therapeutic approaches. However, the core ingredients and mechanism underlying these anti-liver cancer effects have not been fully clarified due to its complex composition. Methods: Multidimensional network analysis was used to screen the core ingredients, key targets and pathways underlying the therapeutic effects of cinobufotalin injection on liver cancer, and in vitro and in vivo experiments were performed to confirm the findings. Results: By construction of ingredient networks and integrated analysis, eight core ingredients and ten key targets were finally identified in cinobufotalin injection, and all of the core ingredients are tightly linked with the key targets, and these key targets are highly associated with the cell cycle-related pathways, supporting that both cinobufotalin injection and its core ingredients exert anti-liver cancer roles by blocking cell cycle-related pathways. Moreover, in vitro and in vivo experiments confirmed that either cinobufotalin injection or one of its core ingredients, cinobufagin, significantly inhibited cell proliferation, colony formation, cell cycle progression and xenograft tumor growth, and the key target molecules involved in the cell cycle pathway such as CDK1, CDK4, CCNB1, CHEK1 and CCNE1, exhibit consistent changes in expression after treatment with cinobufotalin injection or cinobufagin. Interestingly, some key targets CDK1, CDK4, PLK1, CHEK1, TTK were predicted to bind with multiple of core ingredients of cinobufotalin injection, and the affinity between one of the critical ingredients cinobufagin and key target CDK1 was further confirmed by SPR assay. Conclusion: Cinobufotalin injection was confirmed to includes eight core ingredients, and they play therapeutic effects in liver cancer by blocking cell cycle-related pathways, which provides important insights for the mechanism of cinobufotalin injection antagonizing liver cancer and the development of novel small molecule anti-cancer drugs.


Asunto(s)
Antineoplásicos , Bufanólidos , Proliferación Celular , Neoplasias Hepáticas , Bufanólidos/farmacología , Bufanólidos/química , Bufanólidos/administración & dosificación , Humanos , Animales , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/patología , Neoplasias Hepáticas Experimentales/metabolismo , Ratones Endogámicos BALB C , Ciclo Celular/efectos de los fármacos , Ratones Desnudos , Relación Dosis-Respuesta a Droga , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo , Células Tumorales Cultivadas , Relación Estructura-Actividad , Estructura Molecular , Inyecciones
4.
Chem Sci ; 15(13): 5027-5035, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550694

RESUMEN

Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is overexpressed and/or overactivated in many human cancers and has been shown to play a critical role during oncogenesis. Despite the potential of Pin1 as a drug target, its successful targeting has proved to be challenging. We speculate that only blocking the enzymatic function of Pin1 with inhibitors may not be sufficient to lead to a total loss-of-function. Here, we report the discovery of P1D-34, a first-in-class and potent PROTAC degrader of Pin1, which induced Pin1 degradation with a DC50 value of 177 nM and exhibited potent degradation-dependent anti-proliferative activities in a panel of acute myeloid leukemia (AML) cell lines. In contrast, Pin1 inhibitor Sulfopin did not show activity. More significantly, P1D-34 could sensitize Bcl-2 inhibitor ABT-199 in Bcl-2 inhibitor-resistant AML cells, highlighting the potential therapeutic value of targeted Pin1 degradation for Bcl-2 inhibitor-resistant AML treatment. Further mechanism study revealed that P1D-34 led to the up-regulation of ROS pathway and down-regulation of UPR pathway to induce cell DNA damage and apoptosis. Notably, we further demonstrated that treatment with the combination formula of glucose metabolism inhibitor 2-DG and P1D-34 led to a notable synergistic anti-proliferative effect, further expanding its applicability. These data clearly reveal the practicality and importance of PROTAC as a preliminary tool compound suitable for assessment of Pin1-dependent pharmacology and a promising strategy for AML treatment.

5.
Cancer Sci ; 115(1): 139-154, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37940358

RESUMEN

BRD7 was identified as a tumor suppressor in nasopharyngeal carcinoma (NPC). Circular RNAs (CircRNAs) are involved in the occurrence and development of NPC as oncogenes or tumor suppressors. However, the function and mechanism of the circular RNA forms derived from BRD7 in NPC are not well understood. In this study, we first identified that circBRD7 was a novel circRNA derived from BRD7 that inhibited cell proliferation, migration, invasion of NPC cells, as well as the xenograft tumor growth and metastasis in vivo. Mechanistically, circBRD7 promoted the transcriptional activation and expression of BRD7 by enhancing the enrichment of histone 3 lysine 27 acetylation (H3K27ac) in the promoter region of its host gene BRD7, and BRD7 promoted the formation of circBRD7. Therefore, circBRD7 formed a positive feedback loop with BRD7 to inhibit NPC development and progression. Moreover, restoration of BRD7 expression rescued the inhibitory effect of circBRD7 on the malignant progression of NPC. In addition, circBRD7 demonstrated low expression in NPC tissues, which was positively correlated with BRD7 expression and negatively correlated with the clinical stage of NPC patients. Taken together, circBRD7 attenuates the tumor growth and metastasis of NPC by forming a positive feedback loop with its host gene BRD7, and targeting the circBRD7/BRD7 axis is a promising strategy for the clinical diagnosis and treatment of NPC.


Asunto(s)
MicroARNs , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regiones Promotoras Genéticas , Proliferación Celular/genética , Neoplasias Nasofaríngeas/patología , Epigénesis Genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , MicroARNs/genética , Proteínas que Contienen Bromodominio
6.
J Gene Med ; 26(1): e3614, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37847069

RESUMEN

BACKGROUND: Skin cutaneous melanoma (SKCM) is one of the most aggressive cancers with high mortality rates. Cancer-associated fibroblasts (CAFs) play essential roles in tumor growth, metastasis and the establishment of a pro-tumor microenvironment. This study aimed to establish a CAF-related signature for providing a new perspective for indicating prognosis and guiding therapeutic regimens of SKCM patients. METHODS: In this study, the CAF-related genes were screened out based on melanoma-associated fibroblast markers identified from single-cell transcriptome analysis in the Gene Expression Omnibus (GEO) database and a CAF-related module identified from weighted gene co-expression analysis using The Cancer Genome Atlas (TCGA) dataset. We extracted these gene expression data of SKCM samples from TCGA and constructed a prognostic CAF-related signature. The prediction abilities of the signature for survival prognosis, tumor immune landscape and responses to chemo-/immunotherapies were evaluated in the TCGA-SKCM cohort. RESULTS: We suggested that CAFs were significantly involved in the clinical outcomes of SKCM. A 10-gene CAF-related model was constructed, and the high-CAF risk group exhibited immunosuppressive features and worse prognosis. Patients with high CAF score were more likely to not respond to immune checkpoint inhibitors but were more sensitive to some chemotherapeutic agents, suggesting a potential approach of chemotherapy/anti-CAF combination treatment to improve the SKCM patient response rate of current immunotherapies. CONCLUSIONS: The CAF-related risk score could serve as a robust prognostic indicator and personal assessment of this score could uncover the degree of immunosuppression and provide treatment strategies to improve outcomes in clinical decision-making in SKCM patients.


Asunto(s)
Fibroblastos Asociados al Cáncer , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Relevancia Clínica , Fibroblastos , Microambiente Tumoral/genética
7.
Inorg Chem ; 63(1): 381-389, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38150656

RESUMEN

Mandelic acid and its analogues are highly valuable medical intermediates and play an important role in the pharmaceutical industry, biochemistry, and life sciences. Therefore, effective enantioselective recognition and separation of mandelic acid are of great significance. In this study, two of our recently reported chiral amine-alcohol-functionalized UiO-68-type Zr-HMOFs 1 and 3 with high chemical stability, abundant binding sites, and large chiral pores were selected as chiral selectors for the enantioselective separation of mandelic acid (MA), methyl mandelate (MM), and other chiral molecules containing only one phenyl. Materials 1 and 3 exhibited excellent enantioselective separation performance for MA and MM. Especially for the separation of racemate MA, the enantiomeric excess values reached 97.3 and 98.9%, which are the highest reported values so far. Experimental and density functional theory (DFT) computational results demonstrated that the introduction of additional phenyls on the chiral amine alcohol pendants in 3 had somewhat impact on the enantioselective adsorption and separation of MA or MM compared with 1, but it was not significant. Further research on the enantioselective separation of those chiral adsorbates containing only one phenyl by material 1 indicated the crucial role of the groups directly bonded to the chiral carbons of the adsorbates in the selective separation of enantiomers, especially showing higher enantioselectivity for the adsorbates with two hydrogen-bonding groups directly bonded to its chiral carbon.

8.
Microbiome ; 11(1): 253, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974296

RESUMEN

BACKGROUND: The within-species diversity of symbiotic bacteria represents an important genetic resource for their environmental adaptation, especially for horizontally transmitted endosymbionts. Although strain-level intraspecies variation has recently been detected in many deep-sea endosymbionts, their ecological role in environmental adaptation, their genome evolution pattern under heterogeneous geochemical environments, and the underlying molecular forces remain unclear. RESULTS: Here, we conducted a fine-scale metagenomic analysis of the deep-sea mussel Gigantidas platifrons bacterial endosymbiont collected from distinct habitats: hydrothermal vent and methane seep. Endosymbiont genomes were assembled using a pipeline that distinguishes within-species variation and revealed highly heterogeneous compositions in mussels from different habitats. Phylogenetic analysis separated the assemblies into three distinct environment-linked clades. Their functional differentiation follows a mosaic evolutionary pattern. Core genes, essential for central metabolic function and symbiosis, were conserved across all clades. Clade-specific genes associated with heavy metal resistance, pH homeostasis, and nitrate utilization exhibited signals of accelerated evolution. Notably, transposable elements and plasmids contributed to the genetic reshuffling of the symbiont genomes and likely accelerated adaptive evolution through pseudogenization and the introduction of new genes. CONCLUSIONS: The current study uncovers the environment-driven evolution of deep-sea symbionts mediated by mobile genetic elements. Its findings highlight a potentially common and critical role of within-species diversity in animal-microbiome symbioses. Video Abstract.


Asunto(s)
Respiraderos Hidrotermales , Mytilidae , Animales , Filogenia , Mytilidae/genética , Mytilidae/microbiología , Bacterias , Ecosistema , Metano/metabolismo , Simbiosis
9.
Antioxidants (Basel) ; 12(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37760069

RESUMEN

Important antioxidant enzymes, glutathione peroxidase (GPx) and superoxide dismutase (SOD), are involved in maintaining redox balance. They can protect each other and result in more efficiently removing excessive reactive oxygen species (ROS), protecting cells against injury, and maintaining the normal metabolism of ROS. In this study, human cytosolic GPx (hGPx1) and human phospholipid hydroperoxide GPx (hGPx4) genes were integrated into the same open reading frame with human extracellular SOD active site (SOD3-72P) genes, respectively, and several novel fusion proteins were obtained by using the UTuT6 expression system for the first time. Among them, Se-hGPx1UAG-L4-SOD3-72P is the bifunctional fusion protein with the highest GPx activity and the best anti-hydrogen peroxide inactivation ability thus far. The Se-hGPx4UAG-L3-SOD3-72P fusion protein exhibits the strongest alkali and high temperature resistance and a greater protective effect against lipoprotein peroxidation damage. Se-hGPx1UAG-L4-SOD3-72P and Se-hGPx4UAG-L3-SOD3-72P fusion proteins both have good synergistic and antioxidant abilities in H2O2-induced RBCs and liver damage models. We believe that this research will help with the development of novel bifunctional fusion proteins and the investigation of the synergistic and catalytic mechanisms of GPx and SOD, which are important in creating novel protein therapeutics.

10.
Am J Cancer Res ; 13(8): 3763-3780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693135

RESUMEN

Tumor metastasis is a leading cause of death in nasopharyngeal carcinoma (NPC) patients. Previous research has identified that transcription factor Yin Yang 1 (YY1) acts as a tumor suppressor that inhibits cell proliferation and tumor growth in NPC; however, the role and the molecular mechanisms of YY1 in NPC invasion and metastasis remain unclear. In this study, we discovered that YY1 could inhibit the migration and invasion of NPC cells in vitro as well as NPC xenograft tumor metastasis in vivo. Furthermore, we identified eIF4E as a direct downstream target of YY1, and YY1 could negatively regulate the expression of eIF4E at transcriptional level. Moreover, we found that eIF4E promoted the migration and invasion of NPC cells as well as NPC lung metastasis, suggesting its potential as a pro-metastatic mediator in NPC. Importantly, restoring eIF4E expression could partially reverse the inhibitory effects of YY1 on NPC malignancy. In consistent with these findings, the expression of YY1 was downregulated while eIF4E was upregulated in NPC patients with metastasis, and there was a negative correlation between YY1 and eIF4E expression. Collectively, our results indicate that YY1 suppresses the invasion and metastasis of NPC by negatively regulating eIF4E transcription. Therefore, targeting the YY1/eIF4E transcriptional axis could be a potential therapeutic strategy for the treatment of patients with NPC.

11.
PLoS One ; 18(9): e0292212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37769000

RESUMEN

BACKGROUND: NOP2/Sun RNA methyltransferase 2 (NSUN2), an important methyltransferase of m5C, has been poorly studied in cancers, and the relationship between NSUN2 and immunity remains largely unclear. Therefore, the purpose of this study was to explore the expression and prognostic value of NSUN2 and the role of NSUN2 in immunity in cancers. METHODS: The TIMER, CPTAC and other databases were used to analyze the expression of NSUN2, its correlation with clinical stage and its prognostic value across cancers. Moreover, the TISIDB, TIMER2.0 and Sangerbox platform were used to depict the relationships between NSUN2 and immune molecular subtypes, tumor-infiltrating lymphocytes (TILs), immune checkpoints (ICPs) and immunoregulatory genes. Furthermore, the NSUN2-interacting proteins and related genes as well as the coexpression networks of NSUN2 in LIHC, LUAD and HNSC were explored with the STRING, DAVID, GEPIA2 and LinkedOmics databases. Finally, the subcellular location and function of NSUN2 in HepG2, A549 and 5-8F cells were investigated by performing immunofluorescence, CCK-8 and wound healing assays. RESULTS: Overall, NSUN2 was highly expressed and related to a poor prognosis in most types of cancers and was also significantly associated with immune molecular subtypes in some cancer types. Furthermore, NSUN2 was significantly associated with the levels of ICPs and immunoregulatory genes. In addition, NSUN2 was found to be involved in a series of immune-related biological processes, such as the humoral immune response in LIHC and LUAD and T-cell activation and B-cell activation in HNSC. Immunofluorescence and CCK-8 assays also confirmed that NSUN2 was widely expressed in the nucleus and cytoplasm, and overexpression of NSUN2 promoted the proliferation and migration of HepG2, A549 and 5-8F cells. NSUN2 was also confirmed to positively regulate the expression of PD-L1. CONCLUSION: NSUN2 serves as a pan-cancer prognostic biomarker and is correlated with the immune infiltration of tumors.


Asunto(s)
Neoplasias , Humanos , Biomarcadores de Tumor/genética , Neoplasias/diagnóstico , Neoplasias/genética , Proteínas Nucleares , Pronóstico , ARN , ARNt Metiltransferasas
13.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373296

RESUMEN

Phosphorylation of the serine 139 of the histone variant H2AX (γH2AX) is a DNA damage marker that regulates DNA damage response and various diseases. However, whether γH2AX is involved in neuropathic pain is still unclear. We found the expression of γH2AX and H2AX decreased in mice dorsal root ganglion (DRG) after spared nerve injury (SNI). Ataxia telangiectasia mutated (ATM), which promotes γH2AX, was also down-regulated in DRG after peripheral nerve injury. ATM inhibitor KU55933 decreased the level of γH2AX in ND7/23 cells. The intrathecal injection of KU55933 down-regulated DRG γH2AX expression and significantly induced mechanical allodynia and thermal hyperalgesia in a dose-dependent manner. The inhibition of ATM by siRNA could also decrease the pain threshold. The inhibition of dephosphorylation of γH2AX by protein phosphatase 2A (PP2A) siRNA partially suppressed the down-regulation of γH2AX after SNI and relieved pain behavior. Further exploration of the mechanism revealed that inhibiting ATM by KU55933 up-regulated extracellular-signal regulated kinase (ERK) phosphorylation and down-regulated potassium ion channel genes, such as potassium voltage-gated channel subfamily Q member 2 (Kcnq2) and potassium voltage-gated channel subfamily D member 2 (Kcnd2) in vivo, and KU559333 enhanced sensory neuron excitability in vitro. These preliminary findings imply that the down-regulation of γH2AX may contribute to neuropathic pain.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Animales , Ratones , Ganglios Espinales/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Neuralgia/etiología , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Potasio/metabolismo , ARN Interferente Pequeño/metabolismo , Células Receptoras Sensoriales/metabolismo , Canales de Potasio Shal/metabolismo
14.
ACS Appl Mater Interfaces ; 15(18): 22241-22250, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37125930

RESUMEN

Homochiral metal-organic frameworks (HMOFs) have been widely investigated in the application of enantiomeric separation. Nonetheless, it remains a significant challenge to explore the effect of multiple weak interactions between HMOF adsorbents and chiral adsorbates on enantiomeric separation performance still. In this work, robust chiral amine-alcohol-functionalized UiO-68-typed Zr-HMOFs 1-3 with the same hydrogen-bonding sites but slightly different π-binding sites were prepared for the enantioseparation of amino acid derivatives (Fmoc-AAs) with large π-binding groups. As a consequence of multiple host-guest interactions, these Zr-HMOFs exhibit speedy adsorption and high adsorption capacity for Fmoc-L/D-AAs and dissimilar enantioselectivity for the adsorption of their enantiomers. Materials 1 and 2 exhibit excellent enantioselective separation performance for Fmoc-valine with a single terminal π-binding group, while material 3 displays excellent enantioselective separation performance for Fmoc-phenylalanine and Fmoc-tryptophan with π-binding groups at both ends. As evidently demonstrated by our experimental and density functional theory (DFT) computational results, when the number of π-binding groups preset in the confined chiral space of adsorbents matches the number of π-binding groups of chiral adsorbates, the synergism of π-π or σ-π interactions will increase enantioselectivity; otherwise, the competition interactions from redundant identical binding sites will weaken enantioselectivity. Our case not only provides a tremendously typical system for investigating the collaborative discrimination of multiple weak interactions and exploring the impact of relatively excessive binding sites of HMOF adsorbents or chiral adsorbates on the enantioselective separation performance but also provides guidance for targeted functional modifications of high-performance chiral porous materials.

15.
Research (Wash D C) ; 6: 0139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223461

RESUMEN

Circadian clock drives the 24-h rhythm in our behavior and physiology. The molecular clock consists of a series of transcriptional/translational feedback loops operated by a number of clock genes. A very recent study reported that the clock protein PERIOD (PER) is organized into discrete foci at the nuclear envelope in fly circadian neurons, which is believed to be important for controlling the subcellular localization of clock genes. Loss of inner nuclear membrane protein lamin B receptor (LBR) leads to disruption of these foci, but how they are regulated is yet unknown. Here, we found that PER foci are likely phase-separated condensates, the formation of which is mediated by intrinsically disordered region in PER. Phosphorylation promotes the accumulation of these foci. Protein phosphatase 2A, which is known to dephosphorylate PER, hampers the accumulation of the foci. On the other hand, the circadian kinase DOUBLETIME (DBT) which phosphorylates PER enhances the accumulation of the foci. LBR likely facilitates PER foci accumulation by destabilizing the catalytic subunit of protein phosphatase 2A, MICROTUBULE STAR (MTS). In conclusion, here, we demonstrate a key role for phosphorylation in promoting the accumulation of PER foci, while LBR modulates this process by impinging on the circadian phosphatase MTS.

16.
Quant Imaging Med Surg ; 13(4): 2647-2659, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37064388

RESUMEN

Background: The coronary angiography-derived index of microcirculatory resistance (caIMR) is a novel noninvasive method to assess coronary microvascular dysfunction (CMD). However, the association between caIMR and the prognosis of patients with dilated cardiomyopathy (DCM) is unclear. We aimed to explore the role of the caIMR in evaluating the outcome of patients with DCM. Methods: We consecutively and retrospectively enrolled patients with DCM in the Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, from January 2013 to January 2018. The caIMR was calculated for eligible patients. The primary end point in this study was composite events, including rehospitalization related to heart failure (HF), device implantation, heart transplantation, or cardiac death. Patients were categorized into groups based on whether they had composite events (the events and no-events groups), and differences in the baseline and end points between these two groups were analyzed. Results: A total of 95 eligible patients with DCM were enrolled in the study, 36 of whom had end point events. The best cutoff values of the caIMR for the left anterior descending (LAD) artery, left circumflex (LCX) artery, and right coronary artery (RCA) were >29.8 with an area under the curve (AUC) of 0.828, >25.5 with an AUC of 0.720, and >29.7 with an AUC of 0.717, respectively (all P values <0.001). Patients were then classified into the higher caIMR group and the lower caIMR group based on the cutoff value. Kaplan-Meier analyses showed that patients with a higher caIMR had increased cumulative risks of end point events regardless of the cutoff values for the LAD, LCX, and RCA (all log-rank P values <0.001). After adjustment for confounders, Cox regression analyses indicated that LAD-caIMR was an independent risk factor for end point events in patients with DCM [hazard ratio (HR) =1.11; 95% CI: 1.06-1.16]. Conclusions: A higher caIMR was significantly associated with the poor prognosis of patients with DCM.

17.
J Exp Clin Cancer Res ; 42(1): 86, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37060016

RESUMEN

Circular RNAs (circRNAs) are a novel type of endogenous non-coding RNAs, which are covalently closed loop structures formed by precursor mRNAs (pre-mRNAs) through back-splicing. CircRNAs are abnormally expressed in many tumors, and play critical roles in a variety of tumors as oncogenes or tumor suppressor genes by sponging miRNAs, regulating alternative splicing and transcription, cis-regulating host genes, interacting with RNA binding proteins (RBPs) or encoding polypeptides. Among them, the regulation of circRNAs on their corresponding host genes is a critical way for circRNAs to exit their functions. Accumulating evidence suggests that circRNAs are able to regulate the expression of host genes at the transcriptional level, post-transcriptional level, translational level, post-translational level, or by encoding polypeptides. Therefore, this paper mainly summarized the roles and association of circRNAs and their corresponding host genes in tumorigenesis and tumor progression, generalized the circRNAs that function synergistically or antagonistically with their host genes, and elaborated the mechanisms of mutual regulation between circRNAs and their host genes. More importantly, this review provides specific references for revealing the potential application of circRNAs combined with their host genes in tumor diagnosis, treatment and prognosis.


Asunto(s)
MicroARNs , Neoplasias , Humanos , ARN Circular/genética , MicroARNs/genética , Neoplasias/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética
18.
Front Oncol ; 13: 1122110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081988

RESUMEN

Yin-Yang 1 (YY1) is a member of the GLI-Kruppel family of zinc finger proteins and plays a vital dual biological role in cancer as an oncogene or a tumor suppressor during tumorigenesis and tumor progression. The tumor microenvironment (TME) is identified as the "soil" of tumor that has a critical role in both tumor growth and metastasis. Many studies have found that YY1 is closely related to the remodeling and regulation of the TME. Herein, we reviewed the expression pattern of YY1 in tumors and summarized the function and mechanism of YY1 in regulating tumor angiogenesis, immune and metabolism. In addition, we discussed the potential value of YY1 in tumor diagnosis and treatment and provided a novel molecular strategy for the clinical diagnosis and treatment of tumors.

19.
J Thorac Dis ; 15(1): 155-167, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36794139

RESUMEN

Background: Cisplatin (DDP) is among the most widely used chemotherapeutic drugs for non-small cell lung cancer (NSCLC), yet the frequent emergence of chemoresistance serves as a major barrier to the treatment of this tumor type. Long non-coding RNAs (lncRNAs) have recently been shown to influence the ability of cells to resist particular chemotherapy drugs. The present study was developed to explore the role of the lncRNA SNHG7 as a regulator of NSCLC cell chemosensitivity. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure SNHG7 expression in NSCLC tissues from patients that were sensitive/resistant to DDP, correlations between SNHG7 expression levels and the patients' clinicopathological characteristics were assessed, and the prognostic relevance of SNHG7 expression was examined via the Kaplan-Meier approach. In addition, SNHG7 expression was assessed in NSCLC cell lines that were DDP-sensitive or -resistant, while western blotting and immunofluorescence staining were employed to detect autophagy-associated protein expression in A549, A549/DDP, HCC827, and HCC827/DDP cells. NSCLC cell chemoresistance was quantified via the Cell Counting Kit-8 (CCK-8) assay approach, and flow cytometry was used to detect the apoptotic death of these tumor cells. The chemosensitivity of xenograft tumors in vivo was further assessed to validate the functional importance of SNHG7 as a regulator of NSCLC DDP resistance. Results: Relative to paracancerous tissues, NSCLC tumors exhibited SNHG7 upregulation, and this lncRNA was further upregulated in DDP-resistant patients compared to chemosensitive patients. Consistently, higher SNHG7 expression levels were correlated with worse patient survival outcomes. DDP-resistant NSCLC cells were also found to exhibit higher levels of SNHG7 expression than chemosensitive cells, and knocking down this lncRNA enhanced the sensitivity of these cells to DDP treatment, resulting in impaired proliferation and higher rates of apoptotic death. Knocking down SNHG7 was also sufficient to suppress microtubule associated protein 1 light chain 3 beta (LC3B) and Beclin1 protein levels and promote p62 upregulation in vitro. The silencing of this lncRNA additionally inhibited the resistance of NSCLC xenograft tumors to DDP treatment in vivo. Conclusions: SNHG7 can promote malignant behaviors and DDP resistance in NSCLC cells at least partly via the induction of autophagic activity.

20.
Cell Death Dis ; 14(2): 121, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788209

RESUMEN

BRD7 functions as a crucial tumor suppressor in numerous malignancies including nasopharyngeal carcinoma (NPC). However, its function and exact mechanisms involved in tumor progression are not well understood. Here, we found that the B7BS was a potential enhancer region of BIRC2, and BRD7 negatively regulated the transcriptional activity and expression of BIRC2 by targeting the activation of the BIRC2 enhancer. Moreover, BIRC2 promoted cell proliferation, migration, invasion as well as xenograft tumor growth and metastasis in vivo, thus functioning as an oncogene in NPC. Furthermore, the recovery of BIRC2 expression could rescue the inhibitory effect of BRD7 on cell proliferation, migration, invasion and xenograft tumor growth and metastasis. In addition, BIRC2 was highly-expressed in NPC tissues, and positively correlated with the TNM stage and negatively correlated with the expression of BRD7. Therefore, these results suggest that BRD7 suppresses tumor growth and metastasis thus functioning as a tumor suppressor at least partially by negatively regulating the enhancer activity and expression of BIRC2, and targeting the BRD7/BIRC2 regulation axis might be a potential strategy for the diagnosis and treatment of NPC.


Asunto(s)
Proteínas Cromosómicas no Histona , Neoplasias Nasofaríngeas , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Inhibidoras de la Apoptosis/metabolismo , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patología , Secuencias Reguladoras de Ácidos Nucleicos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...