Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202405756, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721710

RESUMEN

Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in-depth understanding of Ovs in S-scheme heterojunction photocatalysts are still limited. Herein, a novel S-scheme photocatalyst made from WO3-Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S-scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs-TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S-scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3-Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S-scheme photocatalysts.

2.
J Am Chem Soc ; 146(22): 15219-15229, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775440

RESUMEN

Unraveling the catalyst surface structure and behavior during reactions is essential for both mechanistic understanding and performance optimization. Here we report a phenomenon of facet-dependent surface restructuring intrinsic to ß-Ni(OH)2 catalysts during oxygen evolution reaction (OER), discovered by the correlative ex situ and operando characterization. The ex situ study after OER reveals ß-Ni(OH)2 restructuring at the edge facets to form nanoporous Ni1-xO, which is Ni deficient containing Ni3+ species. Operando liquid transmission electron microscopy (TEM) and Raman spectroscopy further identify the active role of the intermediate ß-NiOOH phase in both the OER catalysis and Ni1-xO formation, pinpointing the complete surface restructuring pathway. Such surface restructuring is shown to effectively increase the exposed active sites, accelerate Ni oxidation kinetics, and optimize *OH intermediate bonding energy toward fast OER kinetics, which leads to an extraordinary activity enhancement of ∼16-fold. Facilitated by such a self-activation process, the specially prepared ß-Ni(OH)2 with larger edge facets exhibits a 470-fold current enhancement than that of the benchmark IrO2, demonstrating a promising way to optimize metal-(oxy)hydroxide-based catalysts.

3.
Angew Chem Int Ed Engl ; 63(24): e202317177, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38606608

RESUMEN

Co-intercalation reactions make graphite a feasible anode in Ca ion batteries, yet the correlation between Ca ion intercalation behaviors and electrolyte structure remains unclear. This study, for the first time, elucidates the pivotal role of anions in modulating the Ca ion solvation structures and their subsequent intercalation into graphite. Specifically, the electrostatic interactions between Ca ion and anions govern the configurations of solvated-Ca-ion in dimethylacetamide-based electrolytes and graphite intercalation compounds. Among the anions considered (BH4 -, ClO4 -, TFSI- and [B(hfip)4]-), the coordination of four solvent molecules per Ca ion (CN=4) leads to the highest reversible capacities and the fastest reaction kinetics in graphite. Our study illuminates the origins of the distinct Ca ion intercalation behaviors across various anion-modulated electrolytes, employing a blend of experimental and theoretical approaches. Importantly, the practical viability of graphite anodes in Ca-ion full cells is confirmed, showing significant promise for advanced energy storage systems.

4.
Nat Commun ; 15(1): 420, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200021

RESUMEN

Designing high-performance thermal catalysts with stable catalytic sites is an important challenge. Conventional wisdom holds that strong metal-support interactions can benefit the catalyst performance, but there is a knowledge gap in generalizing this effect across different metals. Here, we have successfully developed a generalizable strong metal-support interaction strategy guided by Tammann temperatures of materials, enabling functional oxide encapsulation of transition metal nanocatalysts. As an illustrative example, Co@BaAl2O4 core@shell is synthesized and tracked in real-time through in-situ microscopy and spectroscopy, revealing an unconventional strong metal-support interaction encapsulation mechanism. Notably, Co@BaAl2O4 exhibits exceptional activity relative to previously reported core@shell catalysts, displaying excellent long-term stability during high-temperature chemical reactions and overcoming the durability and reusability limitations of conventional supported catalysts. This pioneering design and widely applicable approach has been validated to guide the encapsulation of various transition metal nanoparticles for environmental tolerance functionalities, offering great potential to advance energy, catalysis, and environmental fields.

5.
Nanomicro Lett ; 16(1): 90, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227163

RESUMEN

The insufficient active sites and slow interfacial charge transfer of photocatalysts restrict the efficiency of CO2 photoreduction. The synchronized modulation of the above key issues is demanding and challenging. Herein, strain-induced strategy is developed to construct the Bi-O-bonded interface in Cu porphyrin-based monoatomic layer (PML-Cu) and Bi12O17Br2 (BOB), which triggers the surface interface dual polarization of PML-Cu/BOB (PBOB). In this multi-step polarization, the built-in electric field formed between the interfaces induces the electron transfer from conduction band (CB) of BOB to CB of PML-Cu and suppresses its reverse migration. Moreover, the surface polarization of PML-Cu further promotes the electron converge in Cu atoms. The introduction of PML-Cu endows a high density of dispersed Cu active sites on the surface of PBOB, significantly promoting the adsorption and activation of CO2 and CO desorption. The conversion rate of CO2 photoreduction to CO for PBOB can reach 584.3 µmol g-1, which is 7.83 times higher than BOB and 20.01 times than PML-Cu. This work offers valuable insights into multi-step polarization regulation and active site design for catalysts.

6.
Nano Lett ; 23(23): 10765-10771, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37963268

RESUMEN

High-entropy alloy (HEA) nanoparticles (NPs) have been emerging with superior compositional tunability and multielemental synergy, presenting a unique platform for material discovery and performance optimization. Here we report a synthetic approach utilizing hollow-carbon confinement in the ordinary furnace annealing to achieve the nonequilibrium HEA-NPs such as Pt0.45Fe0.18Co0.12Ni0.15Mn0.10 with uniform size ∼5.9 nm. The facile temperature control allows us not only to reveal the detailed reaction pathway through ex situ characterization but also to tailor the HEA-NP structure from the crystalline solid solution to intermetallic. The preconfinement of metal precursors is the key to ensure the uniform distribution of metal nanoparticles with confined volume, which is essential to prevent the thermodynamically favored phase separation even during the ordinary furnace annealing. Besides, the synthesized HEA-NPs exhibit remarkable activity and stability in oxygen reduction catalysis. The demonstrated synthetic approach may significantly expand the scope of HEA-NPs with uncharted composition and performance.

7.
J Am Chem Soc ; 145(26): 14548-14561, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37343126

RESUMEN

Catalytic NH3 synthesis and decomposition offer a new promising way to store and transport renewable energy in the form of NH3 from remote or offshore sites to industrial plants. To use NH3 as a hydrogen carrier, it is important to understand the catalytic functionality of NH3 decomposition reactions at an atomic level. Here, we report for the first time that Ru species confined in a 13X zeolite cavity display the highest specific catalytic activity of over 4000 h-1 for the NH3 decomposition with a lower activation barrier, compared to most reported catalytic materials in the literature. Mechanistic and modeling studies clearly indicate that the N-H bond of NH3 is ruptured heterolytically by the frustrated Lewis pair of Ruδ+-Oδ- in the zeolite identified by synchrotron X-rays and neutron powder diffraction with Rietveld refinement as well as other characterization techniques including solid-state nuclear magnetic resonance spectroscopy, in situ diffuse reflectance infrared transform spectroscopy, and temperature-programmed analysis. This contrasts with the homolytic cleavage of N-H displayed by metal nanoparticles. Our work reveals the unprecedented unique behavior of cooperative frustrated Lewis pairs created by the metal species on the internal zeolite surface, resulting in a dynamic hydrogen shuttling from NH3 to regenerate framework Brønsted acid sites that eventually are converted to molecular hydrogen.

8.
Small ; 19(33): e2300672, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37072832

RESUMEN

Laminar membranes comprising graphene oxide (GO) and metal-organic framework (MOF) nanosheets benefit from the regular in-plane pores of MOF nanosheets and thus can support rapid water transport. However, the restacking and agglomeration of MOF nanosheets during typical vacuum filtration disturb the stacking of GO sheets, thus deteriorating the membrane selectivity. Therefore, to fabricate highly permeable MOF nanosheets/reduced GO (rGO) membranes, a two-step method is applied. First, using a facile solvothermal method, ZnO nanoparticles are introduced into the rGO laminate to stabilize and enlarge the interlayer spacing. Subsequently, the ZnO/rGO membrane is immersed in a solution of tetrakis(4-carboxyphenyl)porphyrin (H2 TCPP) to realize in situ transformation of ZnO into Zn-TCPP in the confined interlayer space of rGO. By optimizing the transformation time and mass loading of ZnO, the obtained Zn-TCPP/rGO laminar membrane exhibits preferential orientation of Zn-TCPP, which reduces the pathway tortuosity for small molecules. As a result, the composite membrane achieves a high water permeance of 19.0 L m-2  h-1  bar-1 and high anionic dye rejection (>99% for methyl blue).

9.
Angew Chem Int Ed Engl ; 61(27): e202204500, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35471635

RESUMEN

Zeolites have found tremendous applications in the chemical industry. However, the dynamic nature of their active sites under the flow of adsorbate molecules for adsorption and catalysis is unclear, especially in operando conditions, which could be different from the as-synthesized structures. In the present study, we report a structural transformation of the adsorptive active sites in SAPO-34 zeolite by using acetone as a probe molecule under various temperatures. The combination of solid-state nuclear magnetic resonance, in situ variable-temperature synchrotron X-ray diffraction, and in situ diffuse-reflectance infrared Fourier-transform spectroscopy allow a clear identification and quantification that the chemisorption of acetone can convert the classical Brønsted acid site adsorption mode to an induced Frustrated Lewis Pairs adsorption mode at increasing temperatures. Such facile conversion is also supported by the calculations of ab-initio molecular-dynamics simulations. This work sheds new light on the importance of the dynamic structural alteration of active sites in zeolites with adsorbates at elevated temperatures.

10.
Angew Chem Int Ed Engl ; 59(37): 16039-16046, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32458500

RESUMEN

There is increasing interest in capturing H2 generated from renewables with CO2 to produce methanol. However, renewable hydrogen production is expensive and in limited quantity compared to CO2 . Excess CO2 and limited H2 in the feedstock gas is not favorable for CO2 hydrogenation to methanol, causing low activity and poor methanol selectivity. Now, a class of Rh-In catalysts with optimal adsorption properties to the intermediates of methanol production is presented. The Rh-In catalyst can effectively catalyze methanol synthesis but inhibit the reverse water-gas shift reaction under H2 -deficient gas flow and shows the best competitive methanol productivity under industrially applicable conditions in comparison with reported values. This work demonstrates a strong potential of Rh-In bimetallic composition, from which a convenient methanol synthesis based on flexible feedstock compositions (such as H2 /CO2 from biomass derivatives) with lower energy cost can be established.

11.
Chem Commun (Camb) ; 54(62): 8630-8633, 2018 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-30019714

RESUMEN

Foreign transition metals are doped into the hexagonal nickel phosphide structure through a simple and facile bottom-up wet-chemical synthesis process via stabilization with oleylamine, trioctylphosphine (TOP), and trioctylphosphine oxide (TOPO): the as-prepared transition metal-doped nickel phosphide nanoparticles show a high level of doping but create no significant distortion of the crystal structure and morphology against pristine nickel phosphide nanoparticles, which exhibit excellent activity in the electrochemical oxygen evolution reaction (OER), having overpotential as small as 330 mV at 20 mA cm-2 with a low Tafel slope value of 39 mV dec-1.

12.
Chem Commun (Camb) ; 54(51): 7014-7017, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29873350

RESUMEN

The traditional investigation of complex catalyst poisoning phenomena is in the operation level: poisonings commonly attributed to macroscopic coke deposition and particle size change, etc. Here, we demonstrate that high-resolution SXRD can reveal the structure of the organic molecule-active site complex in a 3-D environment, leading to an understanding of the poisoning mechanism at the molecular level.

13.
Nat Chem ; 9(8): 810-816, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28754945

RESUMEN

The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS2 catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS2 monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene. This higher activity allows the reaction temperature to be reduced from the typically used 300 °C to 180 °C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co-S-Mo interfacial sites.

14.
Chem Commun (Camb) ; 52(29): 5160-3, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26998532

RESUMEN

Near quantitative carbon yields of diesel-range alkanes were achieved from the hydrodeoxygenation of triglycerides over Pd/NbOPO4 under mild conditions with no catalyst deactivation: catalyst characterization and theoretical calculations suggest that the high hydrodeoxygenation activity originated from the synergistic effect of Pd and strong Lewis acidity on the unique structure of NbOPO4.

15.
Sci Rep ; 6: 20527, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26856760

RESUMEN

Incorporation of Zn atoms into a nanosize Cu lattice is known to alter the electronic properties of Cu, improving catalytic performance in a number of industrially important reactions. However the structural influence of Zn on the Cu phase is not well studied. Here, we show that Cu nano-clusters modified with increasing concentration of Zn, derived from ZnO support doped with Ga(3+), can dramatically enhance their stability against metal sintering. As a result, the hydrogenation of dimethyl oxalate (DMO) to ethylene glycol, an important reaction well known for deactivation from copper nanoparticle sintering, can show greatly enhanced activity and stability with the CuZn alloy catalysts due to no noticeable sintering. HRTEM, nano-diffraction and EXAFS characterization reveal the presence of a small beta-brass CuZn alloy phase (body-centred cubic, bcc) which appears to greatly stabilise Cu atoms from aggregation in accelerated deactivation tests. DFT calculations also indicate that the small bcc CuZn phase is more stable against Cu adatom migration than the fcc CuZn phase with the ability to maintain a higher Cu dispersion on its surface.

16.
Chem Commun (Camb) ; 52(12): 2569-72, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26744750

RESUMEN

Surfactant-free bimetallic Ni@Ag nanoparticles in mesoporous silica, SBA-15 prepared by simple wet co-impregnation catalyse hydrogenation of dimethyl oxalate to methyl glycolate or ethylene glycol in high yield.


Asunto(s)
Nanopartículas del Metal , Níquel/química , Oxalatos/química , Dióxido de Silicio/química , Plata/química , Tensoactivos/química , Hidrógeno/química , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Porosidad
18.
Nat Commun ; 5: 5787, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25523894

RESUMEN

Lindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases. Here we report that a non-surface modification of palladium gives rise to the formation of an ultra-selective nanocatalyst. Boron atoms are found to take residence in palladium interstitial lattice sites with good chemical and thermal stability. This is favoured due to a strong host-guest electronic interaction when supported palladium nanoparticles are treated with a borane tetrahydrofuran solution. The adsorptive properties of palladium are modified by the subsurface boron atoms and display ultra-selectivity in a number of challenging alkyne hydrogenation reactions, which outclass the performance of Lindlar catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...