Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.690
Filtrar
1.
Chem Sci ; 15(19): 7104-7110, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756790

RESUMEN

Birefringent crystals serve as the core elements of polarizing optical devices. However, the inherent challenge of balancing bandgap and birefringence poses a significant hurdle in designing crystals with excellent overall performance. In this study, we propose a novel approach, namely modification with perfluorinated groups, to achieve dual enhancement of the bandgap and birefringence of selenite materials. We have successfully synthesized the first selenite fluorosilicate, namely, Pb2(SeO3)(SiF6). This compound exhibits a three-dimensional structure composed of two-dimensional lead selenite layers bridged by SiF6 octahedrons. Notably, by introducing a perfluorinated SiF6 group, the bandgap of the lead selenite compound has been expanded to 4.4 eV. Furthermore, Pb2(SeO3)(SiF6) demonstrates a large birefringence (0.161 @ 546 nm), surpassing most of the selenite compounds with a bandgap larger than 4.2 eV. Theoretical calculations suggest that the large birefringence of Pb2(SeO3)(SiF6) can be attributed to the synergistic effects of SeO3, PbO4 and PbO3F4 polyhedrons. Our research not only pioneers a new system for selenite materials, enriching the diversity of selenite structures, but also provides a design methodology for obtaining wide bandgap birefringent selenite.

2.
Transl Androl Urol ; 13(4): 483-492, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38721295

RESUMEN

Background: Patients with cystocele of pelvic organ prolapse quantification (POP-Q) stage II and below can be treated conservatively, but there are few reports on non-surgical treatment for these patients. This study aimed to present the real-world clinical effectiveness of nonsurgical treatment, including pelvic floor muscle training (PFMT), PFMT combined with pessary (PFMT + P), or non-ablative radiofrequency (PFMT + RF) for female with POP-Q stage II cystocele. Methods: We retrospectively analyzed females with POP-Q stage II cystocele between January 2020 and January 2022 who received PFMT, PFMT + P, or PFMT + RF treatment and were followed up for 12 months. Clinical parameters including Pelvic Floor Distress Inventory-20 questionnaire (PFDI-20), Persian version urinary incontinence quality of life questionnaire (I-QOL), POP-Q, pelvic floor Glazer evaluation, and trans-labial ultrasound at different time points were analyzed. Results: There were 147 participants enrolled. PFDI-20 and I-QOL scores were improved in all groups, but the mean decrement in the PFDI-20 scores (-14.28±8.57 and -9.78±8.25) was higher in the PFMT + P group than in the PFMT group and PFMT + RF group at both 6 and 12 months (P<0.05), and the mean I-QOL score (3.82±23.43 and 3.47±22.06) was higher in the PFMT + RP group at both 6 months and 12 months (P<0.05). The PFMT + P group also showed higher improvement rate (43.3%, P=0.03) in terms of changing the severity of cystocele (point Ba) and delta bladder neck-symphyseal distance (ΔBSD) (P<0.05) than the other 2 groups at 12 months. No statistical difference was found in the type-I and type-II myofiber function-based Glazer assessment among 3 groups. Conclusions: The combination of 2 treatment strategies seems to be superior to PFMT only for stage-II cystocele. Specific prolapse-related symptoms and objective indicators did improve more in the PFMT + P group, whereas stress urinary incontinence (SUI) symptoms and quality of life were improved in the PFMT + RP group.

3.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731558

RESUMEN

Given the widespread prevalence of viruses, there is an escalating demand for antimicrobial composites. Although the composite of dialdehyde cellulose and silver nanoparticles (DAC@Ag1) exhibits excellent antibacterial properties, its weak mechanical characteristics hinder its practical applicability. To address this limitation, cellulose nanofibers (CNFs) were initially ammoniated to yield N-CNF, which was subsequently incorporated into DAC@Ag1 as an enhancer, forming DAC@Ag1/N-CNF. We systematically investigated the optimal amount of N-CNF and characterized the DAC@Ag1/N-CNF using FT-IR, XPS, and XRD analyses to evaluate its additional properties. Notably, the optimal mass ratio of N-CNF to DAC@Ag1 was found to be 5:5, resulting in a substantial enhancement in mechanical properties, with a 139.8% increase in tensile elongation and a 33.1% increase in strength, reaching 10% and 125.24 MPa, respectively, compared to DAC@Ag1 alone. Furthermore, the inhibition zones against Escherichia coli and Staphylococcus aureus were significantly expanded to 7.9 mm and 15.9 mm, respectively, surpassing those of DAC@Ag1 alone by 154.8% and 467.9%, indicating remarkable improvements in antimicrobial efficacy. Mechanism analysis highlighted synergistic effects from chemical covalent bonding and hydrogen bonding in the DAC@Ag1/N-CNF, enhancing the mechanical and antimicrobial properties significantly. The addition of N-CNF markedly augmented the properties of the composite film, thereby facilitating its broader application in the antimicrobial field.


Asunto(s)
Celulosa , Escherichia coli , Nanopartículas del Metal , Plata , Staphylococcus aureus , Plata/química , Nanopartículas del Metal/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Celulosa/química , Celulosa/análogos & derivados , Antibacterianos/farmacología , Antibacterianos/química , Nanofibras/química , Nanocompuestos/química , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/química , Antiinfecciosos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
4.
Carbohydr Polym ; 337: 122188, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710565

RESUMEN

Growing plants in karst areas tends to be difficult due to the easy loss of water and soil. To enhance soil agglomeration, water retention, and soil fertility, this study developed a physically and chemically crosslinked hydrogel prepared from quaternary ammonium guar gum and humic acid. The results showed that non-covalent dynamic bonds between the two components delayed humic acid release into the soil, with a release rate of only 35 % after 240 h. The presence of four hydrophilic groups (quaternary ammonium, hydroxyl, carboxyl, and carbonyl) in the hydrogel more than doubled the soil's water retention capacity. The interaction between hydrogel and soil minerals (especially carbonate and silica) promoted hydrogel-soil and soil­carbonate adhesion, and the adhesion strength between soil particles was enhanced by 650 %. Moreover, compared with direct fertilization, this degradable hydrogel not only increased the germination rate (100 %) and growth status of mung beans but also reduced the negative effects of excessive fertilization on plant roots. The study provides an eco-friendly, low-cost, and intelligent system for soil improvement in karst areas. It further proves the considerable application potential of hydrogels in agriculture.


Asunto(s)
Galactanos , Sustancias Húmicas , Hidrogeles , Mananos , Gomas de Plantas , Compuestos de Amonio Cuaternario , Suelo , Gomas de Plantas/química , Galactanos/química , Mananos/química , Hidrogeles/química , Suelo/química , Compuestos de Amonio Cuaternario/química , Fertilizantes , Preparaciones de Acción Retardada/química , Germinación/efectos de los fármacos , Agua/química
5.
Angew Chem Int Ed Engl ; : e202400143, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698663

RESUMEN

The chemistry of quinone methides formed in situ has been flourishing in recent years. In sharp contrast, the development and utilization of biphenyl quinone methides are rare. Herein, we achieved a remote stereocontrolled 1,12-conjugate addition of biphenyl quinone methides formed in situ for the first time. In the presence of a suitable chiral phosphoric acid, alkynyl biphenyl quinone methides were generated from α-[4-(4-hydroxyphenyl)phenyl]propargyl alcohols, followed by enantioselective 1,12-conjugate addition with indole-2-carboxylates. The strategy enabled the additional alcohols to serve as efficient allenylation reagents, providing a practical access to a broad range of axially chiral allenes bearing (1,1'-biphenyl)-4-ol unit that are previously less accessible. Combined with control experiments, density functional theory calculations shed light on the reaction mechanism, indicating that enantioselectivity originates from the nucleophilic addition of alkynyl biphenyl quinone methides. Notably, not only the presence of biphenyl quinone methides as versatile intermediates was confirmed but also organocatalytic enantioselective 1,12-addition was established for the first time. This work enriched the family of quinone methides and provided a new platform for the remote stereocontrolled transformation of such versatile intermediates.

6.
PLoS One ; 19(5): e0289455, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696479

RESUMEN

BACKGROUND: Studies have confirmed that osteoporosis has been considered as one of the complications of diabetes, and the health hazards to patients are more obvious. This study is mainly based on the Taiwan National Health Insurance Database (TNHID). Through the analysis of TNHID, it is shown that the combined treatment of traditional Chinese medicine (TCM) medicine in patients of diabetes with osteoporosis (T2DOP) with lower related risks. METHODS: According to the study design, 3131 patients selected from TNHID who received TCM treatment were matched by 1-fold propensity score according to gender, age, and inclusion date as the control group. Cox proportional hazards analyzes were performed to compare fracture surgery, hospitalization, and all-cause mortality during a mean follow-up from 2000 to 2015. RESULTS: A total of 1055/1469/715 subjects (16.85%/23.46%/11.42%) had fracture surgery/inpatient/all-cause mortality of which 433/624/318 (13.83%/19.93%/10.16%) were in the TCM group) and 622/845/397 (19.87%/26.99%/12.68%) in the control group. Cox proportional hazards regression analysis showed that subjects in the TCM group had lower rates of fracture surgery, inpatient and all-cause mortality (adjusted HR = 0.467; 95% CI = 0.225-0.680, P<0.001; adjusted HR = 0.556; 95% CI = 0.330-0.751, P<0.001; adjusted HR = 0.704; 95% CI = 0.476-0.923, P = 0.012). Kaplan-Meier analysis showed that the cumulative risk of fracture surgery, inpatient and all-cause mortality was significantly different between the case and control groups (all log-rank p<0.001). CONCLUSION: This study provides longitudinal evidence through a cohort study of the value of integrated TCM for T2DOP. More research is needed to fully understand the clinical significance of these results.


Asunto(s)
Hospitalización , Medicina Tradicional China , Osteoporosis , Humanos , Femenino , Masculino , Osteoporosis/mortalidad , Osteoporosis/complicaciones , Anciano , Hospitalización/estadística & datos numéricos , Persona de Mediana Edad , Taiwán/epidemiología , Fracturas Óseas/mortalidad , Fracturas Óseas/cirugía , Modelos de Riesgos Proporcionales , Anciano de 80 o más Años
8.
Immunol Lett ; 267: 106862, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38702033

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS: C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS: Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1ß, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1ß, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-ß) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION: Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.

9.
J Zhejiang Univ Sci B ; : 1-14, 2024 May 14.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38772740

RESUMEN

End-stage liver diseases, such as cirrhosis and liver cancer caused by hepatitis B, are often combined with hepatic encephalopathy (HE); ammonia poisoning is posited as one of its main pathogenesis mechanisms. Ammonia is closely related to autophagy, but the molecular mechanism of ammonia's regulatory effect on autophagy in HE remains unclear. Sialylation is an essential form of glycosylation. In the nervous system, abnormal sialylation affects various physiological processes, such as neural development and synapse formation. ST3 ß|-galactoside α2,|3-sialyltransferase 6 (ST3GAL6) is one of the significant glycosyltransferases responsible for adding α2,3-linked sialic acid to substrates and generating glycan structures. We found that the expression of ST3GAL6 was upregulated in the brains of mice with HE and in astrocytes after ammonia induction, and the expression levels of α2,3-sialylated glycans and autophagy-related proteins microtubule-associated protein light chain 3 (LC3) and Beclin-1 were upregulated in ammonia-induced astrocytes. These findings suggest that ST3GAL6 is related to autophagy in HE. Therefore, we aimed to determine the regulatory relationship between ST3GAL6 and autophagy. We found that silencing ST3GAL6 and blocking or degrading α2,3-sialylated glycans by way of Maackia amurensis lectin-II (MAL-II) and neuraminidase can inhibit autophagy. In addition, silencing the expression of ST3GAL6 can downregulate the expression of heat shock protein ß8 (HSPB8) and Bcl2-associated athanogene 3 (BAG3). Notably, the overexpression of HSPB8 partially restored the reduced autophagy levels caused by silencing ST3GAL6 expression. Our results indicate that ST3GAL6 regulates autophagy through the HSPB8-BAG3 complex.

10.
Zhen Ci Yan Jiu ; 49(5): 519-525, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764124

RESUMEN

Acupuncture treatment for depression has definite therapeutic efficacy, and its mechanism has been extensively studied. The extracellular regulatory protein kinase(ERK) signaling pathway is involved in the development and progression of depression. This article reviewed and summarized the research progress on the regulation of the ERK signaling pathway by acupuncture in the treatment of depression in recent years, focusing on the physiological activation and regulatory mechanism of the ERK signaling pathway, its association with the occurrence of depression, and the mechanisms through which acupuncture activates the ERK signaling pathway to treat depression (including enhancing neuronal synaptic plasticity, promoting the release of neurotrophic factors, and inhibiting neuronal apoptosis). Future research could explore the relationship between the ERK pathway and other pathways, investigate other brain regions besides the prefrontal cortex and hippocampus, examine differences in regulatory mechanisms between male and female patients, assess the effects of different acupuncture techniques on the ERK pathway, and increase efforts to explore mechanism of synaptic plasticity regulation, so as to provide reference for the clinical application and mechanism sludy of acupuncture in depression treatment.


Asunto(s)
Terapia por Acupuntura , Depresión , Sistema de Señalización de MAP Quinasas , Humanos , Depresión/terapia , Depresión/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Plasticidad Neuronal
11.
Sci Total Environ ; 931: 172885, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697546

RESUMEN

Nanobubble (NB) technology has gained popularity in the environmental field owing to its distinctive characteristics and ecological safety. More recently, the application of NB technology in anaerobic digestion (AD) systems has been proven to promote substrate degradation and boost the production of biogas (H2 and/or CH4). This review presents the recent advancements in the application of NB technology in AD systems. Meanwhile, it also sheds light on the underlying mechanisms of NB technology that contribute to the enhanced biogas production from AD of organic solid wastes. Specifically, the working principles of the NB generator are first summarized, and then the structure of the NB generator is optimized to accommodate the demand for NB characteristics in the AD system. Subsequently, it delves into a detailed discussion of how the addition of nanobubble water (NBW) affects AD performance and the different factors that NB can potentially contribute. As a simple and environmentally friendly additive, NBW was commonly used in the AD process to enhance the fluidity and mass transfer characteristics of digestate. Additionally, NB has the potential to enhance the functionality of different types of microbial enzymes that play crucial roles in the AD process. This includes boosting extracellular hydrolase activities, optimizing coenzyme F420, and improving cellulase function. Finally, it is proposed that NBW has development potential for the pretreatment of substrate and inoculum, with future development being directed towards this aim.


Asunto(s)
Biocombustibles , Eliminación de Residuos , Anaerobiosis , Eliminación de Residuos/métodos , Residuos Sólidos , Reactores Biológicos
12.
Small ; : e2310563, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757918

RESUMEN

Carbon dots (CDs) have received considerable attention in many application areas owing to their unique optical properties and potential applications; however, the fluorescent mechanism is an obstacle to their applications. Herein, three-color emissive CDs are prepared from single o-phenylenediamine (oPD) by regulating the ratio of ethanol and dimethylformamide (DMF). Fluorescent mechanism of these CDs is proposed as molecular state fluorescence. Reaction intermediates are identified using liquid chromatrography-mass spectroscopy (LC-MS) and 1H nuclear magnetic resonance (NMR) spectra. 1H-Benzo[d]imidazole (BI), 2,3-diaminophenazine (DAP), and 5,14-dihydroquinoxalino[2,3-b] phenazine (DHQP) are proposed to be the fluorophores of blue, green, and red emissive CDs by comparing their optical properties. As per the LC-MS and 1H-NMR analysis, DHQP with red emission tends to form from DAP and oPD in pure ethanol. By adding DMF, BI formation is enhanced and DHQP formation is suppressed. The prepared CDs exhibit green emission with DAP. When the DMF amount is >50%, BI formation is considerably promoted, resulting in DAP formation being suppressed. BI with blue emission then turns into the fluorophore of CDs. This result provides us an improved understanding of the fluorescent mechanism of oPD-based CDs, which guides us in designing the structure and optical properties of CDs.

13.
PLoS Pathog ; 20(5): e1012215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701108

RESUMEN

Fusarium head blight (FHB), caused by Fusarium graminearum species complexes (FGSG), is an epidemic disease in wheat and poses a serious threat to wheat production and security worldwide. Profilins are a class of actin-binding proteins that participate in actin depolymerization. However, the roles of profilins in plant fungal pathogens remain largely unexplored. Here, we identified FgPfn, a homolog to profilins in F. graminearum, and the deletion of FgPfn resulted in severe defects in mycelial growth, conidia production, and pathogenicity, accompanied by marked disruptions in toxisomes formation and deoxynivalenol (DON) transport, while sexual development was aborted. Additionally, FgPfn interacted with Fgα1 and Fgß2, the significant components of microtubules. The organization of microtubules in the ΔFgPfn was strongly inhibited under the treatment of 0.4 µg/mL carbendazim, a well-known group of tubulin interferers, resulting in increased sensitivity to carbendazim. Moreover, FgPfn interacted with both myosin-5 (FgMyo5) and actin (FgAct), the targets of the fungicide phenamacril, and these interactions were reduced after phenamacril treatment. The deletion of FgPfn disrupted the normal organization of FgMyo5 and FgAct cytoskeleton, weakened the interaction between FgMyo5 and FgAct, and resulting in increased sensitivity to phenamacril. The core region of the interaction between FgPfn and FgAct was investigated, revealing that the integrity of both proteins was necessary for their interaction. Furthermore, mutations in R72, R77, R86, G91, I101, A112, G113, and D124 caused the non-interaction between FgPfn and FgAct. The R86K, I101E, and D124E mutants in FgPfn resulted in severe defects in actin organization, development, and pathogenicity. Taken together, this study revealed the role of FgPfn-dependent cytoskeleton in development, DON production and transport, fungicides sensitivity in F. graminearum.


Asunto(s)
Actinas , Proteínas Fúngicas , Fungicidas Industriales , Fusarium , Microtúbulos , Enfermedades de las Plantas , Triticum , Microtúbulos/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidad , Fusarium/genética , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Actinas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Triticum/microbiología , Fungicidas Industriales/farmacología , Esporas Fúngicas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Reproducción
14.
J Nat Med ; 78(3): 633-643, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704807

RESUMEN

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.


Asunto(s)
Ácidos y Sales Biliares , Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Microambiente Tumoral , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Ratones , Ácidos y Sales Biliares/metabolismo , Microambiente Tumoral/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
15.
Adv Mater ; : e2403853, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718418

RESUMEN

Superhydrophobic materials are attractive for industrial development but plagued by poor mechanical stability. Herein, a superdurable full-life superhydrophobic composite block is designed and fabricated by embedding near-zero contractive superhydrophobic silica aerogel into a rigid iron-nickel foam structured similarly to a regular dodecahedron. The synergistic protection afforded by these materials ensures superrobust mechanical stability for the composite block, which features a high compressive strength of up to ≈7.4 MPa, and ultralow Taber abrasion of down to ≈0.567 mm after withstanding 50 000 cycles, and highly efficient water harvesting capability of up to ≈3114.3 mg min-1 cm-2 at a supercooling degree of 40 K. This robust material system provides a novel strategy to design superhydrophobic materials capable of withstanding extreme conditions, including high temperature, humidity, pressure, and abrasion.

16.
Chemosphere ; : 142329, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763396

RESUMEN

Carbon source is a key factor determining the denitrifying effectiveness and efficiency in wastewater treatment plants (WWTPs). Whereas, the relationships between diverse and distinct denitrifying communities and their favorable carbon sources in full-scale WWTPs were not well-understood. This study performed a systematic analysis of the relationships between the denitrifying community and carbon sources by using 15 organic compounds from four categories and activated sludge from 8 full-scale WWTPs. Results showed that, diverse denitrifying bacteria were detected with distinct relative abundances in 8 WWTPs, such as Haliangium (1.98-4.08%), Dechloromonas (2.00-3.01%), Thauera (0.16-1.06%), Zoogloea (0.09-0.43%), and Rhodoferax (0.002-0.104%). Overall, acetate resulted in the highest denitrifying activities (1.21 to 4.62 mg/L/h/gMLSS), followed by other organic acids (propionate, butyrate and lactate, etc.). Detectable dissimilatory nitrate reduction to ammonium (DNRA) was observed for all 15 carbon sources. Methanol and glycerol resulted in the highest DRNA. Acetate, butyrate, and lactate resulted in the lowest DNRA. Redundancy analysis and 16S cDNA amplicon sequencing suggested that carbon sources within the same category tended to correlate to similar denitrifiers. Methanol and ethanol were primarily correlated to Haliangium. Glycerol and amino acids (glutamate and aspartate) were correlated to Inhella and Sphaerotilus. Acetate, propionate, and butyrate were positively correlated to a wide range of denitrifiers, explaining the high efficiency of these carbon sources. Additionally, even within the same genus, different amplicon sequence variants (ASVs) performed distinctly in terms of carbon source preference and denitrifying capabilities. These findings are expected to benefit carbon source formulation and selection in WWTPs.

17.
Cell Mol Biol Lett ; 29(1): 75, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755530

RESUMEN

BACKGROUND: Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS: Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS: The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS: Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.


Asunto(s)
Proteínas ADAM , Proteínas de la Membrana , Microglía , Enfermedades Neuroinflamatorias , Proteínas Proto-Oncogénicas c-fos , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Ratones , Microglía/metabolismo , Microglía/efectos de los fármacos , Proteínas ADAM/metabolismo , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inflamación/patología , Inflamación/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Humanos , Antígenos CD
18.
Vet Microbiol ; 293: 110101, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718529

RESUMEN

Cross-species transmission of coronaviruses has been continuously posing a major challenge to public health. Pigs, as the major animal reservoirs for many zoonotic viruses, frequently mediate viral transmission to humans. This study comprehensively mapped the relationship between human and porcine coronaviruses through in-depth bioinformatics analysis. We found that human coronavirus OC43 and porcine coronavirus PHEV share a close phylogenetic relationship, evidenced by high genomic homology, similar codon usage patterns and comparable tertiary structure in spike proteins. Inoculation of infectious OC43 viruses in organoids derived from porcine small and large intestine demonstrated that porcine intestinal organoids (pIOs) are highly susceptible to human coronavirus OC43 infection and support infectious virus production. Using transmission electron microscopy, we visualized OC43 viral particles in both intracellular and extracellular compartments, and observed abnormalities of multiple organelles in infected organoid cells. Robust OC43 infections in pIOs result in a significant reduction of organoids viability and widespread cell death. This study bears essential implications for better understanding the evolutionary origin of human coronavirus OC43, and provides a proof-of-concept for using pIOs as a model to investigate cross-species transmission of human coronavirus.


Asunto(s)
Biología Computacional , Infecciones por Coronavirus , Coronavirus Humano OC43 , Intestinos , Organoides , Filogenia , Animales , Organoides/virología , Porcinos , Humanos , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/veterinaria , Coronavirus Humano OC43/fisiología , Coronavirus Humano OC43/genética , Intestinos/virología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/transmisión , Genoma Viral
20.
World Neurosurg ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38621501

RESUMEN

PURPOSE: This study aims to observe the safety and effectiveness of 10-mm endoscopic minimally invasive interlaminar decompression in the treatment of ossified lumbar spinal stenosis. METHODS: The clinical data of 50 consecutive patients with ossified lumbar spinal stenosis were retrospectively analyzed. All patients underwent minimally invasive interlaminar decompression with 10-mm endoscope. Patient demographics, perioperative data, and clinical outcomes were recorded. Visual analog scale (VAS) scores, Oswestry disability index (ODI) scores, and modified Macnab criteria were used to assess clinical outcomes. The lateral recess angle, real spinal canal area and effective intervertebral foramen area were used to assess the effect of decompression. RESULTS: The mean age of all patients was 59.0±12.3 years. The mean operative time and intraoperative blood loss were 43.7±8.7 minutes and <20ml, respectively. Two years after surgery, the leg pain VAS score decreased from 7.4 ± 1.0 to 1.6 ± 0.6 (P < 0.05) and the ODI score decreased from 63.8 ± 7.6 to 21.7 ± 3.4 (P < 0.05). The lateral recess angle, real spinal canal area and effective intervertebral foramen area were significantly larger than before surgery (P < 0.05). The overall excellent and good rate at the last follow-up was 92.0% according to the modified Macnab criteria. CONCLUSION: The 10-mm endoscopic minimally invasive interlaminar decompression can safely and effectively remove the ossification in the spinal canal and achieve adequate decompression in patients with ossified lumbar spinal stenosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...