Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 89(3)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33318140

RESUMEN

The lack of efficacious vaccines against Mycobacterium tuberculosis (MTB) infection is a limiting factor in the prevention and control of tuberculosis (TB), the leading cause of death from an infectious agent. Improvement or replacement of the BCG vaccine with one that reliably protects all age groups is urgent. Concerns exist that antigens currently being evaluated are too homogeneous. To identify new protective antigens, we screened 1,781 proteins from a high-throughput proteome-wide protein purification study for antigenic activity. Forty-nine antigens (34 previously unreported) induced antigen-specific gamma interferon (IFN-γ) release from peripheral blood mononuclear cells (PBMCs) derived from 4,452 TB and suspected TB patients and 167 healthy donors. Three (Rv1485, Rv1705c, and Rv1802) of the 20 antigens evaluated in a BALB/c mouse challenge model showed protective efficacy, reducing lung CFU counts by 66.2%, 75.8%, and 60%, respectively. Evaluation of IgG2a/IgG1 ratios and cytokine release indicated that Rv1485 and Rv1705c induce a protective Th1 immune response. Epitope analysis of PE/PPE protein Rv1705c, the strongest candidate, identified a dominant epitope in its extreme N-terminal domain accounting for 90% of its immune response. Systematic preclinical assessment of antigens Rv1485 and Rv1705c is warranted.


Asunto(s)
Antígenos Bacterianos/inmunología , Antígenos Bacterianos/aislamiento & purificación , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/aislamiento & purificación , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Animales , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Tuberculosis/prevención & control
2.
Front Vet Sci ; 5: 28, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29560355

RESUMEN

Bovine tuberculosis (bTB) is primarily caused by infection with Mycobacterium bovis, which belongs to the Mycobacterium tuberculosis complex. The airborne route is considered the most common for transmission of M. bovis, and more than 15% of cattle with bTB shed the Mycobacterium, which can be detect by nested PCR to amplify mycobacterial mpb70 from a nasal swab from a cow. To screen for cytokines fostering early and accurate detection of bTB, peripheral blood mononuclear cells were isolated from naturally M. bovis-infected, experimentally M. bovis 68002-infected, and uninfected cattle, then these cells were stimulated by PPD-B, CFP-10-ESAT-6 (CE), or phosphate-buffered saline (PBS) for 6 h. The levels of interferon gamma (IFN-γ), IFN-γ-induced protein 10 (IP-10), IL-6, IL-12, IL-17A, and tumor necrosis factor alpha mRNA were measured using real-time PCR. To explore the cytokines associated with different periods of M. bovis infection, cattle were divided into three groups: PCR-positive, PCR-negative, and uninfected using the tuberculin skin test, CFP-10/ESAT-6/TB10.4 protein cocktail-based skin test, IFN-γ release assay (IGRA), CFP-10/ESAT-6 (CE)-based IGRA, and nested PCR. The expression of IP-10, IL-17A, and IFN-γ proteins induced by PPD-B, CE, or PBS was detected by ELISA. The results showed that levels of PPD-B-stimulated IL-17A and IP-10 (mRNA and protein), and CE-induced IP-10 (mRNA and protein) were significantly higher in cattle naturally or experimentally infected with M. bovis than in those that were uninfected. The levels of PPD-B- or CE-induced IL-17A and IP-10 (protein) could be used to differentiate M. bovis-infected calves from uninfected ones for 6 to 30 weeks post-infection, whereas PPD-B- and CE-induced IP-10 and IL-17A mRNA expression could be used to differentiate M. bovis-infected calves from uninfected ones between 6 and 58 weeks post-infection. However, CE-induced IL-17A (protein) was not a reliable indicator of M. bovis infection in cattle that were confirmed positive for infection by nested PCR. Furthermore, the levels of PPD-B- or CE-induced IP-10 and IL-17A protein were lower than IFN-γ in M. bovis-infected cattle. Therefore, IL-17A and IP-10 protein are not suitable biomarkers for bTB. Antigen-induced IP-10 mRNA should be analyzed further for their potential to be used in the diagnosis of bTB.

3.
Clin Vaccine Immunol ; 20(4): 482-90, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365203

RESUMEN

Bovine tuberculosis (bTB) is a worldwide zoonosis caused mainly by Mycobacterium bovis. The traditional diagnostic method used often is the tuberculin skin test, which uses bovine purified protein derivatives (PPD-B). However, it is difficult to maintain uniformity of PPD-B from batch to batch, and it shares common antigens with nonpathogenic environmental mycobacteria. To overcome these problems, M. bovis-specific antigens that showed good T cell stimulation, such as CFP-10, ESAT-6, Rv3615c, etc., have been used in the skin test, but there have been no large-scale clinical studies on these antigens. In this study, two combinations (CFP-10/ESAT-6/TB10.4 protein cocktail and CFP-10/ESAT-6/Rv3872/MPT63 protein cocktail) were developed and used as stimuli in the skin test. Cattle were double-blind tested to assess the efficiency of the protein cocktail-based skin tests. The results showed that the CFP-10/ESAT-6/TB10.4 protein cocktail-based skin test can differentiate TB-infected cattle from Mycobacterium avium-infected ones and that it shows a high degree of agreement with the traditional tuberculin skin test (κ = 0.8536) and gamma interferon (IFN-γ) release assay (κ = 0.8154). Compared to the tuberculin skin test, the relative sensitivity and relative specificity of the CFP-10/ESAT-6/TB10.4-based skin test were 87% and 97%, respectively., The relative sensitivity and relative specificity of the CFP-10/ESAT-6/TB10.4-based skin test were 93% and 92%, respectively, on comparison with the IFN-γ release assay. The correlation between the increases in skin thickness observed after the inoculation of stimuli was high (PPD-B versus CFP-10/ESAT-6/TB10.4, Spearman r of 0.8435). The correlation between the optical density at 450 nm (OD450) obtained after blood stimulation with PPD-B and the increase in skin thickness observed after inoculation of the CFP-10/ESAT-6/TB10.4 protein cocktail was high (Spearman r = 0.7335). Therefore, the CFP-10/ESAT-6/TB10.4-based skin test responses correlate to traditional measures of bovine TB evaluation, including skin test and gamma interferon release assay.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Mycobacterium bovis/inmunología , Tuberculosis Bovina/diagnóstico , Medicina Veterinaria/métodos , Animales , Antígenos Bacterianos/aislamiento & purificación , Proteínas Bacterianas/aislamiento & purificación , Bovinos , Método Doble Ciego , Ensayos de Liberación de Interferón gamma , Proteínas Recombinantes/aislamiento & purificación , Sensibilidad y Especificidad , Pruebas Cutáneas/métodos , Prueba de Tuberculina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA