Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cancer ; 11(7): 1940-1948, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194805

RESUMEN

Objective: To identify a multi-gene prognostic factor in patients with lung adenocarcinoma (LUAD). Materials and methods Prognosis-related genes were screened in the TCGA-LUAD cohort. Then, patients in this cohort were randomly separated into training set and test set. Least absolute shrinkage and selection operator (LASSO) regression was performed to the penalized the Cox proportional hazards regression (CPH) model on the training set, and a prognostication combination based on the result of LASSO analysis was developed. By performing Kaplan-Meier curve analysis, univariate and multivariable CPH model on the overall survival (OS) as well as recurrence free survival (RFS), the prognostication performance of the multigene combination were evaluated. Moreover, we constructed a nomogram and performed decision curve analysis to evaluate the clinical application of the multigene combination. Results We obtained 99 prognosis-related genes and screened out a 4-gene combination (including CIDEC, ZFP3, DKK1, and USP4) according to the LASSO analysis. The results of survival analyses suggested that patients in the 4-gene combination low-risk group had better OS and RFS than those in the 4-gene combination high-risk group. The 4-gene mentioned was demonstrated to be independent prognostic factor of patients with LUAD in the training set(OS, HR=11.962, P<0.001; RFS, HR=9.281, P<0.001) and test set (OS, HR=5.377, P=0.003; RFS, HR=2.949, P=0.104). More importantly, its prognosis performance was well in the validation set (OS, HR=0.955, P=0.002; RFS, HR=1.042, P<0.001). Conclusions We introduced a 4-gene combination which could predict the survival of LUAD patients and might be an independent prognostic factor in LUAD.

2.
ACS Appl Mater Interfaces ; 12(7): 8674-8680, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31986011

RESUMEN

Nowadays, the integration of easy production, simple structure, high sensitivity, and multifunctionality is the developing tendency for flexible sensors. Herein we report a facile manufacture of a highly flexible, sensitive, and multifunctional dual-mode sensor with an ultrasimple structure by directly attaching magnetic iron rubber (IR) onto the surface of carbon aerogel (CA) derived from melamine foam. The dual-mode CA/IR sensor exhibits high sensitivities of 5.6 kPa-1 and 1.6·10-3 Oe-1, respectively, toward pressure and magnetic field in a wide frequency ranging from 0.1 to 10 Hz, which are higher than those of the existing flexible pressure/magnetism sensors. The multifunctionality of the dual-mode CA/IR sensor is demonstrated by monitoring blood pulse, human breath, balloon volume, and thoracic volume via pressure and magnetism sensing or their combination. Due to its simple structure and high sensitivities, the dual-mode sensor is employed as the building block to create a direction-recognizable sensor for identifying the directions of pressure and magnetic field for the awareness of surrounding barriers that are of practical importance in sophisticated situations such as autonomous artificial intelligence, autodriving and robotics, and so on.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...