Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plant Physiol Biochem ; 207: 108340, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199025

RESUMEN

NIN-like proteins (NLPs) are evolutionarily conserved transcription factors that are unique to plants and play a pivotal role in responses to nitrate uptake and assimilation. However, a comprehensive analysis of NLP members in tea plants is lacking. The present study performed a genome-wide analysis and identified 33 NLP gene family members of Camellia sinensis that were distributed unequally across 5 chromosomes. Subcellular localisation predictions revealed that all CsNLP proteins were localised in the nucleus. Conservative domain analysis revealed that all of these proteins contained conserved RWP-RK and PB1 domains. Phylogenetic analysis grouped the CsNLP gene family into four clusters. The promoter regions of CsNLPs harboured cis-acting elements associated with plant hormones and abiotic stress responses. Expression profile analysis demonstrated that CsNLP8 was significantly upregulated in roots under nitrate stress conditions. Subcellular localisation analysis found CsNLP8 localised to the nucleus. Dual-luciferase reporter assay demonstrated that CsNLP8 positively regulated the expression of a nitrate transporter gene (CsNRT2.2). These findings provide a comprehensive characterisation of NLP genes in Camellia sinensis and offer insights into the biological function of CsNLP8 in regulating the response to nitrate-induced stress.


Asunto(s)
Camellia sinensis , Nitratos , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Filogenia , , Regulación de la Expresión Génica de las Plantas
2.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373460

RESUMEN

The light-sensitive albino tea plant can produce pale-yellow shoots with high levels of amino acids which are suitable to process high-quality tea. In order to understand the mechanism of the albino phenotype formation, the changes in the physio-chemical characteristics, chloroplast ultrastructure, chlorophyll-binding proteins, and the relevant gene expression were comprehensively investigated in the leaves of the light-sensitive albino cultivar 'Huangjinya' ('HJY') during short-term shading treatment. In the content of photosynthetic pigments, the ultrastructure of the chloroplast, and parameters of the photosynthesis in the leaves of 'HJY' could be gradually normalized along with the extension of the shading time, resulting in the leaf color transformed from pale yellow to green. BN-PAGE and SDS-PAGE revealed that function restoration of the photosynthetic apparatus was attributed to the proper formation of the pigment-protein complexes on the thylakoid membrane that benefited from the increased levels of the LHCII subunits in the shaded leaves of 'HJY', indicating the low level of LHCII subunits, especially the lack of the Lhcb1 might be responsible for the albino phenotype of the 'HJY' under natural light condition. The deficiency of the Lhcb1 was mainly subject to the strongly suppressed expression of the Lhcb1.x which might be modulated by the chloroplast retrograde signaling pathway GUN1 (GENOMES UNCOUPLED 1)-PTM (PHD type transcription factor with transmembrane domains)-ABI4 (ABSCISIC ACID INSENSITIVE 4).


Asunto(s)
Camellia sinensis , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Camellia sinensis/genética , Fotosíntesis , Tilacoides/metabolismo , Hojas de la Planta/metabolismo , Clorofila/metabolismo
3.
Neural Regen Res ; 18(3): 506-512, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36018155

RESUMEN

Ferroptosis, a new non-necrotizing programmed cell death (PCD), is driven by iron-dependent phospholipid peroxidation. Ferroptosis plays a key role in secondary traumatic brain injury and secondary spinal cord injury and is closely related to inflammation, immunity, and chronic injuries. The inhibitors against ferroptosis effectively improve iron homeostasis, lipid metabolism, redox stabilization, neuronal remodeling, and functional recovery after trauma. In this review, we elaborate on the latest molecular mechanisms of ferroptosis, emphasize its role in secondary central nervous trauma, and update the medicines used to suppress ferroptosis following injuries.

4.
Hortic Res ; 9: uhac049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35591928

RESUMEN

Sugar metabolism and flavonoid biosynthesis vary with the development of tea leaves. In order to understand the regulatory mechanisms underlying the associations between them, a comprehensive transcriptomic analysis of naturally growing tea leaves at different stages of maturity was carried out. Based on weighted gene coexpression network analysis, the key gene modules (Modules 2 and 3) related to the varying relationship between sugar metabolism and flavonoid biosynthesis as well as the corresponding hub genes were obtained. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed that the transcription factors (TFs) in Modules 2 and 3 were mainly enriched in the pathway of plant hormone signal transduction. An in vitro study showed that the transcriptional levels of ERF1B-like TF for hexokinase inhibitor and sucrose treatments were upregulated, being respectively 28.1- and 30.2-fold higher than in the control, suggesting that ERF1B-like TFs participate in the sugar-induced regulation of flavonoid biosynthesis. The results of yeast one-hybrid and dual-luciferase assays demonstrated that CsF3'H, encoding flavonoid 3'-hydroxylase, was the target flavonoid biosynthetic gene for CsERF1B-like TF. Our study identified the potential key regulators participating in the metabolism of sugars and flavonoids, providing new insights into the crosstalk between sugar metabolism and flavonoid biosynthesis in tea plants.

5.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885740

RESUMEN

Both UV and blue light have been reported to regulate the biosynthesis of flavonoids in tea plants; however, the respective contributions of the corresponding regions of sunlight are unclear. Additionally, different tea cultivars may respond differently to altered light conditions. We investigated the responses of different cultivars ('Longjing 43', 'Zhongming 192', 'Wanghai 1', 'Jingning 1' and 'Zhonghuang 2') to the shade treatments (black and colored nets) regarding the biosynthesis of flavonoids. For all cultivars, flavonol glycosides showed higher sensitivity to light conditions compared with catechins. The levels of total flavonol glycosides in the young shoots of different tea cultivars decreased with the shade percentages of polyethylene nets increasing from 70% to 95%. Myricetin glycosides and quercetin glycosides were more sensitive to light conditions than kaempferol glycosides. The principal component analysis (PCA) result indicated that shade treatment greatly impacted the profiles of flavonoids in different tea samples based on the cultivar characteristics. UV is the crucial region of sunlight enhancing flavonol glycoside biosynthesis in tea shoots, which is also slight impacted by light quality according to the results of the weighted correlation network analysis (WGCNA). This study clarified the contributions of different wavelength regions of sunlight in a field experiment, providing a potential direction for slightly bitter and astringent tea cultivar breeding and instructive guidance for practical field production of premium teas based on light regimes.


Asunto(s)
Camellia sinensis/crecimiento & desarrollo , Flavonoides/biosíntesis , Glicósidos/biosíntesis , Brotes de la Planta/crecimiento & desarrollo , Camellia sinensis/efectos de la radiación , Flavonoides/química , Flavonoides/efectos de la radiación , Glicósidos/efectos de la radiación , Quempferoles/química , Brotes de la Planta/efectos de la radiación , Análisis de Componente Principal , Luz Solar , Rayos Ultravioleta
6.
Molecules ; 26(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209485

RESUMEN

(-)-Epigallocatechin-3-O-gallate (EGCG), the most abundant component of catechins in tea (Camellia sinensis (L.) O. Kuntze), plays a role against viruses through inhibiting virus invasiveness, restraining gene expression and replication. In this paper, the antiviral effects of EGCG on various viruses, including DNA virus, RNA virus, coronavirus, enterovirus and arbovirus, were reviewed. Meanwhile, the antiviral effects of the EGCG epi-isomer counterpart (+)-gallocatechin-3-O-gallate (GCG) were also discussed.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Catequina/análogos & derivados , Té/química , Animales , Antivirales/uso terapéutico , Catequina/farmacología , Catequina/uso terapéutico , Humanos , Internalización del Virus/efectos de los fármacos , Virus/efectos de los fármacos
7.
Food Funct ; 12(1): 57-69, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33241826

RESUMEN

Allergy is an immune-mediated disease with increasing prevalence worldwide. Regular treatment with glucocorticoids and antihistamine drugs for allergy patients is palliative rather than permanent. Daily use of dietary anti-allergic natural products is a superior way to prevent allergy and alleviate the threat. Tea, as a health-promoting beverage, has multiple compounds with immunomodulatory ability. Persuasive evidence has shown the anti-allergic ability of tea against asthma, food allergy, atopic dermatitis and anaphylaxis. Recent advances in potential anti-allergic ability of tea and anti-allergic compounds in tea have been reviewed in this paper. Tea exerts its anti-allergic effect mainly by reducing IgE and histamine levels, decreasing FcεRI expression, regulating the balance of Th1/Th2/Th17/Treg cells and inhibiting related transcription factors. Further research perspectives are also discussed.


Asunto(s)
Antialérgicos/inmunología , Antialérgicos/uso terapéutico , Hipersensibilidad/inmunología , Hipersensibilidad/prevención & control , Té/inmunología , Humanos
8.
J Agric Food Chem ; 68(47): 14071-14080, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33196171

RESUMEN

Amino acids are very important for oolong tea brisk-smooth mouthfeel which is mainly associated with bruising and withering treatment (BWT). In this study, metabolome and transcriptome analyses were performed to comprehensively investigate the changes in abundance of amino acids and the expression pattern of relevant genes during BWT of oolong tea manufacturing. Levels of most amino acids increased during BWT in the leaves harvested from 4 cultivars, while expression of the relevant function genes responsible for synthesis and transformation of amino acids up-regulated accordingly. Upstream hub genes including receptor-like protein kinase IKU2, serine/threonine-protein kinase PBL11, MYB transcription factor MYB2, ethylene-responsive transcription factor ERF114, WRKY transcription factor WRKY71, aspartate aminotransferase AATC, UDP-glycosyltransferase U91D1, and 4-hydroxy-4-methyl-2-oxoglutarate aldolase 2 RRAA2, were predicted to be involved in regulation of the function genes expression and the amino acids metabolism through weighted gene coexpression network analysis. A modulation mechanism for accumulation of amino acids during BWT was also proposed. These findings give a deep insight into the metabolic reprogramming mechanism of amino acids during BWT of oolong tea.


Asunto(s)
Camellia sinensis , Aminoácidos , Metaboloma , Hojas de la Planta ,
9.
Front Nutr ; 7: 596823, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392238

RESUMEN

Theacrine, i.e., 1,3,7,9-tetramethyluric acid, is one of the major purine alkaloids found in leaf of a wild tea plant species Camellia kucha Hung T. Chang. Theacrine has been attracted great attentions academically owing to its diverse health benefits. Present review examines the advances in the research on the health beneficial effects of theacrine, including antioxidant effect, anti-inflammatory effect, locomotor activation and reducing fatigue effects, improving cognitive effect, hypnotic effect, ameliorating lipid metabolism and inhibiting breast cancer cell metastasis effect. The inconsistent results in this research field and further expectations were also discussed.

10.
Front Plant Sci ; 10: 1543, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827483

RESUMEN

The tea cultivar 'Xiaoxueya', a temperature-sensitive albino mutant, is a rare tea germplasm because of its highly enriched amino acid content and brisk flavour. In comparison with green leaf tissues of 'Xiaoxueya', albino leaves show significant deficiency in chlorophylls and carotenoids and severely disrupted chloroplasts. Furthermore, the accumulation of quality-related secondary metabolites is altered in 'Xiaoxueya' albino leaf, with significantly increased contents of total amino acids, theanine, and glutamic acid and significantly decreased contents of alkaloids, catechins, and polyphenols. To uncover the molecular mechanisms underlying albinism and quality-related constituent variation in 'Xiaoxueya' leaves, expression profiles of pivotal genes involved in the biosynthetic pathways of pigments, caffeine, theanine, and catechins were investigated by quantitative real-time PCR technology. The results revealed that suppressed expression of the chloroplast-localized 1-deoxy-D-xylulose-5-phosphate synthase genes DXS1 and DXS2 involved in the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway and protochlorophyllide oxidoreductase genes POR1 and POR2 involved in the chlorophyll biosynthetic pathway is responsible for the pigment deficiency in 'Xiaoxueya' albino leaf. Additionally, the low expression of the tea caffeine synthase gene (TCS) involved in caffeine biosynthesis and the chalcone synthase genes CHS1, CHS2, and CHS3, the chalcone isomerase gene CHI, the flavonoid 3',5'-hydroxylase genes F3'5'H1 and F3'5'H2, and the anthocyanidin reductase genes ANR1 and ANR2 involved in the flavonoid pathway is related to the reduction in alkaloid and catechin levels in 'Xiaoxueya' albino leaves.

11.
Sci Rep ; 9(1): 20239, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882926

RESUMEN

Elucidation of the molecular mechanism related to the dedifferentiation and redifferentiation during tissue culture will be useful for optimizing regeneration system of tea plant. In this study, an integrated sRNAome and transcriptome analyses were carried out during phase changes of the stem explant culture. Among 198 miRNAs and 8001 predicted target genes, 178 differentially expressed miRNAs and 4264 potential targets were screened out from explants, primary calli, as well as regenerated roots and shoots. According to KEGG analysis of the potential targets, pathway of "aminoacyl-tRNA biosynthesis", "proteasome" and "glutathione metabolism" was of great significance during the dedifferentiation, and pathway of "porphyrin and chlorophyll metabolism", "mRNA surveillance pathway", "nucleotide excision repair" was indispensable for redifferentiation of the calli. Expression pattern of 12 miRNAs, including csn-micR390e, csn-miR156b-5p, csn-miR157d-5p, csn-miR156, csn-miR166a-3p, csn-miR166e, csn-miR167d, csn-miR393c-3p, csn-miR394, csn-miR396a-3p, csn-miR396 and csn-miR396e-3p, was validated by qRT-PCR among 57 differentially expressed phase-specific miRNAs. Validation also confirmed that regulatory module of csn-miR167d/ERF3, csn-miR156/SPB1, csn-miR166a-3p/ATHB15, csn-miR396/AIP15A, csn-miR157d-5p/GST and csn-miR393c-3p/ATG18b might play important roles in regulating the phase changes during tissue culture of stem explants.


Asunto(s)
Camellia sinensis/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , ARN de Planta/genética , , Desdiferenciación Celular/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Cultivo de Tejidos/métodos
12.
Int J Mol Sci ; 20(10)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108845

RESUMEN

Anthracnose is a major leaf disease in tea plant induced by Colletotrichum, which has led to substantial losses in yield and quality of tea. The molecular mechanism with regards to responses or resistance to anthracnose in tea remains unclear. A de novo transcriptome assembly dataset was generated from healthy and anthracnose-infected leaves on tea cultivars "Longjing-43" (LJ43) and "Zhenong-139" (ZN139), with 381.52 million pair-end reads, encompassing 47.78 billion bases. The unigenes were annotated versus Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), National Center for Biotechnology Information (NCBI) non-redundant protein sequences (Nr), evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) and Swiss-prot. The number of differential expression genes (DEGs) detected between healthy and infected leaves was 1621 in LJ43 and 3089 in ZN139. The GO and KEGG enrichment analysis revealed that the DEGs were highly enriched in catalytic activity, oxidation-reduction, cell-wall reinforcement, plant hormone signal transduction and plant-pathogen interaction. Further studies by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography (HPLC) showed that expression of genes involved in endogenous salicylic acid biosynthesis and also accumulation of foliar salicylic acid are involved in the response of tea plant to anthracnose infection. This study firstly provided novel insight in salicylic acid acting as a key compound in the responses of tea plant to anthracnose disease. The transcriptome dataset in this study will facilitate to profile gene expression and metabolic networks associated with tea plant immunity against anthracnose.


Asunto(s)
Camellia sinensis/genética , Colletotrichum/patogenicidad , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Camellia sinensis/metabolismo , Camellia sinensis/microbiología , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo
13.
Sci Data ; 5: 180194, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30251991

RESUMEN

Tea plant (Camellia sinensis) is a typical fluoride (F) hyperaccumulator enriching most F in old leaves. There is association between the risk of fluorosis and excessive consumption of teas prepared using the old leaves. It is meaningful to develop methods for controlling F levels in tea leaves. We generated a comprehensive RNA-seq dataset from tea plants grown at various F levels for different durations by hydroponics, aiming at providing information on mechanism of F metabolism in tea plant. Besides raw reads of the RNA-seq dataset, we present assembled unigenes and aligned unigenes with annotations versus the Gene Ontology (GO) databases, Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases, and Nonredundant (Nr) protein databases with low e-values. 69,488 unigenes were obtained in total, in which 40,894 were given Nr annotations.


Asunto(s)
Camellia sinensis/genética , ARN de Planta , Análisis de Secuencia de ARN , Transcriptoma , Camellia sinensis/química , Fluoruros , Flúor/química
14.
Molecules ; 23(9)2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213130

RESUMEN

Cervical cancer is the fourth most common gynecological cancer worldwide. Although prophylactic vaccination presents the most effective method for cervical cancer prevention, chemotherapy is still the primary invasive intervention. It is urgent to exploit low-toxic natural anticancer drugs on account of high cytotoxicity and side-effects of conventional agents. As a natural product, (-)-epigallocatechingallate (EGCG) has abilities in anti-proliferation, anti-metastasis and pro-apoptosis of cervical cancer cells. Moreover, EGCG also has pharmaceutical synergistic effects with conventional agents such as cisplatin (CDDP) and bleomycin (BLM). The underlying mechanisms of EGCG suppressive effects on cervical cancer are reviewed in this article. Further research directions and ambiguous results are also discussed.


Asunto(s)
Anticarcinógenos/uso terapéutico , Catequina/análogos & derivados , Neoplasias del Cuello Uterino/tratamiento farmacológico , Anticarcinógenos/farmacología , Bleomicina/uso terapéutico , Catequina/farmacología , Catequina/uso terapéutico , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Sinergismo Farmacológico , Femenino , Humanos
15.
Nutrients ; 10(5)2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789466

RESUMEN

Neurodegenerative disease Alzheimer's disease (AD) is attracting growing concern because of an increasing patient population among the elderly. Tea consumption is considered a natural complementary therapy for neurodegenerative diseases. In this paper, epidemiological studies on the association between tea consumption and the reduced risk of AD are reviewed and the anti-amyloid effects of related bioactivities in tea are summarized. Future challenges regarding the role of tea in preventing AD are also discussed.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/antagonistas & inhibidores , Encéfalo/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/uso terapéutico , , Factores de Edad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Camellia sinensis/química , Cognición/efectos de los fármacos , Humanos , Memoria/efectos de los fármacos , Persona de Mediana Edad , Degeneración Nerviosa , Fármacos Neuroprotectores/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Pronóstico , Factores Protectores , Ingesta Diaria Recomendada , Factores de Riesgo
16.
Molecules ; 23(2)2018 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-29462972

RESUMEN

(-)-Epigallocatechin gallate (EGCG) has attracted significant research interest due to its health-promoting effects such as antioxidation, anti-inflammation and anti-cancer activities. However, its instability and poor bioavailability have largely limited its efficacy and application. Food-grade materials such as proteins, carbohydrates and lipids show biodegradability, biocompatibility and biofunctionality properties. Food-grade encapsulation systems are usually used to improve the bioavailability of EGCG. In the present paper, we provide an overview of materials and techniques used in encapsulating EGCG, in which the adsorption mechanisms of food-grade systems during in vitro digestion are reviewed. Moreover, the potential challenges and future work using food-grade encapsulates for delivering EGCG are also discussed.


Asunto(s)
Catequina/análogos & derivados , Composición de Medicamentos , Alimentos , Carbohidratos/química , Catequina/química , Humanos , Lípidos/química , Té/química
17.
Sci Rep ; 7(1): 9847, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851890

RESUMEN

Tea plant is a typical fluorine (F) accumulator. F concentration in mature tea leaves is several hundred times higher than that in normal field crops. Long-term consumption of teas with high level F will increase the risks of dental and skeletal fluorosis. The mechanism of F accumulation in tea stands unclear. RNA-Seq and digital gene expression (DGE) techniques were used to investigate the effect of F on the differential expressions of transcriptome in tea plant. The results showed that F content in mature tea leaves was increased with increase in F concentration of cultural solution and duration of F treatment time. Based on comparison with data of GO, COG, KEGG and Nr databases, 144 differentially expressed unigenes with definite annotation were identified. Real-time reverse transcription PCR (qRT-PCR) was used to validate the effect of F on expression of 5 unigenes screened from the 144 unigenes. F treatment induced the expression of defense genes such as receptor-like kinases (RLKs) and U-box domain-containing protein. Based on the present study, F uptake is considered to be related to calcium-transporting ATPase, especially autoinhibited Ca2+ ATPase (ACAs) which was activated by the RLKs and worked as a carrier in uptake of F by tea plant.


Asunto(s)
Camellia sinensis/genética , Fluoruros/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Camellia sinensis/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Hojas de la Planta/genética , Reproducibilidad de los Resultados , Té/genética , Transcriptoma
18.
Molecules ; 22(5)2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-28531120

RESUMEN

Diabetes mellitus (DM) is a chronic endocrine disease resulted from insulin secretory defect or insulin resistance and it is a leading cause of death around the world. The care of DM patients consumes a huge budget due to the high frequency of consultations and long hospitalizations, making DM a serious threat to both human health and global economies. Tea contains abundant polyphenols and caffeine which showed antidiabetic activity, so the development of antidiabetic medications from tea and its extracts is increasingly receiving attention. However, the results claiming an association between tea consumption and reduced DM risk are inconsistent. The advances in the epidemiologic evidence and the underlying antidiabetic mechanisms of tea are reviewed in this paper. The inconsistent results and the possible causes behind them are also discussed.


Asunto(s)
Camellia sinensis/química , Catequina/farmacología , Diabetes Mellitus/dietoterapia , Hipoglucemiantes/farmacología , Polifenoles/farmacología , Té/química , Animales , Cafeína/química , Cafeína/aislamiento & purificación , Cafeína/farmacología , Catequina/química , Catequina/aislamiento & purificación , Diabetes Mellitus/epidemiología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Estudios Epidemiológicos , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Resistencia a la Insulina , Polifenoles/química , Polifenoles/aislamiento & purificación
19.
Molecules ; 21(11)2016 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-27809221

RESUMEN

Tea (Camellia sinensis) is a beverage beneficial to health and is also a source for extracting bioactive components such as theanine, tea polyphenols (TPP) and tea polysaccharides (TPS). TPS is a group of heteropolysaccharides bound with proteins. There is evidence showing that TPS not only improves immunity but also has various bioactivities, such as antioxidant, antitumor, antihyperglycemia, and anti-inflammation. However, inconsistent results concerning chemical composition and bioactivity of TPS have been published in recent years. The advances in chemical composition and bioactivities of TPS are reviewed in the present paper. The inconsistent and controversial results regarding composition and bioactivities of TPS are also discussed.


Asunto(s)
Polisacáridos/química , Polisacáridos/farmacología , Té/química , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Disponibilidad Biológica , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Estructura Molecular , Polisacáridos/farmacocinética
20.
Nutrients ; 8(8)2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27483305

RESUMEN

Tea leaf (Camellia sinensis) is rich in catechins, which endow tea with various health benefits. There are more than ten catechin compounds in tea, among which epigallocatechingallate (EGCG) is the most abundant. Epidemiological studies on the association between tea consumption and the risk of breast cancer were summarized, and the inhibitory effects of tea catechins on breast cancer, with EGCG as a representative compound, were reviewed in the present paper. The controversial results regarding the role of tea in breast cancer and areas for further study were discussed.


Asunto(s)
Anticarcinógenos/uso terapéutico , Neoplasias de la Mama/prevención & control , Camellia sinensis/química , Catequina/uso terapéutico , Suplementos Dietéticos , Medicina Basada en la Evidencia , Hojas de la Planta/química , Inhibidores de la Angiogénesis/metabolismo , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Anticarcinógenos/metabolismo , Antioxidantes/uso terapéutico , Neoplasias de la Mama/epidemiología , Catequina/metabolismo , Femenino , Manipulación de Alimentos , Alimentos Funcionales , Ácido Gálico/análogos & derivados , Ácido Gálico/uso terapéutico , Humanos , Absorción Intestinal , Neovascularización Patológica/epidemiología , Neovascularización Patológica/prevención & control , Oxidación-Reducción , Extractos Vegetales/uso terapéutico , Reproducibilidad de los Resultados , Riesgo ,
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...