Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 305: 122470, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228027

RESUMEN

The efficacy of radiotherapy has not yet achieved optimal results, partially due to insufficient priming and infiltration of effector immune cells within the tumor microenvironment (TME), which often exhibits suppressive phenotypes. In particular, the infiltration of X-C motif chemokine receptor 1 (XCR1)-expressing conventional type-1 dendritic cells (cDC1s), which are critical in priming CD8+ cytotoxic T cells, within the TME is noticeably restricted. Hence, we present a facile methodology for the efficient fabrication of a calcium phosphate hydrogel loaded with X-C motif chemokine ligand 1 (XCL1) to selectively recruit cDC1s. Manganese phosphate microparticles were also loaded into this hydrogel to reprogram the TME via cGAS-STING activation, thereby facilitating the priming of cDC1s propelled specific CD8+ T cells. They also polarize tumor-associated macrophages towards the M1 phenotype and reduce the proportion of regulatory cells, effectively reversing the immunosuppressive TME into an immune-active one. The yielded XCL1@CaMnP gel exhibits significant efficacy in enhancing the therapeutic outcomes of radiotherapy, particularly when concurrently administered with postoperative radiotherapy, resulting in an impressive 60 % complete response rate. Such XCL1@CaMnP gel, which recruits cDC1s to present tumor antigens generated in situ, holds great potential as a versatile platform for enhanced cancer treatment through modulating the immunosuppressive TME.


Asunto(s)
Linfocitos T CD8-positivos , Reactividad Cruzada , Linfocitos T Citotóxicos , Células Dendríticas , Hidrogeles/farmacología , Microambiente Tumoral
2.
Adv Mater ; 36(9): e2308254, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37918820

RESUMEN

Tumor hypoxia and acidity, two general features of solid tumors, are known to have negative effect on cancer immunotherapy by directly causing dysfunction of effector immune cells and promoting suppressive immune cells inside tumors. Herein, a multifunctional colloidosomal microreactor is constructed by encapsulating catalase within calcium carbonate (CaCO3 ) nanoparticle-assembled colloidosomes (abbreviated as CaP CSs) via the classic double emulsion method. The yielded CCaP CSs exhibit well-retained proton-scavenging and hydrogen peroxide decomposition performances and can thus neutralize tumor acidity, attenuate tumor hypoxia, and suppress lactate production upon intratumoral administration. Consequently, CCaP CSs treatment can activate potent antitumor immunity and thus significantly enhance the therapeutic potency of coloaded anti-programmed death-1 (anti-PD-1) antibodies in both murine subcutaneous CT26 and orthotopic 4T1 tumor xenografts. In addition, such CCaP CSs treatment also markedly reinforces the therapeutic potency of epidermal growth factor receptor expressing chimeric antigen receptor T (EGFR-CAR-T) cells toward a human triple-negative breast cancer xenograft by promoting their tumor infiltration and effector cytokine secretion. Therefore, this study highlights that chemical modulation of tumor acidity and hypoxia can collectively reverse tumor immunosuppression and thus significantly potentiate both immune checkpoint blockade and CAR-T cell immunotherapies toward solid tumors.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Animales , Ratones , Inmunoterapia , Terapia de Inmunosupresión , Ácido Láctico
3.
Small ; 19(45): e2303438, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37420331

RESUMEN

Tumor immunotherapy is an important tool in oncology treatment. However, only a small percentage of patients have an effective immune response to tumor immunotherapy due to the poor infiltration of pro-inflammatory immune cells in immune "cold" tumors and an immunosuppressive network in the tumor microenvironment (TME). Ferroptosis has been widely used as a novel strategy to enhance tumor immunotherapy. Herein, manganese molybdate nanoparticles (MnMoOx NPs) depleted the highly expressed glutathione (GSH) in tumors and inhibited glutathione peroxidase 4 (GPX4) expression, thus triggering ferroptosis, inducing immune cell death (ICD), further releasing damage-associated molecular patterns (DAMPs), and enhancing tumor immunotherapy. Furthermore, MnMoOx NPs can efficiently suppress tumors, promote the maturation of dendritic cells (DCs), infiltrate T cells, and reverse the immunosuppressive microenvironment, making the tumor an immune "hot" tumor. Combination with an immune checkpoint inhibitor (ICI) (α-PD-L1) further enhanced the anti-tumor effect and inhibited metastases as well. The work provides a new idea for the development of nonferrous inducers of ferroptosis to enhance cancer immunotherapy.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias , Humanos , Manganeso , Inmunoterapia , Glutatión , Microambiente Tumoral , Línea Celular Tumoral
4.
ACS Nano ; 17(11): 10496-10510, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37184402

RESUMEN

Autologous cancer vaccines constructed by nonproliferative whole tumor cells or tumor lysates together with appropriate adjuvants represent a promising strategy to suppress postsurgical tumor recurrence. Inspired by the potency of cytosolic double-stranded DNA (dsDNA) in initiating anticancer immunity by activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, we herein report the concise synthesis of a cGAS-STING agonist through dsDNA-templated biomineralization growth of calcium carbonate (CaCO3) microparticles. The yielded DNA@CaCO3 can activate the intracellular cGAS-STING pathway of dendritic cells (DCs) by promoting endosomal escape of dsDNA, triggering their maturation and activation as a potent immune stimulator. Upon intratumoral injection, DNA@CaCO3 can reverse the immunosuppressive tumor microenvironment by simultaneously provoking innate and adaptive antitumor immunity, thereby effectively suppressing the growth of murine CT26 and B16-F10 tumors in mice. Furthermore, via CaCO3-based biomineralization of complete tumor lysates, we constructed a personalized autologous cancer vaccine with intrinsic cGAS-STING activation capacity that could provoke tumor-specific immune responses to not only delay the growth of challenged tumors but also synergize with anti-PD-1 immunotherapy to suppress postsurgical tumor recurrence. This study highlights a CaCO3-based biomineralization method to prepare autologous cancer vaccines in a concise manner, which is promising for personalized immunotherapy and clinical translation.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Ratones , Animales , Biomineralización , Recurrencia Local de Neoplasia , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , ADN , Neoplasias/terapia , Inmunoterapia/métodos , Microambiente Tumoral
5.
Chem Rev ; 123(11): 7326-7378, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-36912061

RESUMEN

Cancer thermal therapy, also known as hyperthermia therapy, has long been exploited to eradicate mass lesions that are now defined as cancer. With the development of corresponding technologies and equipment, local hyperthermia therapies such as radiofrequency ablation, microwave ablation, and high-intensity focused ultrasound, have has been validated to effectively ablate tumors in modern clinical practice. However, they still face many shortcomings, including nonspecific damages to adjacent normal tissues and incomplete ablation particularly for large tumors, restricting their wide clinical usage. Attributed to their versatile physiochemical properties, biomaterials have been specially designed to potentiate local hyperthermia treatments according to their unique working principles. Meanwhile, biomaterial-based delivery systems are able to bridge hyperthermia therapies with other types of treatment strategies such as chemotherapy, radiotherapy and immunotherapy. Therefore, in this review, we discuss recent progress in the development of functional biomaterials to reinforce local hyperthermia by functioning as thermal sensitizers to endow more efficient tumor-localized thermal ablation and/or as delivery vehicles to synergize with other therapeutic modalities for combined cancer treatments. Thereafter, we provide a critical perspective on the further development of biomaterial-assisted local hyperthermia toward clinical applications.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Materiales Biocompatibles/uso terapéutico , Neoplasias/terapia , Inmunoterapia
6.
ACS Nano ; 17(5): 4495-4506, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36848115

RESUMEN

Radiotherapy (RT), as one of the main methods in the clinical treatment of various malignant tumors, would induce systemic immunotherapeutic effects by triggering immunogenic cell death (ICD) of cancer cells. However, the antitumor immune responses produced by RT-induced ICD alone usually are not robust enough to eliminate distant tumors and thus ineffective against cancer metastases. Herein, a biomimetic mineralization method for facile synthesis of MnO2 nanoparticles with high anti-programmed death ligand 1 (αPDL1) encapsulation efficiency (αPDL1@MnO2) is proposed to reinforce RT-induced systemic antitumor immune responses. This therapeutic nanoplatforms-mediated RT can significantly improve the killing of tumor cells and effectively evoke ICD by overcoming hypoxia-induced radio-resistance and reprogramming the immunosuppressive tumor microenvironment (TME). Furthermore, the released Mn2+ ions from αPDL1@MnO2 under acidic tumor pH can activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and facilitate the dendritic cells (DCs) maturation. Meanwhile, αPDL1 released from αPDL1@MnO2 nanoparticles would further promote the intratumoral infiltration of cytotoxic T lymphocytes (CTLs) and trigger systemic antitumor responses, resulting in a strong abscopal effect to effectively inhibit tumor metastases. Overall, the biomineralized MnO2-based nanoplatforms offer a simple strategy for TME modulation and immune activation, which are promising for enhanced RT immunotherapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Compuestos de Manganeso/farmacología , Óxidos/farmacología , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos , Microambiente Tumoral
7.
ACS Nano ; 16(9): 13884-13899, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36075132

RESUMEN

Tumor hypoxia and acidity are well-known features in solid tumors that cause immunosuppression and therapeutic resistance. Herein, we rationally synthesized a multifunctional fluorinated calcium carbonate (fCaCO3) nanoregulator by coating CaCO3 nanoparticles with dopamine-grafted perfluorosebacic acid (DA2-PFSEA) and ferric ions by utilizing their coordination interaction. After PEGylation, the obtained fCaCO3-PEG showed high loading efficacy to perfluoro-15-crown-5-ether (PFCE), a type of perfluorocarbon with high oxygen solubility, thereby working as both oxygen nanoshuttles and proton sponges to reverse tumor hypoxia and acidity-induced resistance to radiotherapy. The as-prepared PFCE@fCaCO3-PEG could not only function as long-circulating oxygen nanoshuttles to attenuate tumor hypoxia but also neutralize the acidic tumor microenvironment by restricting the production of lactic acid and reacting with extracellular protons. As a result, treatment with PFCE@fCaCO3-PEG could improve the therapeutic outcome of radiotherapy toward two murine tumors with distinct immunogenicity. The PFCE@fCaCO3-PEG-assisted radiotherapy could also collectively inhibit the growth of unirradiated tumors and reject rechallenged tumors by synergistically eliciting protective antitumor immunity. Therefore, our work presents the preparation of fluorinated CaCO3 nanoregulators to reverse tumor immunosuppression and potentiate radiotherapy through chemically modulating tumor hypoxic and acidic microenvironments tightly associated with tumor glucose metabolism.


Asunto(s)
Fluorocarburos , Nanopartículas , Neoplasias , Animales , Carbonato de Calcio , Línea Celular Tumoral , Dopamina , Glucosa , Ácido Láctico , Ratones , Neoplasias/metabolismo , Oxígeno , Protones , Microambiente Tumoral
8.
Sci Adv ; 8(31): eabo5285, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35921425

RESUMEN

Microwave ablation (MWA) as a local tumor ablation strategy suffers from posttreatment tumor recurrence. Development of adjuvant biomaterials to potentiate MWA is therefore of practical significance. Here, the high concentration of Ca2+ fixed by alginate as Ca2+-surplus alginate hydrogel shows enhanced heating efficiency and restricted heating zone under microwave exposure. The high concentration of extracellular Ca2+ synergizes with mild hyperthermia to induce immunogenic cell death by disrupting intracellular Ca2+ homeostasis. Resultantly, Ca2+-surplus alginate hydrogel plus MWA can ablate different tumors on both mice and rabbits at reduced operation powers. This treatment can also elicit antitumor immunity, especially if synergized with Mn2+, an activator of the stimulation of interferon genes pathway, to suppress the growth of both untreated distant tumors and rechallenged tumors. This work highlights that in situ-formed metallo-alginate hydrogel could act as microwave-susceptible and immunostimulatory biomaterial to reinforce the MWA therapy, promising for clinical translation.


Asunto(s)
Neoplasias Hepáticas , Microondas , Alginatos , Animales , Hidrogeles/farmacología , Neoplasias Hepáticas/patología , Ratones , Microondas/uso terapéutico , Conejos , Resultado del Tratamiento
9.
J Control Release ; 348: 346-356, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35679965

RESUMEN

Ferroptosis is a recently identified regulated cell death pathway featured in iron prompted lipid peroxidation inside cells and found to be an effective approach to suppress tumor growth. Motived by the high efficacy of ferrous ions (Fe2+) in initiating intracellular lipid peroxidation via the Fenton reaction, this study herein prepares a pH-responsive Fe2+ delivery nanocarrier by coating calcium carbonate (CaCO3) nanoparticles with a metal-polyphenol coordination polymer composed of gallic acid (GA) and Fe2+. Together with simultaneous encapsulation of succinic acid conjugated cisplatin prodrugs (Pt(IV)-SA) and Fe2+, the yielded nanoparticles, coined as PGFCaCO3, are synthesized and exhibit uniform hollow structure. After PEGylation, the resulted PGFCaCO3-PEG shows increased physiological stability and pH-dependent decomposition, drug release and catalytic capability in initiating lipid peroxidation. After being endocytosed, PGFCaCO3-PEG effectively promoted intracellular generation of cytotoxic reactive oxygen species including lipid peroxide, thereby exhibited superior inhibition effect towards both murine 4T1 and CT26 cancer cells over Pt(IV)-SA and GFCaCO3-PEG. As a result, treatment with systemic administration of PGFCaCO3-PEG effectively suppressed 4T1 tumor growth via combined Fe2+ initiated ferroptosis and Pt(IV)-SA mediated chemotherapy. This work highlights that intracellular delivery of Fe2+ is a robust approach to enhance tumor chemotherapy by inducing ferroptosis.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias , Animales , Humanos , Ratones , Carbonato de Calcio , Línea Celular Tumoral , Iones , Hierro , Nanopartículas/química , Neoplasias/tratamiento farmacológico
10.
Biomaterials ; 281: 121332, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35066286

RESUMEN

The limited penetration depth of external excitation light would remarkably impair the therapeutic efficacy of photodynamic therapy (PDT) and its clinical utilization. Herein, we engineered bioluminescent bacteria by transforming attenuated Salmonella typhimurium strain ΔppGpp (S.T.ΔppGpp) with firefly-luciferase-expressing plasmid (Luc-S.T.ΔppGpp) as an internal light source to evenly illuminate whole tumors. Upon being fixed inside tumors with in-situ formed hydrogel, the colonized Luc-S.T.ΔppGpp together with D-luciferin could continuously generate light to excite photosensitizer chlorin e6 (Ce6), leading to effective suppression of different types of tumors including opaque melanoma and large rabbit tumors. Such bioluminescence-triggered PDT presented significant advantages over conventional PDT excited with an external 660-nm light, which at a much high light energy could only slightly retard the growth of small subcutaneous tumors. Furthermore, we uncovered that Luc-S.T.ΔppGpp boosted PDT could also elicit potent antitumor immunity post the treatment to inhibit tumor metastasis and prevent tumor challenge. Therefore, this work highlights that such bioluminescent bacteria boosted PDT is a general and highly effective therapeutic approach toward diverse cancers with varying light-absorbing capacities and tumor sizes, promising for potential clinical translation because of their acceptable safety profiles.


Asunto(s)
Melanoma , Nanopartículas , Fotoquimioterapia , Porfirinas , Animales , Bacterias , Línea Celular Tumoral , Inmunoterapia , Melanoma/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Conejos
11.
Adv Mater ; 34(3): e2106520, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34773309

RESUMEN

Radiotherapy is widely exploited for the treatment of a large range of cancers in clinic, but its therapeutic effectiveness is seriously crippled by the tumor immunosuppression, mainly driven by the altered metabolism of cancer cells. Here, a pH-responsive nanomedicine is prepared by coating calcium carbonate (CaCO3 ) nanoparticles with 4-phenylimidazole (4PI), an inhibitor against indoleamine 2,3-dioxygenase 1 (IDO-1), together with zinc ions via the coordination reaction, aiming at reinforcing the treatment outcome of radiotherapy. The obtained pH-responsive nanomedicine, coined as acidity-IDO1-modulation nanoparticles (AIM NPs), is able to instantly neutralize protons, and release 4PI to suppress the IDO1-mediated production of kynurenine (Kyn) upon tumor accumulation. As a result, treatment with AIM NPs can remarkably enhance the therapeutic efficacy of radiotherapy against both murine CT26 and 4T1 tumors by eliciting potent antitumor immunity. Furthermore, it is shown that such combination treatment can effectively suppress the growth of untreated distant tumors via the abscopal effect, and result in immune memory responses to reject rechallenged tumors. This work highlights a novel strategy of simultaneous tumor acidity neutralization and IDO1 inhibition to potentiate radiotherapy, with great promises to suppress tumor metastasis and recurrence by eliciting robust antitumor immunity.


Asunto(s)
Carbonato de Calcio , Polímeros , Radioterapia , Microambiente Tumoral , Animales , Carbonato de Calcio/uso terapéutico , Línea Celular Tumoral , Imidazoles/uso terapéutico , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Ratones , Polímeros/uso terapéutico , Microambiente Tumoral/inmunología
12.
Adv Healthc Mater ; 10(3): e2001208, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33236504

RESUMEN

Sonodynamic therapy (SDT) by utilizing ultrasonic waves triggers the generation of reactive oxygen species (ROS) with the help of sonosensitizers to destruct deep-seated tumors has attracted great attention. However, the efficacy of SDT may not be robust enough due to the insufficient oxygen supply within solid tumors. Additionally, repeated injections and treatments, which are often required to achieve the optimal therapeutic responses, may cause additional side effects and patient incompliance. Herein, a thermo-triggered in situ hydrogel system is developed in which catalase (CAT) conjugated with sonosensitizer meso-tetra (4-carboxyphenyl) porphine (TCPP) is mixed into chitosan (CS) and beta-glycerol phosphate disodium (GP) to form the precursor solution. After injection of the precursor solution into tumors, the in situ sol-gel transformation will occur as triggered by the body temperature, resulting in the localized tumor retention of TCPP-CAT. The locally restrained TCPP-CAT not only produces ROS under ultrasonic treatment, but also sustainably reverses the oxygen-deficient status in solid tumors by triggering the O2 generation from the decomposition of endogenous H2 O2 , further promoting the efficacy of SDT. As a result, the repeated SDT after a single dose injection of such a hydrogel can offer robust treatment effects to effectively eradicate tumors.


Asunto(s)
Quitosano , Neoplasias , Terapia por Ultrasonido , Humanos , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno , Ondas Ultrasónicas
13.
J Control Release ; 326: 256-264, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32682904

RESUMEN

Development of multifacted phototheranostics with bright fluorescence and absorbance in the second near infrared (NIR-II) window is very appealing for precise cancer diagnosis and treatment, but still challenging nowadays. Herein, we synthesize a hydrophobic annularly fused azaBODIPY (termed as HBP) molecule with sharp NIR absorbance peaked at 878 nm and bright NIR-II fluorescence. With Pluronic F127 as the surfactant and hydrophobic paclitaxel (PTX) as the spacer, such HBP molecule would self-assemble to form surfactant-stripped HBP/PTX micelles with absorption peak red-shifted to 1012 nm and intrinsic NIR-II fluorescence negligibly disturbed. We found that such HBP/PTX micelles can be utilized as a bimodal NIR-II nano-probe to enable real-time tracking of lymph nodes and tumors under an NIR-II fluorescence imaging system, as well as clear visualization of tumor microvasculatures under an NIR-II photoacoustic imaging system. Furthermore, together with 1064 nm laser exposure, such HBP/PTX micelles would synergistically suppress the growth of tumors grown on the mice upon tumor accumulation. This work highlights the concise preparation of a type of all-in-one NIR-II phototheranostics from the newly synthesized HBP molecules, thereby enables NIR-II fluorescence/photoacoustic bimodal imaging guided synergistic cancer treatment via the NIR-II laser boosted photothermal therapy and chemotherapy.


Asunto(s)
Técnicas Fotoacústicas , Tensoactivos , Animales , Ratones , Micelas , Paclitaxel , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...