Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 1352, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292635

RESUMEN

Benzaldehyde, the simplest aromatic aldehyde, is one of the most wide-spread volatiles that serves as a pollinator attractant, flavor, and antifungal compound. However, the enzyme responsible for its formation in plants remains unknown. Using a combination of in vivo stable isotope labeling, classical biochemical, proteomics and genetic approaches, we show that in petunia benzaldehyde is synthesized via the ß-oxidative pathway in peroxisomes by a heterodimeric enzyme consisting of α and ß subunits, which belong to the NAD(P)-binding Rossmann-fold superfamily. Both subunits are alone catalytically inactive but, when mixed in equal amounts, form an active enzyme, which exhibits strict substrate specificity towards benzoyl-CoA and uses NADPH as a cofactor. Alpha subunits can form functional heterodimers with phylogenetically distant ß subunits, but not all ß subunits partner with α subunits, at least in Arabidopsis. Analysis of spatial, developmental and rhythmic expression of genes encoding α and ß subunits revealed that expression of the gene for the α subunit likely plays a key role in regulating benzaldehyde biosynthesis.


Asunto(s)
Arabidopsis , Petunia , Benzaldehídos , Peroxisomas/metabolismo , Petunia/genética , Petunia/metabolismo , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...