Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 27, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38263398

RESUMEN

Liquid crystals are a vital component of modern photonics, and recent studies have demonstrated the exceptional sensing properties of stimuli-responsive cholesteric liquid crystals. However, existing cholesteric liquid crystal-based sensors often rely on the naked eye perceptibility of structural color or the measurement of wavelength changes by spectrometric tools, which limits their practical applications. Therefore, developing a platform that produces recognizable sensing signals is critical. In this study, we present a visual sensing platform based on geometric phase encoding of stimuli-responsive cholesteric liquid crystal polymers that generates real-time visual patterns, rather than frequency changes. To demonstrate this platform's effectiveness, we used a humidity-responsive cholesteric liquid crystal polymer film encoded with a q-plate pattern, which revealed that humidity causes a shape change in the vortex beam reflected from the encoded cholesteric liquid crystal polymers. Moreover, we developed a prototype platform towards remote humidity monitoring benefiting from the high directionality and long-range transmission properties of laser beams carrying orbital angular momentum. Our approach provides a novel sensing platform for cholesteric liquid crystals-based sensors that offers promising practical applications. The ability to generate recognizable sensing signals through visual patterns offers a new level of practicality in the sensing field with stimuli-responsive cholesteric liquid crystals. This platform might have significant implications for a broad readership and will be of interest to researchers working in the field of photonics and sensing technology.

2.
Soft Matter ; 19(24): 4483-4490, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37272958

RESUMEN

As electrically generated solitons in liquid crystals, directrons represent intriguing structures promising extensive application prospects in the areas of microcargo vehicles, microreactors, and logic devices. However, manipulating directrons along elaborate predetermined trajectories still remains to be largely explored. In this work, the strategy of constructing high-resolution periodic alignment fields for directrons via the polarization holography photoalignment technique is presented. The optimum exposure dose for directrons to form over a broad range of electric fields is determined to be 32.4 J cm-2 for the alignment layers with 1 wt% azo dye SD1. Zigzag and fishhook-shaped trajectories of directrons are realized with two orthogonal polarized beams. The resolution for zigzag steering of directrons is evaluated to be approximately 56 µm to 80 µm, about three to four times the length of directrons. These results not only enrich the forms of motion of directrons, but also lay the foundations for customized trajectories of directrons in future developments.

3.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6457-6474, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38212003

RESUMEN

The Baimai Ointment with the effect of relaxing sinew and activating collaterals demonstrates a definite effect on Baimai disease with pain, spasm, stiffness and other symptoms, while the pharmacodynamic characteristics and mechanism of this agent remain unclear. In this study, a rat model of chronic compression of L4 dorsal root ganglion(CCD) was established by lumbar disc herniation, and the efficacy and mechanism of Baimai Ointment in the treatment of CCD were preliminarily explored by behavioral tests, side effect evaluation, network analysis, antagonist and molecular biology verification. The pharmacodynamic experiment indicated that Baimai Ointment significantly improved the pain thresholds(mechanical pain, thermal pain, and cold pain) and gait behavior of CCD model rats without causing tolerance or obvious toxic and side effects. Baimai Ointment inhibited the second-phase nociceptive response of mice in the formalin test, increased the hot plate threshold of normal mice, and down-regulated the expression of inflammatory cytokines in the spinal cord. Network analysis showed that Baimai Ointment had synergistic effect in the treatment of CCD and was related to descending inhibition/facilitation system and neuroinflammation. Furthermore, behavioral tests, Western blot, and immunofluorescence assay revealed that the pain-relieving effect of Baimai Ointment on CCD may be related to the regulation of the interaction between neuroactive ligand and receptors(neuroligands) such as CHRNA7, ADRA2A, and ADRB2, and the down-regulation of the expression of NOS2/pERK/PI3K, the core regulatory element of HIF-1 signaling pathway in spinal microglia. The findings preliminarily reveal the mechanism of relaxing sinew and activating collaterals of Baimai Ointment in the treatment of Baimai disease, providing a reference for the rational drug use and further research of this agent.


Asunto(s)
Dolor Crónico , Medicamentos Herbarios Chinos , Ratas , Ratones , Animales , Dolor Crónico/complicaciones , Dolor Crónico/metabolismo , Ratas Sprague-Dawley , Ganglios Espinales/metabolismo , Ligandos , Transducción de Señal , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Hiperalgesia/metabolismo
4.
Opt Express ; 30(19): 33603-33612, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242391

RESUMEN

A dynamically reconfigurable liquid crystal (LC) photonic device is an important research field in modern LC photonics. We present a type of continuously tunable distributed Bragg reflector (DBR) based on LC polymer composites modulated via a novel optofluidic method. LC-templated DBR films are fabricated by photopolymerization under visible standing wave interference. The influences of the incident angle, incident light intensity, and content of ethanol as a pore-forming additive on the reflection behavior are discussed in detail. Then, the LC-templated DBR films are integrated into microfluidic channels and reversibly refilled by different organic solvents. The reconfigurable characteristics of optofluidic DBRs were demonstrated by changing the average refractive index (RI) of the mixed liquids and adjusting the flow rates, resulting in the dynamic and continuous variation of the reflection band within a specific visible light band. It is anticipated that the prototype optofluidic LC device will hopefully be applied to some specific scenarios where conventional means of regulation, such as electric, optical, and temperature fields, are unsuitable and possibly boost the development of microfluidic analysis techniques based on structural color.

5.
Biofabrication ; 14(4)2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35764072

RESUMEN

Precise and flexible three-dimensional (3D) cell construct assembly using external forces or fields can produce micro-scale cellular architectures with intercellular connections, which is an important prerequisite to reproducing the structures and functions of biological systems. Currently, it is also a substantial challenge in the bioengineering field. Here, we propose a smart acoustic 3D cell assembly strategy that utilizes a 3D printed module and hydrogel sheets. Digitally controlled six wave beams offer a high degree of freedom (including wave vector combination, frequency, phase, and amplitude) that enables versatile biomimetic micro cellular patterns in hydrogel sheets. Further, replaceable frames can be used to fix the acoustic-built micro-scale cellular structures in these sheets, enabling user-defined hierarchical or heterogeneous constructs through layer-by-layer assembly. This strategy can be employed to construct vasculature with different diameters and lengths, composed of human umbilical vein endothelial cells and smooth muscle cells. These constructs can also induce controllable vascular network formation. Overall, the findings of this work extend the capabilities of acoustic cell assembly into 3D space, offering advantages including innovative, flexible, and precise patterning, and displaying great potential for the manufacture of various artificial tissue structures that duplicatein vivofunctions.


Asunto(s)
Hidrogeles , Miocitos del Músculo Liso , Acústica , Biomimética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidrogeles/química , Ingeniería de Tejidos/métodos
6.
Opt Express ; 28(12): 17307-17319, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32679941

RESUMEN

Polymer-templated nematic liquid crystal (LC) holographic gratings via visible-light recording are presented in the presence of reactive mesogens (RMs) and rose bengal (RB)/N-phenylglycine (NPG) photoinitiation systems. By optimizing the concentration of RMs in the polymer-templated LC gratings, the template after being washed out can be refilled with suitable fluidic components. And the dependence of the first-order diffraction efficiency (DE) on the concentration of RB and NPG molecules was discussed in detail. The polarization-dependency of diffraction properties was also investigated. It is revealed that the diffractive behaviors of polymer-templated LC gratings can be dynamically reconfigured by varying temperature or refilling organic solutions with different refractive index (RI). Furthermore, the potential for recording holograms using green light is explored. We expect that the reconfigurable polymer-templated LC gratings fabricated via visible-light interference would provide a facile approach to regulate the diffraction properties of holographic gratings apart from electric field, thus paving a way towards a class of novel anti-counterfeiting devices.

7.
Lab Chip ; 19(18): 3116-3122, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31429847

RESUMEN

The integration of one more gain media in droplet microlasers with morphology-dependent modes, which can be employed in optofluidic systems as multi-wavelength lasing sources, is highly attractive and demands new cavity design and fabrication approaches. Here, cholesteric liquid crystal (CLC) droplets with an integrative triple-emulsion cavity are fabricated via glass-capillary-based microfluidic technologies and dual-gain lasing with variable modes, flexibly configured by the combination and incorporation of gain dyes and CLCs into both the core and shell. The distributed feedback (DFB) mode, formed by the feedback from the self-assembled helix periodic structure of CLCs, the whispering gallery (WG) mode, and the hybrid, is selectively excited by controlling the spatial coupling between the pump beam and the droplet with gain. With the merits of dual-gain and controllable lasing, a prototype dual-wavelength-ratiometric thermometer with self-calibration capability is expected to be developed. Furthermore, the anisotropic CLC core is substituted with an isotropic fluid and the gain from the CLC shell is additionally removed, DFB lasings in both shell and core are absent, and only Bragg-shell reflection-based hybrid modes are excited for lasing. The CLC droplet microlasers with an integrative cavity are expected to provide a new route to future lab-on-chip (LOC) applications.


Asunto(s)
Colesterol/química , Cristales Líquidos/química , Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/instrumentación , Tamaño de la Partícula
8.
Opt Express ; 27(8): 11462-11471, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052990

RESUMEN

We present a convenient approach to facilitate the real-time generation of updatable dynamically patterned cholesteric liquid crystal (CLC) fingerprint textures based on photoconductive effect. The photoconductive Bi12SiO20 (BSO) substrate acts as virtual electrode to obtain the desired states of CLCs by both electric and light fields. Owing to different boundary conditions, the switching of four states; that is, planar, fingerprint, metastable, and homeotropic states, and the rotation of fingerprint stripes can be achieved in planar alignment (PA) cell and hybrid alignment (HA) cell, respectively. With the aid of a digital micro-mirror (DMD)-based exposure system, binary and gray-scale images were successfully written and updated by light upon suitable voltages. This work provides an alternative approach to photoaddress CLC fingerprint patterns, without needing special photoalignment agents or photoresponsitive chiral dopants. We expect that it could be employed in the manipulation of nano/micro-objects by light.

9.
Opt Express ; 26(2): 1422-1432, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29402016

RESUMEN

We present a convenient photoalignment approach to fabricate rewritable fingerprint textures with designed geometrical patterns based on methyl red doped cholesteric liquid crystals (MDCLCs). MDCLC systems with/without nanoparticles of polyhedral oligomeric silsesquioxanes (POSS) were employed to realize two types of sophisticated binary patterns, respectively. Based on the understanding of involved mechanisms related to boundary conditions and middle-layer theory, we demonstrated the precise manipulation of fingerprint patterns by varying the fingerprint grating vectors in different domains. Notably, the hybrid-aligned liquid crystal configuration induced by POSS nanoparticles, which leads to the electrically rotatable grating, can be converted into the planar-aligned configuration by the adsorption of photoexcited methyl red molecules onto the indium-tin-oxide (ITO) surface. In this manner, the dynamic voltage-dependent behavior of fingerprint gratings is altered from the rotation mode (R-mode) to the on-off mode (O-mode).

10.
Appl Opt ; 56(3): 601-606, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157916

RESUMEN

We evaluated the feasibility of embedding periodically arranged squares with planar and vertical texture into a background with a developable-modulation (DM) type cholesteric liquid crystal (CLC) fingerprint texture by a two-step ultraviolet-induced polymerization method. Checker-patterned optical diffractive elements, which can be seen as a variation of a two-dimensional (2D) barcode, were first realized and the dependence of diffraction behaviors on incident light polarization and applied voltage were investigated. Taking advantage of the natural randomness and uncontrollable variations of a DM-type fingerprint textures, a polymer-stabilized CLC (PSCLC) graphic symbol with a 2D barcode pattern was then implemented with enhanced anti-counterfeiting features that are difficult to falsify or duplicate. The results indicate that the multiplexing of nonuniform DM-type fingerprint gratings, cross-polarized light readout, and unique polarization diffraction characteristics can improve the level of security.

11.
Lab Chip ; 16(7): 1206-13, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26923221

RESUMEN

We report a magnetically transportable microlaser with cholesteric liquid crystal (CLC) core-shell structure, operating in band-edge mode. The dye doped CLC shells as a water-in-oil-in-water (W/O/W) double emulsion were fabricated by microfluidics. Water-dispersible Fe3O4 magnetic nanoparticles were incorporated in the inner aqueous phase by taking advantage of the immiscibility with the middle CLC oil phase. The influence of temperature and shell thickness on laser properties was discussed in detail. The non-invasive manipulation of microlasers was realized under a magnetic field. The dependence of velocity on the viscosity of the carrying fluid and size of the core-shell structure was theoretically analyzed and experimentally investigated using a prototype electromagnetic platform. We also discussed the design principles for this type of DDCLC core-shell structure. Such magnetically transportable microlasers offer promise in in-channel illumination applications requiring active control inside micro-channels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...