Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(79): 11839-11842, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37712201

RESUMEN

Tailoring the morphology and structure of Li2O2, the discharge product of lithium-oxygen batteries (LOBs), through the rational design of cathode catalysts is an efficient strategy to promote the electrochemical performance of LOBs. In this work, sodium-doped nickel phosphate nanorods (Na-NiPO NRs) grown on Ni foam (NF) were prepared by the hydrothermal method and subsequent calcination. For the Na-NiPO NRs, the electronic structure could be optimized and abundant void space among the nanorods would provide abundant transport channels. Adopted as the cathodes, the Na-NiPO NRs could facilitate the uniform growth of sea cucumber-like Li2O2 with sufficient Li2O2-electrolyte and Li2O2-catalyst interfaces, significantly promoting the charge process. Therefore, LOBs could deliver a high discharge capacity of 10365.0 mA h g-1 at 100 mA g-1. And a low potential gap of 1.16 V can be achieved at 200 mA g-1 with a capacity of 500 mA h g-1. The proposed strategy demonstrates the role of the morphology and electronic structure of the cathode catalysts in tuning the Li2O2 morphology and provides a novel approach for achieving high-performance LOBs.

2.
Small ; 19(52): e2304435, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37642532

RESUMEN

Heterogeneous crystalline-amorphous structures, with tunable electronic structures and morphology, hold immense promise as catalysts for lithium-oxygen batteries (LOBs). Herein, a nanotube network constructed by crystalline nickel sulfide/amorphous nickel phosphate (NiS/NiPO) heterostructure is prepared on Ni foam through the sulfurization of the precursor generated hydrothermally. Used as cathodes, the NiS/NiPO nanotubes with optimized electronic structure can induce the deposition of the highly porous and interconnected structure of Li2 O2 with rich Li2 O2 -electrolyte interfaces. Abundant active sites can be created on NiS/NiPO through the charge redistribution for the uniform nucleation and growth of Li2 O2 . Moreover, nanotube networks endow cathodes with efficient transport channels and sufficient space for the accommodation of Li2 O2 . A high discharge capacity of 27 003.6 mAh g-1 and a low charge overpotential of 0.58 V at 1000 mAh g-1 can be achieved at 200 mA g-1 . This work provides valuable insight into the unique role of the electronic structure and morphology of catalysts in the formation mechanisms of Li2 O2 and the performances of LOBs.

3.
Nat Commun ; 12(1): 1449, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664236

RESUMEN

Direct experimental observations of the interface structure can provide vital insights into heterogeneous catalysis. Examples of interface design based on single atom and surface science are, however, extremely rare. Here, we report Cu-Sn single-atom surface alloys, where isolated Sn sites with high surface densities (up to 8%) are anchored on the Cu host, for efficient electrocatalytic CO2 reduction. The unique geometric and electronic structure of the Cu-Sn surface alloys (Cu97Sn3 and Cu99Sn1) enables distinct catalytic selectivity from pure Cu100 and Cu70Sn30 bulk alloy. The Cu97Sn3 catalyst achieves a CO Faradaic efficiency of 98% at a tiny overpotential of 30 mV in an alkaline flow cell, where a high CO current density of 100 mA cm-2 is obtained at an overpotential of 340 mV. Density functional theory simulation reveals that it is not only the elemental composition that dictates the electrocatalytic reactivity of Cu-Sn alloys; the local coordination environment of atomically dispersed, isolated Cu-Sn bonding plays the most critical role.

4.
Small ; 15(27): e1901343, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31116001

RESUMEN

Ternary transition metal oxides (TMOs) are highly potential electrode materials for lithium ion batteries (LIBs) due to abundant defects and synergistic effects with various metal elements in a single structure. However, low electronic/ionic conductivity and severe volume change hamper their practical application for lithium storage. Herein, nanosheet-assembled hollow single-hole Ni-Co-Mn oxide (NHSNCM) spheres with oxygen vacancies can be obtained through a facile hydrothermal reaction, which makes both ends of each nanosheet exposed to sufficient free space for volume variation, electrolyte for extra active surface area, and dual ion diffusion paths compared with airtight hollow structures. Furthermore, oxygen vacancies could improve ion/electronic transport and ion insertion/extraction process of NHSNCM spheres. Thus, oxygen-vacancy-rich NHSNCM spheres embedded into a 3D porous carbon nanotube/graphene network as the anode film ensure efficient electrolyte infiltration into both the exterior and interior of porous and open spheres for a high utilization of the active material, showing an excellent electrochemical performance for LIBs (1595 mAh g-1 over 300 cycles at 2 A g-1 , 441.6 mAh g-1 over 4000 cycles at 10 A g-1 ). Besides, this straightforward synthetic method opens an efficacious avenue for the construction of various nanosheet-assembled hollow single-hole TMO spheres for potential applications.

5.
Small ; 14(32): e1801007, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30009580

RESUMEN

The ingenious design of a freestanding flexible electrode brings the possibility for power sources in emerging wearable electronic devices. Here, reduced graphene oxide (rGO) wraps carbon nanotubes (CNTs) and rGO tightly surrounded by MnO2 nanosheets, forming a 3D multilevel porous conductive structure via vacuum freeze-drying. The sandwich-like architecture possesses multiple functions as a flexible anode for lithium-ion batteries. Micrometer-sized pores among the continuously waved rGO layers could extraordinarily improve ion diffusion. Nano-sized pores among the MnO2 nanosheets and CNT/rGO@MnO2 particles could provide vast accessible active sites and alleviate volume change. The tight connection between MnO2 and carbon skeleton could facilitate electron transportation and enhance structural stability. Due to the special structure, the rGO-wrapped CNT/rGO@MnO2 porous film as an anode shows a high capacity, excellent rate performance, and superior cycling stability (1344.2 mAh g-1 over 630 cycles at 2 A g-1 , 608.5 mAh g-1 over 1000 cycles at 7.5 A g-1 ). Furthermore, the evolutions of microstructure and chemical valence occurring inside the electrode after cycling are investigated to illuminate the structural superiority for energy storage. The excellent electrochemical performance of this freestanding flexible electrode makes it an attractive candidate for practical application in flexible energy storage.

6.
J Colloid Interface Sci ; 509: 58-67, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28886369

RESUMEN

Two hierarchical ZnO micro/nano-materials have been prepared by a short-time (45min) hydrothermal reaction without any surfactants. The different morphologies have been characterized comprehensively by XRD, SEM, TEM and XPS technologies. The hierarchical micro- and nano-structures are respectively consisted by the subordinate nano-pieces and nano-hexagonal-rods. Under the illumination of the simulated solar light, the nano-piece-aggregate spends 40min to degrade the 98% of rhodamine 6G solution (10-5mol/L), whereas the nano-rod-aggregate only degrades the 78% of the solution in the same condition. Moreover, the photocatalytic performances of the two ZnO aggregates are significantly improved by loading with Au nanoparticles (NPs) in the same assembly process. The nano-piece-aggregate decorated with the Au NPs spends 24min to decompose the rhodamine 6G solution completely, while nano-rod-aggregate decorated with the Au NPs needs 28min. The related photocatalytic mechanisms are proposed in this paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...