Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Intervalo de año de publicación
1.
Plants (Basel) ; 12(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005705

RESUMEN

It has been shown that increased concentrations of zinc oxide nanoparticles (nano-ZnO) in the soil are harmful to plant growth. However, the sensitivity of different wheat cultivars to nano-ZnO stress is still unclear. To detect the physiological response process of wheat varieties with different tolerance to nano-ZnO stress, four wheat cultivars (viz., cv. TS1, ZM18, JM22, and LM6) with different responses to nano-ZnO stress were selected, depending on previous nano-ZnO stress trials with 120 wheat cultivars in China. The results found that nano-ZnO exposure reduced chlorophyll concentrations and photosynthetic electron transport efficiency, along with the depressed carbohydrate metabolism enzyme activities, and limited plant growth. Meanwhile, the genotypic variation in photosynthetic carbon assimilation under nano-ZnO stress was found in wheat plants. Wheat cv. JM22 and LM6 possessed relatively lower Zn concentrations and higher leaf nitrogen per area, less reductions in their net photosynthetic rate, a maximum quantum yield of the PS II (Fv/Fm), electron transport flux per cross-section (ETo/CSm), trapped energy flux per cross-section (TRo/CSm), and total soluble sugar and sucrose concentrations under nano-ZnO stress, showing a better tolerance to nano-ZnO stress than wheat cv. TS1 and ZM18. In addition, the chlorophyll a fluorescence parameters Fv/Fm, ETo/CSm, and TRo/CSm could be used to rapidly screen wheat varieties resistant to nano-ZnO stress. The results here provide a new approach for solving the issues of crop yield decline in regions polluted by heavy metal nanoparticles and promoting the sustainable utilization of farmland with heavy metal pollution.

2.
Gene ; 885: 147712, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37579958

RESUMEN

Chlorophyll biosynthesis and chloroplast development are essential for photosynthesis and plant growth. Gossypium arboreum, a valuable source of genetic variation for cotton improvement, remains poorly studied for the mechanisms regulating chlorophyll biosynthesis and chloroplast development. Here we created a G. arboreum etiolated leaf and stuntedness (els) mutant that displayed a distinct yellow color of leaves, bracts and stems throughout the whole growth, where chlorophyll accumulation in leaves was reduced and chloroplast development was delayed. The GaCHLH gene, which encodes the H subunit of magnesium chelatase (Mg-chelatase), was screened by MutMap and KASP analysis. Compared to GaCHLH, the gene Gachlh of the mutant had a single nucleotide transition (G to A) at 1549 bp, which causes the substitution of a glycine (G) by a serine (S) at the 517th amino acid, resulting in an abnormal secondary structure of the Gachlh protein. GaCHLH-silenced SXY1 and ZM24 plants exhibited a lower GaCHLH expression level, a lower chlorophyll content, and the yellow-leaf phenotype. Gachlh expression affected the expression of key genes in the tetrapyrrole pathway. GaCHLH and Gachlh were located in the chloroplasts and that alteration of the mutation site did not affect the final target position. The BiFC assay result indicated that Gachlh could not bind to GaCHLD properly, which prevented the assembly of Mg-chelatase and thus led to the failure of chlorophyll synthesis. In this study, the Gachlh gene of G. arboreum els was finely localized and identified for the first time, providing new insights into the chlorophyll biosynthesis pathway in cotton.


Asunto(s)
Cloroplastos , Gossypium , Gossypium/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotosíntesis/genética , Clorofila/análisis , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Physiol Plant ; 175(4): e13972, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405386

RESUMEN

Cotton (Gossypium hirsutum L.) is an important economic crop, and cotton fiber is one of the longest plant cells, which provides an ideal model for the study of cell elongation and secondary cell wall synthesis. Cotton fiber length is regulated by a variety of transcription factors (TF) and their target genes; however, the mechanism of fiber elongation mediated by transcriptional regulatory networks is still unclear to a large extent. Here, we used a comparative assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) assay and RNA-seq analysis to identify fiber elongation transcription factors and genes using the short-fiber mutant ligon linless-2 (Li2 ) and wild type (WT). A total of 499 differential target genes were identified and GO analysis shows that differential genes are mainly involved in plant secondary wall synthesis and microtubule-binding processes. Analysis of the genomic regions preferentially accessible (Peak) has identified a number of overrepresented TF-binding motifs, highlighting sets of TFs that are important for cotton fiber development. Using ATAC-seq and RNA-seq data, we have constructed a functional regulatory network of each TF regulatory target gene and also the network pattern of TF regulating differential target genes. Further, to obtain the genes related to fiber length, the differential target genes were combined with FLGWAS data to identify the genes highly related to fiber length. Our work provides new insights into cotton fiber elongation.


Asunto(s)
Cromatina , Fibra de Algodón , Cromatina/genética , Cromatina/metabolismo , Mutación , Gossypium/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Perfilación de la Expresión Génica
4.
Plant Physiol ; 191(3): 1985-2000, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36542688

RESUMEN

Brassinosteroids (BRs) participate in the regulation of plant growth and development through BRI1-EMS-SUPPRESSOR1 (BES1)/BRASSINAZOLE-RESISTANT1 (BZR1) family transcription factors. Cotton (Gossypium hirsutum) fibers are highly elongated single cells, and BRs play a vital role in the regulation of fiber elongation. However, the mode of action on how BR is involved in the regulation of cotton fiber elongation remains unexplored. Here, we generated GhBES1.4 over expression lines and found that overexpression of GhBES1.4 promoted fiber elongation, whereas silencing of GhBES1.4 reduced fiber length. DNA affinity purification and sequencing (DAP-seq) identified 1,531 target genes of GhBES1.4, and five recognition motifs of GhBES1.4 were identified by enrichment analysis. Combined analysis of DAP-seq and RNA-seq data of GhBES1.4-OE/RNAi provided mechanistic insights into GhBES1.4-mediated regulation of cotton fiber development. Further, with the integrated approach of GWAS, RNA-seq, and DAP-seq, we identified seven genes related to fiber elongation that were directly regulated by GhBES1.4. Of them, we showed Cytochrome P450 84A1 (GhCYP84A1) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (GhHMG1) promote cotton fiber elongation. Overall, the present study established the role of GhBES1.4-mediated gene regulation and laid the foundation for further understanding the mechanism of BR participation in regulating fiber development.


Asunto(s)
Brasinoesteroides , Gossypium , Brasinoesteroides/metabolismo , Gossypium/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Bases , Fibra de Algodón , Regulación de la Expresión Génica de las Plantas
5.
Plant Mol Biol ; 111(1-2): 89-106, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271986

RESUMEN

KEY MESSAGE: We proposed a working model of BR to promote leaf size through cell expansion. In the BR signaling pathway, GhBES1 affects cotton leaf size by binding to and activating the expression of the E-box element in the GhEXO2 promoter region. Brassinosteroid (BR) is an essential phytohormone that controls plant growth. However, the mechanisms of BR regulation of leaf size remain to be determined. Here, we found that the BR deficient cotton mutant pagoda1 (pag1) had a smaller leaf size than wild-type CRI24. The expression of EXORDIUM (GhEXO2) gene, was significantly downregulated in pag1. Silencing of BRI1-EMS-SUPPRESSOR 1 (GhBES1), inhibited leaf cell expansion and reduced leaf size. Overexpression of GhBES1.4 promoted leaf cell expansion and enlarged leaf size. Expression analysis showed GhEXO2 expression positively correlated with GhBES1 expression. In plants, altered expression of GhEXO2 promoted leaf cell expansion affecting leaf size. Furthermore, GhBES1.4 specifically binds to the E-box elements in the GhEXO2 promoter, inducing its expression. RNA-seq data revealed many down-regulated genes related to cell expansion in GhEXO2 silenced plants. In summary, we discovered a novel mechanism of BR regulation of leaf size through GhBES1 directly activating the expression of GhEXO2.


Asunto(s)
Brasinoesteroides , Gossypium , Gossypium/metabolismo , Brasinoesteroides/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
PLoS One ; 17(1): e0263029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100317

RESUMEN

The problem of delivering and fetching wagons at a railway station with mixed-shaped goods operation sites is considered, with a view to minimizing the running time between goods operation sites and waiting time of the locomotive in the planning period as the optimization objective. A general mathematical model for delivering and fetching wagons at a railway station with mixed-shaped goods operation sites has been formulated. The methods of judging and processing reverse of delivering and fetching wagons, dividing batches, and judging number of wagons for batch operation are provided to determine the feasibility of the solution, and an improved simulated annealing algorithm is introduced as our algorithm to the model. Finally, an experimental station is taken as an example to verify the model and algorithm. The results show that simulated annealing algorithm is relatively superior in computational efficiency and result compared with genetic algorithm and tabu search algorithm, the computing time of the algorithm provided can meet the requirements of planning shunting operations in railway station, and the model proposed is universal for other layout forms of GOSs and different operation forms.


Asunto(s)
Algoritmos , Modelos Teóricos , Vías Férreas
7.
Biology (Basel) ; 10(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34827097

RESUMEN

TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play an essential role in regulating various physiological and biochemical functions during plant growth. However, the function of TCP transcription factors in G. hirsutum has not yet been studied. In this study, we performed genome-wide identification and correlation analysis of the TCP transcription factor family in G. hirsutum. We identified 72 non-redundant GhTCP genes and divided them into seven subfamilies, based on phylogenetic analysis. Most GhTCP genes in the same subfamily displayed similar exon and intron structures and featured highly conserved motif structures in their subfamily. Additionally, the pattern of chromosomal distribution demonstrated that GhTCP genes were unevenly distributed on 24 out of 26 chromosomes, and that fragment replication was the main replication event of GhTCP genes. In TB1 sub-family genes, GhTCP62 was highly expressed in the axillary buds, suggesting that GhTCP62 significantly affected cotton branching. Additionally, subcellular localization results indicated that GhTCP62 is located in the nucleus and possesses typical transcription factor characteristics. The overexpression of GhTCP62 in Arabidopsis resulted in fewer rosette-leaf branches and cauline-leaf branches. Furthermore, the increased expression of HB21 and HB40 genes in Arabidopsis plants overexpressing GhTCP62 suggests that GhTCP62 may regulate branching by positively regulating HB21 and HB40.

8.
Front Plant Sci ; 12: 719889, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603349

RESUMEN

Brassinosteroids (BRs), an efficient plant endogenous hormone, significantly promotes plant nutrient growth adapting to biological and abiotic adversities. BRs mainly promote plant cell elongation by regulating gene expression patterns. EXORDIUM (EXO) genes have been characterized as the indicators of BR response genes. Cotton, an ancient crop, is of great economic value and its fibers can be made into all kinds of fabrics. However, EXO gene family genes have not been full identified in cotton. 175 EXO genes were identified in nine plant species, of which 39 GhEXO genes in Gossypium hirsutum in our study. A phylogenetic analysis grouped all of the proteins encoded by the EXO genes into five major clades. Sequence identification of conserved amino acid residues among monocotyledonous and dicotyledonous species showed a high level of conservation across the N and C terminal regions. Only 25% the GhEXO genes contain introns besides conserved gene structure and protein motifs distribution. The 39 GhEXO genes were unevenly distributed on the 18 At and Dt sub-genome chromosomes. Most of the GhEXO genes were derived from gene duplication events, while only three genes showed evidence of tandem duplication. Homologous locus relationships showed that 15 GhEXO genes are located on collinear blocks and that all orthologous/paralogous gene pairs had Ka > Ks values, indicating purifying selection pressure. The GhEXO genes showed ubiquitous expression in all eight tested cotton tissues and following exposure to three phytohormones, IAA, GA, and BL. Furthermore, GhEXO7_At was mainly expressed in response to BL treatment, and was predominantly expressed in the fibers. GhEXO7_At was found to be a plasma membrane protein, and its ectopic expression in Arabidopsis mediated BR-regulated plant growth and development with altered expression of DWF4, CPD, KCS1, and EXP5. Additionally, the functions of GhEXO7_At were confirmed by virus-induced gene silencing (VIGS) in cotton. This study will provide important genetic resources for future cotton breeding programs.

9.
Plant Sci ; 312: 111055, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34620449

RESUMEN

High salt environments can induce stress in different plants. The genes containing the ZAT domain constitute a family that belongs to a branch of the C2H2 family, which plays a vital role in responding to abiotic stresses. In this study, we identified 169 ZAT genes from seven plant species, including 44 ZAT genes from G. hirsutum. Phylogenetic tree analysis divided ZAT genes in six groups with conserved gene structure, protein motifs. Two C2H2 domains and an EAR domain and even chromosomal distribution on At and Dt sub-genome chromosomes of G. hirsutum was observed. GhZAT6 was primarily expressed in the root tissue and responded to NaCl and ABA treatments. Subcellular localization found that GhZAT6 was located in the nucleus and demonstrated transactivation activity during a transactivation activity assay. Arabidopsis transgenic lines overexpressing the GhZAT6 gene showed salt tolerance and grew more vigorously than WT on MS medium supplemented with 100 mmol NaCl. Additionally, the silencing of the GhZAT6 gene in cotton plants showed more obvious leaf wilting than the control plants, which were subjected to 400 mmol NaCl treatment. Next, the expressions of GhAPX1, GhFSD1, GhFSD2, and GhSOS3 were significantly lower in the GhZAT6-silenced plants treated with NaCl than the control. Based on these findings, GhZAT6 may be involved in the ABA pathway and mediate salt stress tolerance by regulating ROS-related gene expression.


Asunto(s)
Estrés Salino/genética , Estrés Salino/fisiología , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología , Dedos de Zinc/genética , Arabidopsis/genética , Arabidopsis/fisiología , Cacao/genética , Cacao/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Gossypium/genética , Gossypium/fisiología , Oryza/genética , Oryza/fisiología , Filogenia , Plantas Modificadas Genéticamente , Sorghum/genética , Sorghum/fisiología
10.
Planta ; 254(4): 75, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533620

RESUMEN

MAIN CONCLUSION: Brassinosteroid (BR) synthesis genes in different cotton species was comprehensively identified, and the participation of GhCPD-3 in the BR synthesis signaling pathway for regulating plant development was verified. Brassinosteroid is a natural steroidal phytohormone that plays fundamental roles in plant growth and development. In cotton, detailed characterization and functional validation of BR biosynthesis genes remain rare. Here, 16, 8 and 9 BR biosynthesis genes were identified in Gossypium hirsutum, Gossypium raimondii and Gossypium arboreum, respectively, and their phylogenetic relationships, gene structures, conserved motifs of the encoded proteins, chromosomal locations were determined and a synteny analysis was performed. Gossypium hirsutum and Arabidopsis BR biosynthesis genes closely clustered in the phylogenetic tree and fragment duplication was likely the primary cause promoting gene family expansion in G. hirsutum. Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed their relevance as BR biosynthesis genes. GhCPD-3 was highly expressed in roots and stems and the loci of single nucleotide polymorphisms (SNPs) were significantly associated with these traits.Ectopic overexpression of GhCPD-3 in the cpd91 Arabidopsis mutant rescued the mutant phenotype by increasing plant height and leaf size in comparison to those of cpd91 and WT plants. Moreover, overexpressed GhCPD-3 in cpd91 mutants showed greater hypocotyl and root lengths than those of cpd91 and WT plants under light and dark conditions, respectively, indicating that BR actively promotes hypocotyl and root growth. Similar to CPD (CONSTITUTIVE PHOTOMORPHOGENIC DWARF), GhCPD-3 restores BR biosynthesis thereby mediating plant growth and development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Gossypium/genética , Gossypium/metabolismo , Filogenia , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Front Plant Sci ; 12: 705883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434208

RESUMEN

The APETALA2 (AP2)/ethylene response factor plays vital functions in response to environmental stimulus. The ethylene response factor (ERF) subfamily B3 group belongs to the AP2/ERF superfamily and contains a single AP2/ERF domain. Phylogenetic analysis of the ERF subfamily B3 group genes from Arabdiposis thaliana, Gossypium arboreum, Gossypium hirsutum, and Gossypium raimondii made it possible to divide them into three groups and showed that the ERF subfamily B3 group genes are conserved in cotton. Collinearity analysis identified172 orthologous/paralogous gene pairs between G. arboreum and G. hirsutum; 178 between G. hirsutum and G. raimondii; and 1,392 in G. hirsutum. The GhERF subfamily B3 group gene family experienced massive gene family expansion through either segmental or whole genome duplication events, with most genes showing signature compatible with the action of purifying selection during evolution. Most G. hirsutum ERF subfamily B3 group genes are responsive to salt stress. GhERF13.12 transgenic Arabidopsis showed enhanced salt stress tolerance and exhibited regulation of related biochemical parameters and enhanced expression of genes participating in ABA signaling, proline biosynthesis, and ROS scavenging. In addition, the silencing of the GhERF13.12 gene leads to increased sensitivity to salt stress in cotton. These results indicate that the ERF subfamily B3 group had remained conserved during evolution and that GhERF13.12 induces salt stress tolerance in Arabidopsis and cotton.

12.
Plant Physiol Biochem ; 166: 328-340, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34147725

RESUMEN

Cytokinin (CK) is an important plant hormone that promotes plant cell division and differentiation, and participates in salt response under osmotic stress. LOGs (LONELY GUY) are CK-activating enzymes involved in CK synthesis. The LOG gene family has not been comprehensively characterized in cotton. In this study we identified 151 LOG genes from nine plant species, including 28 LOG genes in Gossypium hirsutum. Phylogenetic analysis divided LOG genes into three groups. Exon/intron structures and protein motifs of GhLOG genes were highly conserved. Synteny analysis revealed that several gene loci were highly conserved between the A and D sub-genomes of G. hirsutum with purifying selection pressure during evolution. Expression profiles showed that most LOG genes were constitutively expressed in eight different tissues. Furthermore, LOG genes can be regulated by abiotic stresses and phytohormone treatments. Moreover, subcellular localization revealed that GhLOG3_At resides inside the cell membrane. Overexpression of GhLOG3 enhanced salt tolerance in Arabidopsis. Virus-induced gene silencing (VIGS) of GhLOG3_At in cotton enhanced sensitivity of plants to salt stress with increased H2O2 contents and decreased chlorophyll and proline (PRO) activity. Our results suggested that GhLOG3_At induces salt stress tolerance in cotton, and provides a basis for the use of CK synthesis genes to regulate cotton growth and stress resistance.


Asunto(s)
Gossypium , Tolerancia a la Sal , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Gossypium/metabolismo , Peróxido de Hidrógeno , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
13.
PLoS One ; 16(6): e0253325, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34138952

RESUMEN

Lysine 2-hydroxyisobutyrylation (Khib) is a recently discovered post-translational modification (PTM) showing diverse biological functions and effects in living organisms. However, the study of Khib in plant species is still relatively limited. Wheat (Triticum aestivum L.) is a global important cereal plant. In this study, the systematic Khib analysis was performed in wheat leave tissues. A total of 3004 Khib sites in 1104 proteins were repeatedly identified. Structure characterization of these Khib peptides revealed 12 conserved sequence motifs. Function classification and enrichment analysis indicated these Khib proteins showed a wide function and pathway distribution, of which ribosome activity, protein biosynthesis and photosynthesis were the preferred biological processes. Subcellular location predication indicated chloroplast was the dominant subcellular compartment where Khib was distributed. There may be some crosstalks among Khib, lysine acetylation and lysine succinylation modification because some proteins and sites were modified by all these three acylations. The present study demonstrated the critical role of Khib in wheat biological and physiology, which has expanded the scope of Khib in plant species. Our study is an available resource and reference of Khib function demonstration and structure characterization in cereal plant, as well as in plant kingdom.


Asunto(s)
Hojas de la Planta/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Triticum/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteoma
14.
Autoimmunity ; 53(6): 314-322, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32706318

RESUMEN

Rheumatoid arthritis is a chronic systemic autoimmune disease. In this study, the role of microRNA-340-5p in rheumatoid arthritis was investigated. qRT-PCR was used to detect the expression of microRNA-340-5p in serums, synovial tissues, and fibroblast-like synoviocytes from patients and healthy participants. Cell proliferation rate, cell cycle and apoptotic cell numbers were measured by CCK-8 and flow cytometry assays. The expression of pro-inflammation factors was determined by ELISA. Our data showed that the expression of microRNA-340-5p was greatly suppressed in rheumatoid arthritis serums, synovial tissues and rheumatoid arthritis-fibroblast-like synoviocytes compared to that in healthy controls. Over-expression of microRNA-340-5p greatly suppressed cell proliferation, promoted cell apoptosis, and suppressed the expression of inflammation factors in rheumatoid arthritis fibroblast-like synoviocytes. Additionally, STAT3 was a target of microRNA-340-5. Overexpression of STAT3 could reverse the outcome of microRNA-340-5p on cell proliferation and apoptosis in rheumatoid arthritis fibroblast-like synoviocytes. The findings in our study demonstrated that microRNA-340-5p may serve as a potential target for therapeutic direction for patients with rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide/inmunología , MicroARNs/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Adulto , Anciano , Apoptosis/genética , Apoptosis/inmunología , Artritis Reumatoide/sangre , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Estudios de Casos y Controles , Proliferación Celular/genética , Femenino , Fibroblastos/inmunología , Fibroblastos/metabolismo , Voluntarios Sanos , Humanos , Mediadores de Inflamación/metabolismo , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/inmunología , Membrana Sinovial/citología , Membrana Sinovial/inmunología , Membrana Sinovial/patología , Sinoviocitos/inmunología , Sinoviocitos/metabolismo
15.
Biol Res ; 53(1): 23, 2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448297

RESUMEN

BACKGROUND: Abscisic acid-, stress-, and ripening-induced (ASR) genes are a class of plant specific transcription factors (TFs), which play important roles in plant development, growth and abiotic stress responses. The wheat ASRs have not been described in genome-wide yet. METHODS: We predicted the transmembrane regions and subcellular localization using the TMHMM server, and Plant-mPLoc server and CELLO v2.5, respectively. Then the phylogeny tree was built by MEGA7. The exon-intron structures, conserved motifs and TFs binding sites were analyzed by GSDS, MEME program and PlantRegMap, respectively. RESULTS: In wheat, 33ASR genes were identified through a genome-wide survey and classified into six groups. Phylogenetic analyses revealed that the TaASR proteins in the same group tightly clustered together, compared with those from other species. Duplication analysis indicated that the TaASR gene family has expanded mainly through tandem and segmental duplication events. Similar gene structures and conserved protein motifs of TaASRs in wheat were identified in the same groups. ASR genes contained various TF binding cites associated with the stress responses in the promoter region. Gene expression was generally associated with the expected group-specific expression pattern in five tissues, including grain, leaf, root, spike and stem, indicating the broad conservation of ASR genes function during wheat evolution. The qRT-PCR analysis revealed that several ASRs were up-regulated in response to NaCl and PEG stress. CONCLUSION: We identified ASR genes in wheat and found that gene duplication events are the main driving force for ASR gene evolution in wheat. The expression of wheat ASR genes was modulated in responses to multiple abiotic stresses, including drought/osmotic and salt stress. The results provided important information for further identifications of the functions of wheat ASR genes and candidate genes for high abiotic stress tolerant wheat breeding.


Asunto(s)
Ácido Abscísico/análisis , Sequías , Evolución Molecular , Genoma de Planta/genética , Estrés Fisiológico/genética , Triticum/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Triticum/clasificación
16.
Medicine (Baltimore) ; 99(9): e19155, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32118718

RESUMEN

BACKGROUND: The potential association between antibiotic use and the risk of rheumatoid arthritis (RA) has drawn significant attention from clinicians and researchers in recent years due to the wild usage of antibiotic. This study aimed to perform a systematic review and meta-analysis of the literature to determine if antibiotic use is associated with an increased risk of RA, so as to provide an important reference for clinical decision-making. METHODS: Case-control and nest case-control studies of assessing whether antibiotic use is associated with the onset of RA will be identified in searches of 4 databases from their inception to August 2019. All data were assessed and extracted by 2 authors independently. The Newcastle-Ottawa scale was used to assess the quality of the selected studies. Manager Software 5.3 from Cochrane Collaboration (London, UK) and Stata 15.1 (Stata Corp, College Station, TX) will be used to conduct meta-analysis, determining pooled odds ratios and evaluating heterogeneity between studies. RESULT: The results of this systemic review and meta-analysis will be submitted to a recognized journal for publication. CONCLUSION: This systemic review and meta-analysis will determine if antibiotic use is associated with an increased risk of RA. We hope this study can make a definitive conclusion for the association.


Asunto(s)
Antibacterianos/efectos adversos , Artritis Reumatoide/inducido químicamente , Humanos , Revisiones Sistemáticas como Asunto
17.
Biol. Res ; 53: 23, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1124208

RESUMEN

BACKGROUND: Abscisic acid-, stress-, and ripening-induced (ASR) genes are a class of plant specific transcription factors (TFs), which play important roles in plant development, growth and abiotic stress responses. The wheat ASRs have not been described in genome-wide yet. METHODS: We predicted the transmembrane regions and subcellular localization using the TMHMM server, and Plant-mPLoc server and CELLO v2.5, respectively. Then the phylogeny tree was built by MEGA7. The exon-intron structures, conserved motifs and TFs binding sites were analyzed by GSDS, MEME program and PlantRegMap, respectively. RESULTS: In wheat, 33ASR genes were identified through a genome-wide survey and classified into six groups. Phylogenetic analyses revealed that the TaASR proteins in the same group tightly clustered together, compared with those from other species. Duplication analysis indicated that the TaASR gene family has expanded mainly through tandem and segmental duplication events. Similar gene structures and conserved protein motifs of TaASRs in wheat were identified in the same groups. ASR genes contained various TF binding cites associated with the stress responses in the promoter region. Gene expression was generally associated with the expected group-specific expression pattern in five tissues, including grain, leaf, root, spike and stem, indicating the broad conservation of ASR genes function during wheat evolution. The qRT-PCR analysis revealed that several ASRs were up-regulated in response to NaCl and PEG stress. CONCLUSION: We identified ASR genes in wheat and found that gene duplication events are the main driving force for ASR gene evolution in wheat. The expression of wheat ASR genes was modulated in responses to multiple abiotic stresses, including drought/osmotic and salt stress. The results provided important information for further identifications of the functions of wheat ASR genes and candidate genes for high abiotic stress tolerant wheat breeding.


Asunto(s)
Estrés Fisiológico/genética , Triticum/genética , Ácido Abscísico/análisis , Genoma de Planta/genética , Evolución Molecular , Sequías , Filogenia , Factores de Transcripción/genética , Triticum/clasificación , Regulación de la Expresión Génica de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Med Sci Law ; 59(1): 4-8, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30419772

RESUMEN

Tyre imprints on the skin are usually considered to be the result of being run over by a motor vehicle. This article reports a traffic accident in which tyre marks on the victim's skin were caused by a collision rather than by being run over. The mechanism of the injury in this case is analysed and discussed. A 23-year-old male drove a motorcycle while under the influence of alcohol and collided with a sign pillar on the side of the road. Both the victim and the motorcycle careened into the bottom of a tractor-trailer. No witnesses or surveillance videos could confirm the process of the accident. Because tyre imprints were found on the victim's skin, traffic police believed that he had been run over during the accident. However, forensic autopsy and analysis of the accident process revealed that the true cause of the imprints was a collision between the victim's body and a tyre.


Asunto(s)
Accidentes de Tránsito , Motocicletas , Piel/patología , Conducir bajo la Influencia , Humanos , Masculino , Piel/lesiones , Traumatismos Torácicos/patología , Adulto Joven
19.
Biochim Biophys Acta Mol Cell Res ; 1865(1): 48-56, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28986222

RESUMEN

Posttranscriptional regulation process plays important roles in renal disease pathogenesis. AU-rich element RNA-binding protein (AUF1) interacts with and destabilizes mRNAs containing AU-rich elements (AREs) in their 3'UTR. The current study demonstrated that AUF1 was increased in unilateral ureteral obstruction (UUO) animal models. While proliferation and migration of HK2 cells was unaltered by AUF1 downregulation under normal condition, proliferative inhibition and migratory promotion mediated by TGF-ß was significantly compromised. Mechanically, AUF1 downregulation decreased phosphorylated Smad2/3 via increasing their E3 ligase Nedd4L at the posttranscriptional level. In addition, the current study identified Nedd4L as a previously unreported target of AUF1. AUF1 regulates Nedd4L expression at the posttranscriptional level by interaction with AREs in the 3'UTR of the Nedd4L mRNA. Collectively, the current study indicates that AUF1 might be a potential player in renal tubulointerstitial fibrosis through modulation of TGF-ß signal transduction via posttranscriptional regulation of Nedd4L.


Asunto(s)
Células Epiteliales/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo D/fisiología , Túbulos Renales/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Células Cultivadas , Células Epiteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Ribonucleoproteína Nuclear Heterogénea D0 , Humanos , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Masculino , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Interferencia de ARN/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/farmacología , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
20.
Front Plant Sci ; 5: 703, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25566278

RESUMEN

It is well established that a high external NH(+) 4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH(+) 4 are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m(-2)) and high (30 g N m(-2)) supplies of NH(+) 4 in the presence or absence of additional K(+) (6 g K2O m(-2)) to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N) remobilization and the grain-filling rate. The results indicated that an excessive supply of NH(+) 4 significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE) and the grain-filling rate compared with a moderate level of NH(+) 4. The additional provision of K(+) considerably alleviated these negative effects of high NH(+) 4, resulting in a 19.41-26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET) showed that the net rate of transmembrane K(+) influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K(+) content decreased by 36.13% in wheat plants subjected to high NH(+) 4. This study indicates that the effects of high NH(+) 4 on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K(+) uptake in wheat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...