Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Sci Total Environ ; 935: 173232, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38761926

RESUMEN

Biogeochemical processes mediated by plants and soil in coastal marshes are vulnerable to environmental changes and biological invasion. In particular, tidal inundation and salinity stress will intensify under future rising sea level scenarios. In this study, the interactive effects of flooding regimes (non-waterlogging vs. waterlogging) and salinity (0, 5, 15, and 30 parts per thousand (ppt)) on photosynthetic carbon allocation in plant, rhizodeposition, and microbial communities in native (Phragmites australis) and invasive (Spartina alterniflora) marshes were investigated using mesocosm experiments and 13CO2 pulse-labeling techniques. The results showed that waterlogging and elevated salinity treatments decreased specific root allocation (SRA) of 13C, rhizodeposition allocation (RA) 13C, soil 13C content, grouped microbial PLFAs, and the fungal 13C proportion relative to total PLFAs-13C. The lowest SRA, RA, and fungal 13C proportion occurred under the combined waterlogging and high (30 ppt) salinity treatments. Relative to S. alterniflora, P. australis displayed greater sensitivity to hydrological changes, with a greater reduction in rhizodeposition, soil 13C content, and fungal PLFAs. S. alterniflora showed an earlier peak SRA but a lower root/shoot 13C ratio than P. australis. This suggests that S. alterniflora may transfer more photosynthetic carbon to the shoot and rhizosphere to facilitate invasion under stress. Waterlogging and high salinity treatments shifted C allocation towards bacteria over fungi for both plant species, with a higher allocation shift in S. alterniflora soil, revealing the species-specific microbial response to hydrological stresses. Potential shifts towards less efficient bacterial pathways might result in accelerated carbon loss. Over the study period, salinity was the primary driver for both species, explaining 33.2-50.8 % of 13C allocation in the plant-soil-microbe system. We propose that future carbon dynamics in coastal salt marshes under sea-level rise conditions depend on species-specific adaptive strategies and carbon allocation patterns of native and invasive plant-soil systems.

2.
Brain Pathol ; : e13277, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779803

RESUMEN

Growing evidence indicates that non-neuronal oligodendrocyte plays an important role in Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. In patient's brain, the impaired myelin structure is a pathological feature with the observation of TDP-43 in cytoplasm of oligodendrocyte. However, the mechanism underlying the gain of function by TDP-43 in oligodendrocytes, which are vital for the axonal integrity, remains unclear. Recently, we found that the primate-specific cleavage of truncated TDP-43 fragments occurred in cytoplasm of monkey neural cells. This finding opened up the avenue to investigate the myelin integrity affected by pathogenic TDP-43 in oligodendrocytes. In current study, we demonstrated that the truncated TDP-35 in oligodendrocytes specifically, could lead to the dysfunctional demyelination in corpus callosum of monkey. As a consequence of the interaction of myelin regulatory factor with the accumulated TDP-35 in cytoplasm, the downstream myelin-associated genes expression was downregulated at the transcriptional level. Our study aims to investigate the potential effect on myelin structure injury, affected by the truncated TDP-43 in oligodendrocyte, which provided the additional clues on the gain of function during the progressive pathogenesis and symptoms in TDP-43 related diseases.

3.
Cell Death Dis ; 15(5): 337, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744826

RESUMEN

Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro. However, the potential role of HAP40 in HD pathogenesis remains unknown. In this study, we found that the expression level of HAP40 is in parallel with HTT but inversely correlates with mutant HTT aggregates in mouse brains. Depletion of endogenous HAP40 in the striatum of HD140Q knock-in (KI) mice leads to enhanced mutant HTT aggregation and neuronal loss. Consistently, overexpression of HAP40 in the striatum of HD140Q KI mice reduced mutant HTT aggregation and ameliorated the behavioral deficits. Mechanistically, HAP40 preferentially binds to mutant HTT and promotes Lysine 48-linked ubiquitination of mutant HTT. Our results revealed that HAP40 is an important regulator of HTT protein homeostasis in vivo and hinted at HAP40 as a therapeutic target in HD treatment.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Animales , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Ratones , Humanos , Modelos Animales de Enfermedad , Ubiquitinación , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Mutación , Agregado de Proteínas , Ratones Transgénicos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Neuronas/metabolismo , Neuronas/patología
4.
Sci Adv ; 10(20): eadl2036, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758800

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.


Asunto(s)
Cuerpo Estriado , Proteína Huntingtina , Enfermedad de Huntington , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/genética , Animales , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Ratones , Humanos , Modelos Animales de Enfermedad , Neuronas/metabolismo , Neuronas/patología , Proteolisis , Primates
5.
J Virol ; 98(5): e0045124, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591877

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a wide range of hosts, including hippopotami, which are semi-aquatic mammals and phylogenetically closely related to Cetacea. In this study, we characterized the binding properties of hippopotamus angiotensin-converting enzyme 2 (hiACE2) to the spike (S) protein receptor binding domains (RBDs) of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs). Furthermore, the cryo-electron microscopy (cryo-EM) structure of the SARS-CoV-2 PT S protein complexed with hiACE2 was resolved. Structural and mutational analyses revealed that L30 and F83, which are specific to hiACE2, played a crucial role in the hiACE2/SARS-CoV-2 RBD interaction. In addition, comparative and structural analysis of ACE2 orthologs suggested that the cetaceans may have the potential to be infected by SARS-CoV-2. These results provide crucial molecular insights into the susceptibility of hippopotami to SARS-CoV-2 and suggest the potential risk of SARS-CoV-2 VOCs spillover and the necessity for surveillance. IMPORTANCE: The hippopotami are the first semi-aquatic artiodactyl mammals wherein SARS-CoV-2 infection has been reported. Exploration of the invasion mechanism of SARS-CoV-2 will provide important information for the surveillance of SARS-CoV-2 in hippopotami, as well as other semi-aquatic mammals and cetaceans. Here, we found that hippopotamus ACE2 (hiACE2) could efficiently bind to the RBDs of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs) and facilitate the transduction of SARS-CoV-2 PT and VOCs pseudoviruses into hiACE2-expressing cells. The cryo-EM structure of the SARS-CoV-2 PT S protein complexed with hiACE2 elucidated a few critical residues in the RBD/hiACE2 interface, especially L30 and F83 of hiACE2 which are unique to hiACE2 and contributed to the decreased binding affinity to PT RBD compared to human ACE2. Our work provides insight into cross-species transmission and highlights the necessity for monitoring host jumps and spillover events on SARS-CoV-2 in semi-aquatic/aquatic mammals.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Microscopía por Crioelectrón , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Animales , Humanos , Artiodáctilos/virología , COVID-19/virología , COVID-19/metabolismo , Sitios de Unión , Betacoronavirus/genética , Betacoronavirus/metabolismo
6.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612657

RESUMEN

Huntington's disease (HD) arises from the abnormal expansion of CAG repeats in the huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex and not yet fully elucidated. However, mHTT forms aggregates and accumulates abnormally in neuronal nuclei and processes, leading to disruptions in multiple cellular functions. Although there is currently no effective curative treatment for HD, significant progress has been made in developing various therapeutic strategies to treat HD. In addition to drugs targeting the neuronal toxicity of mHTT, gene therapy approaches that aim to reduce the expression of the mutant HTT gene hold great promise for effective HD therapy. This review provides an overview of current HD treatments, discusses different therapeutic strategies, and aims to facilitate future therapeutic advancements in the field.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Terapia Genética , Proteínas Mutantes
7.
Zool Res ; 45(2): 275-283, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38485497

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder for which there is currently no effective treatment available. Consequently, the development of appropriate disease models is critical to thoroughly investigate disease progression. The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin ( HTT) gene, leading to the expansion of a polyglutamine repeat in the HTT protein. Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain, which precipitate selective neuronal loss in specific brain regions. Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets. Due to the marked species differences between rodents and larger animals, substantial efforts have been directed toward establishing large animal models for HD research. These models are pivotal for advancing the discovery of novel therapeutic targets, enhancing effective drug delivery methods, and improving treatment outcomes. We have explored the advantages of utilizing large animal models, particularly pigs, in previous reviews. Since then, however, significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD. In the current review, we provide a comprehensive overview of large animal models of HD, incorporating recent findings regarding the establishment of HD knock-in (KI) pigs and their genetic therapy. We also explore the utilization of large animal models in HD research, with a focus on sheep, non-human primates (NHPs), and pigs. Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.


Asunto(s)
Enfermedad de Huntington , Enfermedades de las Ovejas , Enfermedades de los Porcinos , Animales , Ovinos , Porcinos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/veterinaria , Modelos Animales de Enfermedad , Primates/genética , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedades de las Ovejas/metabolismo , Enfermedades de las Ovejas/patología , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/patología
8.
J Virol ; 98(1): e0078923, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38168677

RESUMEN

Zika virus (ZIKV) infection caused neurological complications and male infertility, leading to the accumulation of antigen-specific immune cells in immune-privileged organs (IPOs). Thus, it is important to understand the immunological responses to ZIKV in IPOs. We extensively investigated the ZIKV-specific T cell immunity in IPOs in Ifnar1-/- mice, based on an immunodominant epitope E294-302 tetramer. The distinct kinetics and functions of virus-specific CD8+ T cells infiltrated into different IPOs were characterized, with late elevation in the brain and spinal cord. Single epitope E294-302-specific T cells can account for 20-60% of the total CD8+ T cells in the brain, spinal cord, and testicle and persist for at least 90 days in the brain and spinal cord. The E294-302-specific TCRαßs within the IPOs are featured with the majority of clonotypes utilizing TRAV9N-3 paired with diverse TRBV chains, but with distinct αß paired clonotypes in 7 and 30 days post-infection. Specific chemokine receptors, Ccr2 and Ccr5, were selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of virus-specific CD8+ T cells after infection. Overall, this study adds to the understanding of virus-specific CD8+ T cell responses for controlling and clearing ZIKV infection in IPOs.IMPORTANCEThe immune-privileged organs (IPOs), such as the central nervous system and testicles, presented pathogenicity and inflammation after Zika virus (ZIKV) infection with infiltrated CD8+ T cells. Our data show that CD8+ T cells keep up with virus increases and decreases in immune-privileged organs. Furthermore, our study provides the first ex vivo comparative analyses of the composition and diversity related to TCRα/ß clonotypes across anatomical sites and ZIKV infection phases. We show that the vast majority of TCRα/ß clonotypes in tissues utilize TRAV9N-3 with conservation. Specific chemokine expression, including Ccr2 and Ccr5, was found to be selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of the virus-specific CD8+ T cells after the infection. Our study adds insights into the anti-viral immunological characterization and chemotaxis mechanism of virus-specific CD8+ T cells after ZIKV infection in different IPOs.


Asunto(s)
Linfocitos T CD8-positivos , Privilegio Inmunológico , Infección por el Virus Zika , Animales , Masculino , Ratones , Encéfalo/inmunología , Encéfalo/virología , Linfocitos T CD8-positivos/inmunología , Receptor de Interferón alfa y beta/genética , Virus Zika , Infección por el Virus Zika/inmunología , Ratones Noqueados , Testículo/inmunología , Testículo/virología
9.
Cell Mol Life Sci ; 81(1): 16, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194085

RESUMEN

The nuclear loss and cytoplasmic accumulation of TDP-43 (TAR DNA/RNA binding protein 43) are pathological hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previously, we reported that the primate-specific cleavage of TDP-43 accounts for its cytoplasmic mislocalization in patients' brains. This prompted us to investigate further whether and how the loss of nuclear TDP-43 mediates neuropathology in primate brain. In this study, we report that TDP-43 knockdown at the similar effectiveness, induces more damage to neuronal cells in the monkey brain than rodent mouse. Importantly, the loss of TDP-43 suppresses the E3 ubiquitin ligase PJA1 expression in the monkey brain at transcriptional level, but yields an opposite upregulation of PJA1 in the mouse brain. This distinct effect is due to the species-dependent binding of nuclear TDP-43 to the unique promoter sequences of the PJA1 genes. Further analyses reveal that the reduction of PJA1 accelerates neurotoxicity, whereas overexpressing PJA1 diminishes neuronal cell death by the TDP-43 knockdown in vivo. Our findings not only uncover a novel primate-specific neurotoxic contribution to the loss of function theory of TDP-43 proteinopathy, but also underscore a potential therapeutic approach of PJA1 to the loss of nuclear TDP-43.


Asunto(s)
Esclerosis Amiotrófica Lateral , Encéfalo , Proteínas de Unión al ADN , Ubiquitina-Proteína Ligasas , Animales , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Haplorrinos , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética , Modelos Animales de Enfermedad
10.
Zool Res ; 45(2): 242-252, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38287905

RESUMEN

PTEN-induced putative kinase 1 (PINK1), a mitochondrial kinase that phosphorylates Parkin and other proteins, plays a crucial role in mitophagy and protection against neurodegeneration. Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease. However, there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration. Additionally, PINK1 knockout pigs ( Sus scrofa) do not appear to exhibit neurodegeneration. In our recent work involving non-human primates, we found that PINK1 is selectively expressed in primate brains, while absent in rodent brains. To extend this to other species, we used multiple antibodies to examine the expression of PINK1 in pig tissues. In contrast to tissues from cynomolgus monkeys ( Macaca fascicularis), our data did not convincingly demonstrate detectable PINK1 expression in pig tissues. Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation, as observed in cultured monkey cells. A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain. Consistently, PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD. These findings provide new evidence that PINK1 expression is specific to primates, underscoring the importance of non-human primates in investigating PINK1 function and pathology related to PINK1 deficiency.


Asunto(s)
Primates , Proteínas Quinasas , Animales , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Primates/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Haplorrinos
11.
Nat Immunol ; 25(2): 307-315, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182667

RESUMEN

The global outbreak of the mpox virus (MPXV) in 2022 highlights the urgent need for safer and more accessible new-generation vaccines. Here, we used a structure-guided multi-antigen fusion strategy to design a 'two-in-one' immunogen based on the single-chain dimeric MPXV extracellular enveloped virus antigen A35 bivalently fused with the intracellular mature virus antigen M1, called DAM. DAM preserved the natural epitope configuration of both components and showed stronger A35-specific and M1-specific antibody responses and in vivo protective efficacy against vaccinia virus (VACV) compared to co-immunization strategies. The MPXV-specific neutralizing antibodies elicited by DAM were 28 times higher than those induced by live VACV vaccine. Aluminum-adjuvanted DAM vaccines protected mice from a lethal VACV challenge with a safety profile, and pilot-scale production confirmed the high yield and purity of DAM. Thus, our study provides innovative insights and an immunogen candidate for the development of alternative vaccines against MPXV and other orthopoxviruses.


Asunto(s)
Monkeypox virus , Vacunas , Animales , Ratones , Proteínas del Envoltorio Viral , Anticuerpos Antivirales , Virus Vaccinia , Antígenos Virales , Inmunidad
13.
IEEE Trans Cybern ; 54(4): 2235-2243, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37022030

RESUMEN

This article addresses the tracking control problem of nonlinear pure-feedback systems, where the control coefficients and the dynamics of the references are unknown. Fuzzy-logic systems (FLSs) are used to approximate the unknown control coefficients and at the same time the adaptive projection law is designed to allow each fuzzy approximation to cross zero, which yields that the proposed method avoids the assumption of using Nussbaum function, that is, the unknown control coefficients never cross zeros. Another adaptive law is designed to estimate the unknown reference and then it is intergraded into the saturated tracking control law to achieve the uniformly ultimately bounded (UUB) performance of the resulting closed-loop system. Simulations show the feasibility and effectiveness of the proposed scheme.

14.
ISA Trans ; 144: 188-200, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949768

RESUMEN

In control systems, multirate sampled data systems are widely used because they improve system performance and adaptability, especially when systems deal with both continuous and discrete signals or entirely asynchronous sampling signals. This paper addresses the challenges of system stability and optimization in these multirate systems, specifically for a certain class of nonlinear systems. Existing controllers, though capable in certain contexts, tend to be overly complex and often lack guidance on appropriate sampling interval selection for these intricate systems. Our approach takes into account both system stability and practical considerations, providing a criterion for selecting multiple sample periods that guarantees system stability, as well as an optimal choice of parameters by Neural Ordinary Differential Equation (NODE) for the linear practical controller that maximizes performance according to a predefined performance index. With the construction of a set of linear stabilizers that are implemented using multirate sampled data, the stability and controller design at three different sampling levels are studied. To demonstrate the effectiveness of our proposed strategy, the simulations and real world application of a single-link robot system are presented.

15.
Proc Natl Acad Sci U S A ; 120(52): e2314193120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109549

RESUMEN

Currently, monoclonal antibodies (MAbs) targeting the SARS-CoV-2 receptor binding domain (RBD) of spike (S) protein are classified into seven classes based on their binding epitopes. However, most of these antibodies are seriously impaired by SARS-CoV-2 Omicron and its subvariants, especially the recent BQ.1.1, XBB and its derivatives. Identification of broadly neutralizing MAbs against currently circulating variants is imperative. In this study, we identified a "breathing" cryptic epitope in the S protein, named as RBD-8. Two human MAbs, BIOLS56 and IMCAS74, were isolated recognizing this epitope with broad neutralization abilities against tested sarbecoviruses, including SARS-CoV, pangolin-origin coronaviruses, and all the SARS-CoV-2 variants tested (Omicron BA.4/BA.5, BQ.1.1, and XBB subvariants). Searching through the literature, some more RBD-8 MAbs were defined. More importantly, BIOLS56 rescues the immune-evaded antibody, RBD-5 MAb IMCAS-L4.65, by making a bispecific MAb, to neutralize BQ.1 and BQ.1.1, thereby producing an MAb to cover all the currently circulating Omicron subvariants. Structural analysis reveals that the neutralization effect of RBD-8 antibodies depends on the extent of epitope exposure, which is affected by the angle of antibody binding and the number of up-RBDs induced by angiotensin-converting enzyme 2 binding. This cryptic epitope which recognizes non- receptor binding motif (non-RBM) provides guidance for the development of universal therapeutic antibodies and vaccines against COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , Anticuerpos Monoclonales , Epítopos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
16.
Cell Rep ; 42(12): 113443, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37979175

RESUMEN

Our previous work has established a knockin (KI) pig model of Huntington's disease (HD) that can replicate the typical pathological features of HD, including selective striatal neuronal loss, reactive gliosis, and axonal degeneration. However, HD KI mice exhibit milder neuropathological phenotypes and lack overt neurodegeneration. By performing RNA sequencing to compare the gene expression profiles between HD KI pigs and mice, we find that genes related to interleukin-17 (IL-17) signaling are upregulated in the HD pig brains compared to the mouse brains. Delivery of IL-17 into the brain striatum of HD KI mice causes greater reactive gliosis and synaptic deficiency compared to HD KI mice that received PBS. These findings suggest that the upregulation of genes related to IL-17 signaling in HD pig brains contributes to severe glial pathology in HD and identify this as a potential therapeutic target for treating HD.


Asunto(s)
Enfermedad de Huntington , Animales , Ratones , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Gliosis/patología , Enfermedad de Huntington/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Porcinos
17.
Anal Chem ; 95(44): 16153-16159, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37877516

RESUMEN

Gold nanoclusters (AuNCs) have shown great promise for in vivo imaging because of their definable structure, tunable photoluminescence (PL), and desired renal clearance. However, current understanding of the responsiveness of AuNCs to biological substances is still limited, which may hamper their biomedical applications. Herein, we explore the oxidation responsiveness of near-infrared II (NIR-II) luminescent AuNCs capped with two different ligands, which can be optimized for high-efficiency NIR-II PL imaging of mice acute kidney injury (AKI) featuring high-level peroxynitrite anions (ONOO-). We found that in the presence of ONOO-, N-acetylcysteine-capped AuNCs (NAC-AuNCs) tended to be oxidized more easily than that capped with the macromolecular mercapto-ß-cyclodextrin (CDS-AuNCs), resulting in the aggregation of NAC-AuNCs into large-sized assemblies, which was not observed in CDS-AuNCs. The oxidation-triggered morphology, composition, and NIR-II PL changes in NAC-AuNCs were then systematically studied. We finally demonstrated that NAC-AuNCs can be implemented for sensitive NIR-II PL imaging of mice AKI, facilitated by the synergetic in situ AuNC aggregation and decreased glomerular filtration rate (GFR) in the injured kidney, which outperforms the methods solely based on the decreased GFR effect. Therefore, this work highlights the critical significance of ligand engineering in AuNCs and may motivate future design of AuNCs for diverse bioimaging applications.


Asunto(s)
Lesión Renal Aguda , Nanopartículas del Metal , Animales , Ratones , Oro/química , Ligandos , Diagnóstico por Imagen , Nanopartículas del Metal/química
18.
ISA Trans ; 143: 59-78, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37758525

RESUMEN

This paper investigates the robust cooperative output regulation problem for heterogeneous lower triangular nonlinear multi-agent systems with an unknown exosystem over jointly connected switching networks. The problem has been studied for the exactly known exosystem over switching networks. However, the existing result for the unknown exosystem is still limited to the static networks. To ensure that all followers acquire the reference trajectory generated by the unknown exosystem through the jointly connected switching networks, by combining a set of auxiliary filtering variables and fixed-time stability theory, an adaptive distributed observer is designed. On the basis of the adaptive distributed observer and the distributed internal model approach, we propose a distributed controller under several standard assumptions to solve the problem. Compared with the similar work subject to the static networks, the controller in this paper is applicable to the more general communication network while weakening the assumptions of the controlled system.

19.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685866

RESUMEN

Huntington's disease (HD) is caused by an expansion of a CAG repeat in the gene that encodes the huntingtin protein (HTT). The exact function of HTT is still not fully understood, and previous studies have mainly focused on identifying proteins that interact with HTT to gain insights into its function. Numerous HTT-interacting proteins have been discovered, shedding light on the functions and structure of HTT. Most of these proteins interact with the N-terminal region of HTT. Among the various HTT-interacting proteins, huntingtin-associated protein 1 (HAP1) and HTT-interacting protein 1 (HIP1) have been extensively studied. Recent research has uncovered differences in the distribution of HAP1 in monkey and human brains compared with mice. This finding suggests that there may be species-specific variations in the regulation and function of HTT-interacting proteins. Understanding these differences could provide crucial insights into the development of HD. In this review, we will focus on the recent advancements in the study of HTT-interacting proteins, with particular attention to the differential distributions of HTT and HAP1 in larger animal models.


Asunto(s)
Encéfalo , Enfermedad de Huntington , Humanos , Animales , Ratones , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Modelos Animales , Especificidad de la Especie
20.
Signal Transduct Target Ther ; 8(1): 358, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37735155

RESUMEN

Tauopathy, characterized by the hyperphosphorylation and accumulation of the microtubule-associated protein tau, and the accumulation of Aß oligomers, constitute the major pathological hallmarks of Alzheimer's disease. However, the relationship and causal roles of these two pathological changes in neurodegeneration remain to be defined, even though they occur together or independently in several neurodegenerative diseases associated with cognitive and movement impairment. While it is widely accepted that Aß accumulation leads to tauopathy in the late stages of the disease, it is still unknown whether tauopathy influences the formation of toxic Aß oligomers. To address this, we generated transgenic cynomolgus monkey models expressing Tau (P301L) through lentiviral infection of monkey embryos. These monkeys developed age-dependent neurodegeneration and motor dysfunction. Additionally, we performed a stereotaxic injection of adult monkey and mouse brains to express Tau (P301L) via AAV9 infection. Importantly, we found that tauopathy resulting from embryonic transgenic Tau expression or stereotaxic brain injection of AAV-Tau selectively promoted the generation of Aß oligomers in the monkey spinal cord. These Aß oligomers were recognized by several antibodies to Aß1-42 and contributed to neurodegeneration. However, the generation of Aß oligomers was not observed in other brain regions of Tau transgenic monkeys or in the brains of mice injected with AAV9-Tau (P301L), suggesting that the generation of Aß oligomers is species- and brain region-dependent. Our findings demonstrate for the first time that tauopathy can trigger Aß pathology in the primate spinal cord and provide new insight into the pathogenesis and treatment of tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Ratones , Macaca fascicularis , Tauopatías/genética , Péptidos beta-Amiloides/genética , Enfermedad de Alzheimer/genética , Médula Espinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...