Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Phytochemistry ; 224: 114149, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38763314

RESUMEN

Farnesylated chalcones were favored by researchers due to their different biological activities. However, only five naturally occurring farnesylated chalcones were described in the literature until now. Here, the farnesylation of six chalcones by the Aspergillus terreus aromatic prenyltransferase AtaPT was reported. Fourteen monofarnesylated chalcones (1F1-1F5, 2F1-2F3, 3F1, 3F2, 4F1, 4F2, 5F1, 6F1, and 6F2) and a difarnesylated product (2F3) were obtained, enriching the diversity of natural farnesylated chalcones significantly. Ten of them are C-farnesylated products, which complement O-farnesylated chalcones by chemical synthesis. Fourteen products have not been reported prior to this study. Nine of the produced compounds (1F2-1F5, 2F1-2F3, 5F1, and 6F1) exhibited inhibitory effect on α-glucosidase with IC50 values ranging from 24.08 ± 1.44 to 190.0 ± 0.28 µM. Among them, compounds 2F3 with IC50 value at 24.08 ± 1.44 µM and 1F4 with IC50 value at 30.09 ± 0.59 µM showed about 20 times stronger than the positive control acarbose with an IC50 at 536.87 ± 24.25 µM in α-glucosidase inhibitory assays.

2.
J Agric Food Chem ; 72(14): 8018-8026, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557039

RESUMEN

Phloretin is widely found in fruit and shows various biological activities. Here, we demonstrate the dimethylallylation, geranylation, and farnesylation, particularly the first dimethylallylation at the nonaromatic carbon of phloretin (1) by the fungal prenyltransferase AnaPT and its mutants. F265 was identified as a key amino acid residue related to dimethylallylation at the nonaromatic carbon of phloretin. Mutants AnaPT_F265D, AnaPT_F265G, AnaPT_F265P, AnaPT_F265C, and AnaPT_F265Y were discovered to generally increase prenylation activity toward 1. AnaPT_F265G catalyzes the O-geranylation selectively at the C-2' hydroxyl group, which involves an intramolecular hydrogen bond with the carbonyl group of 1. Seven products, 1D5, 1D7-1D9, 1G2, 1G4, and 1F2, have not been reported prior to this study. Twelve compounds, 1D3-1D9, 1G1-1G3, and 1F1-1F2, exhibited potential inhibitory effects on α-glucosidase with IC50 values ranging from 11.45 ± 0.87 to 193.80 ± 6.52 µg/mL. Among them, 1G1 with an IC50 value of 11.45 ± 0.87 µg/mL was the most potential α-glucosidase inhibitor, which is about 30 times stronger than the positive control acarbose with an IC50 value of 346.63 ± 15.65 µg/mL.


Asunto(s)
Dimetilaliltranstransferasa , Floretina , Floretina/farmacología , Indoles/química , Carbono , Catálisis , Prenilación
3.
J Nat Prod ; 87(4): 1171-1178, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38557026

RESUMEN

The potential of natural products as pharmaceutical and agricultural agents is based on their large structural diversity, resulting in part from modifications of the backbone structure by tailoring enzymes during biosynthesis. Flavin-dependent monooxygenases (FMOs), as one such group of enzymes, play an important role in the biosynthesis of diverse natural products, including cyclodipeptide (CDP) derivatives. The FMO PboD was shown to catalyze C-3 hydroxylation at the indole ring of cyclo-l-Trp-l-Leu in the biosynthesis of protubonines, accompanied by pyrrolidine ring formation. PboD substrate promiscuity was investigated in this study by testing its catalytic activity toward additional tryptophan-containing CDPs in vitro and biotransformation in Aspergillus nidulans transformants bearing a truncated protubonine gene cluster with pboD and two acetyltransferase genes. High acceptance of five CDPs was detected for PboD, especially of those with a second aromatic moiety. Isolation and structure elucidation of five pyrrolidine diketopiperazine products, with two new structures, proved the expected stereospecific hydroxylation and pyrrolidine ring formation. Determination of kinetic parameters revealed higher catalytic efficiency of PboD toward three CDPs consisting of aromatic amino acids than of its natural substrate cyclo-l-Trp-l-Leu. In the biotransformation experiments with the A. nidulans transformant, modest formation of hydroxylated and acetylated products was also detected.


Asunto(s)
Aspergillus , Dicetopiperazinas , Aspergillus/enzimología , Aspergillus/química , Aspergillus nidulans/enzimología , Aspergillus nidulans/metabolismo , Dicetopiperazinas/química , Dicetopiperazinas/metabolismo , Flavinas/metabolismo , Hidroxilación , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Estructura Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Especificidad por Sustrato
4.
J Nat Prod ; 87(4): 966-975, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38441877

RESUMEN

Ten new (1-10) and nine known (11-19) austocystins, along with four known anthraquinones (20-23), were isolated from the culture of Aspergillus ustus NRRL 5856 by bioactivity-guided fractionation. The structures of the new compounds were elucidated by spectroscopic data analysis, X-ray crystallographic study, the modified Mosher's method, [Rh2(OCOCF3)4]-induced ECD spectral analysis, and comparison of the experimental ECD spectra with those of the similar analogues. Compounds 1-8 represent the first examples of austocystins with a C-4' oxygenated substitution. The absolute configuration of 1″-hydroxy austocystin D (11) was determined by single-crystal X-ray diffraction and consideration of its biosynthetic origin. Compounds 5, 9, and 11 exhibited significant inhibitory effects against the proliferation of ConA-induced T cells with IC50 values of 1.1, 1.0, and 0.93 µM, respectively. Furthermore, these compounds suppressed the expression of IL-6 in a dose-dependent manner. Compounds 10-12 and 14 showed pronounced cytotoxicities against MCF-7 with IC50 values of 3.9, 1.3, 0.46, and 2.3 µM, respectively.


Asunto(s)
Aspergillus , Inmunosupresores , Aspergillus/química , Humanos , Inmunosupresores/farmacología , Inmunosupresores/química , Inmunosupresores/aislamiento & purificación , Estructura Molecular , Cristalografía por Rayos X , Interleucina-6/metabolismo , Antraquinonas/farmacología , Antraquinonas/química , Animales , Ensayos de Selección de Medicamentos Antitumorales , Linfocitos T/efectos de los fármacos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos
5.
Org Lett ; 26(6): 1160-1165, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38319976

RESUMEN

Epipyrone A is a unique C-galactosylated 4-hydroxy-2-pyrone derivative with an antifungal potential from the fungus Epicoccum nigrum. We elucidated its biosynthesis via heterologous expression and characterized an unprecedented membrane-bound pyrone C-glycosyltransferase biochemically. Molecular docking and mutagenesis experiments suggested a possible mechanism for the heterocyclic C-glycosylation and the importance of a transmembrane helix for its catalysis. These results expand the repertoire of C-glycosyltransferases and provide new insights into the formation of C-glycosides in fungi.


Asunto(s)
Glicosiltransferasas , Pironas , Glicosiltransferasas/metabolismo , Pironas/farmacología , Pironas/química , Simulación del Acoplamiento Molecular , Glicosilación , Glicósidos/química , Catálisis
6.
Fitoterapia ; 173: 105808, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38168567

RESUMEN

Four new steroidal glycosides (1-4), including two steroidal saponins named lililancifoloside B and C (1-2), one pregnane glycoside named lililancifoloside D (3), and one C22-steroidal lactone glycoside named lililancifoloside E (4), together with five known ones (5-9), were isolated from the bulbs of Lilium lancifolium Thunb. By using spectroscopic analysis, including 1D, 2D NMR, and HR-ESI-MS, the structures of 1-4 were elucidated. All isolates were tested for their cytotoxic potential against the MCF-7, MDA-MB-231, HepG2, and A549 cell lines. Compound 6 distinguished out among them, IC50 values of 3.31, 5.23, 1.78, and 1.49 µM against the four cell lines, respectively. Other compounds such as compound 3, 5, and 9 have also shown specific cytotoxic activity. Next, studies showed that compound 6 might cause HepG2 cells to undergo a cell cycle arrest during the G2/M phase and apoptosis.


Asunto(s)
Lilium , Saponinas , Lilium/química , Estructura Molecular , Glicósidos/farmacología , Glicósidos/química , Saponinas/farmacología , Extractos Vegetales/química
7.
J Fish Biol ; 104(1): 44-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658731

RESUMEN

The cobia Rachycentron canadum, mainly distributed in the warm waters of tropical and subtropical regions around the world, remains a fish of considerable economic importance. Detailed diversity and the number of microsatellite sequences in the cobia genome are still unintelligible. The primary aim of this work was to identify and quantify the miscellaneous SSR sequences in the cobia genome. More than 280,000 sequences were sequenced and screened using next-generation sequencing technology and microsatellite identification. Perfect mononucleotide repeats, dinucleotide microsatellites, and trinucleotide microsatellites contain (A)10 /(T)10 , (AC)6 /(TG)6 , and (AAT)5-32 as the largest number of motifs in each type of microsatellite, respectively. The tetranucleotide and pentanucleotide microsatellites (TTM and PTM) consist of the largest number of motifs of both (ATCT)5-32 and (TCAT)5-31 in TTMs, and (CTCTC)5-9 in PTMs, whereas the hexanucleotide microsatellites are rarely observed in the cobia genome. All c. 38000 sequences of composite microsatellites are extremely diverse, including compound (11.71%), interrupted compound (71.77%), complex (0.45%), and interrupted complex (16.07%). In this study, we developed a convenient and useful recording system for writing down and categorizing diverse composite microsatellite types. This system will provide great support for exploring repeat origins, evolutionary mechanisms, and the application of polymorphic microsatellites.


Asunto(s)
Genoma , Perciformes , Animales , Repeticiones de Microsatélite , Perciformes/genética , Peces/genética
8.
Methods Enzymol ; 693: 231-265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37977732

RESUMEN

Bacterial cytochrome P450 enzymes catalyze various and often intriguing tailoring reactions during the biosynthesis of natural products. In contrast to the majority of membrane-bound P450 enzymes from eukaryotes, bacterial P450 enzymes are soluble proteins and therefore represent excellent candidates for in vitro biochemical investigations. In particular, cyclodipeptide synthase-associated cytochrome P450 enzymes have recently gained attention due to the broad spectrum of reactions they catalyze, i.e. hydroxylation, aromatization, intramolecular C-C bond formation, dimerization, and nucleobase addition. The latter reaction has been described during the biosynthesis of guanitrypmycins, guatrypmethines and guatyromycines in various Streptomyces strains, where the nucleobases guanine and hypoxanthine are coupled to cyclodipeptides via C-C, C-N, and C-O bonds. In this chapter, we provide an overview of cytochrome P450 enzymes involved in the C-C coupling of cyclodipeptides with nucleobases and describe the protocols used for the successful characterization of these enzymes in our laboratory. The procedure includes cloning of the respective genes into expression vectors and subsequent overproduction of the corresponding proteins in E. coli as well as heterologous expression in Streptomyces. We describe the purification and in vitro biochemical characterization of the enzymes and protocols to isolate the produced compounds for structure elucidation.


Asunto(s)
Escherichia coli , Streptomyces , Escherichia coli/genética , Escherichia coli/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Streptomyces/metabolismo , Catálisis
9.
Front Immunol ; 14: 1223810, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849761

RESUMEN

Objective: This study aimed to explore the potential causal link between three specific types of occupational exposure on rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Method: A Two-sample Mendelian randomization (TSMR) analysis, comprising univariate MR (UVMR) and multivariate MR (MVMR) analyses, was performed to investigate the potential causal association between three types of occupational exposures, jobs involving mainly walking or standing (JWS), jobs involving heavy manual or physical work (JMP), and jobs involving shift work(JSW) on RA and AS. Genetic variants for genome-wide association studies (GWAS) of occupational exposure and AS were obtained from the UK Biobank. GWAS summary data for RA were obtained from FinnGen Biobank analysis. For UVMR, six methods of Inverse Variance Weighted (IVW), MR-Egger, Weighted Mode, Weighted Median, Simple Mode, MR pleiotropy residual sum, and outlier (MR-PRESSO) were used for the analysis. The MVMR was analyzed using the IVW model as well as the MR-Egger model. Results: The UVMR suggested no causal relationship between the three occupational exposure and RA [IVW: P=0.59,0.21,0.63] or AS [IVW: P=0.43,0.57,0.04], as did the bidirectional MR [IVW: P=0.73,0.70,0.16], [IVW: P=0.65,0.68,0.74]. Although unadjusted MVMR suggested a causal relationship between JMP and AS [IVW: OR = 1.01, 95% CI = 1.00- 1.02, p = 0.02], the adjusted MVMR denied this relationship and concluded that there was no causal relationship between the other occupational exposure and either RA or AS. Conclusion: Our MR analysis did not establish a direct causal relationship between certain occupational exposures and either RA or AS.


Asunto(s)
Artritis Reumatoide , Exposición Profesional , Espondilitis Anquilosante , Humanos , Espondilitis Anquilosante/etiología , Espondilitis Anquilosante/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Artritis Reumatoide/etiología , Artritis Reumatoide/genética , Exposición Profesional/efectos adversos
10.
Appl Microbiol Biotechnol ; 107(22): 6887-6895, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37713115

RESUMEN

Prenyltransferases (PTs) from the dimethylallyl tryptophan synthase (DMATS) superfamily are known as efficient biocatalysts and mainly catalyze regioselective Friedel-Crafts alkylation of tryptophan and tryptophan-containing cyclodipeptides (CDPs). They can also use other unnatural aromatic compounds as substrates and play therefore a pivotal role in increasing structural diversity and biological activities of a broad range of natural and unnatural products. In recent years, several prenylated dimeric CDPs have been identified with wide range of bioactivities. In this study, we demonstrate the production of prenylated dimeric CDPs by chemoenzymatic synthesis with a known promiscuous enzyme EchPT1, which uses cyclo-L-Trp-L-Ala as natural substrate for reverse C2-prenylation. High product yields were achieved with EchPT1 for C3-N1' and C3-C3' linked dimers of cyclo-L-Trp-L-Trp. Isolation and structural elucidation confirmed the product structures to be reversely C19/C19'-mono- and diprenylated cyclo-L-Trp-L-Trp dimers. Our study provides an additional example for increasing structural diversity by prenylation of complex substrates with known biosynthetic enzymes. KEY POINTS: • Chemoenzymatic synthesis of prenylated cyclo-L-Trp-L-Trp dimers • Same prenylation pattern and position for cyclodipeptides and their dimers. • Indole prenyltransferases such as EchPT1 can be widely used as biocatalysts.

11.
Org Lett ; 25(34): 6311-6316, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607357

RESUMEN

p-Terphenyls contain a central benzene ring substituted with two phenyl residues at its para positions. Heterologous expression of a biosynthetic gene cluster from Aspergillus ustus led to the formation of four new p-terphenyl derivatives. Gene deletion experiments proved the formation and reductive dehydration of the terphenylquinone atromentin, followed by O-methylation and prenylation. Spontaneous dibenzofuran formation led to the final products. These results provide new insights into the biosynthesis of p-terphenyls in fungi and dibenzofuran formation in the biosynthesis of numerous natural products.


Asunto(s)
Deshidratación , Compuestos de Terfenilo , Aspergillus , Prenilación , Dibenzofuranos
12.
J Agric Food Chem ; 71(29): 11104-11109, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37434536

RESUMEN

Four undescribed plant growth inhibitory indole derivatives, colletotriauxins A-D (1-4), along with two known analogues indole-3-acetic acid (IAA) (5) and its amide indole-3-acetamide (6), were isolated from the phytopathogenic fungus Colletotrichum gloeosporioides NRRL 45420. Their structures were elucidated by NMR and MS analyses. 1 and 2 are rhamnosides of indole-3-ethanol (tryptophol) and its methylated derivative, respectively. In the structures of 3 and 4, the two terminal hydroxyl groups of hexitol and pentane-1,2,3,4,5-pentol are connected with indole-3-(2-methyl)-acetyl and acetyl moieties. Compounds 1-6 inhibit Lepidium sativum seedling growth. The inhibition activities of colletotriauxins for stem growth were even stronger than IAA, with compounds 3 and 4 as the most active ones. These results suggested that colletotriauxins could serve as potential candidates as herbicides.


Asunto(s)
Colletotrichum , Inhibidores de Crecimiento , Indoles/química , Enfermedades de las Plantas/microbiología
13.
Appl Microbiol Biotechnol ; 107(15): 4845-4852, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37326682

RESUMEN

The fungal prenyltransferase ShPT from Stereum hirsutum was believed to prenylate 4-hydroxybenzyl alcohol and thereby be involved in the vibralactone biosynthesis. In this study, we demonstrate that hydroxynaphthalenes instead of benzyl alcohol or aldehyde were accepted by ShPT for regular C-prenylation in the presence of both dimethylallyl and geranyl diphosphate. Although the natural substrate of ShPT remains unknown, our results provide one additional prenyltransferase from basidiomycetes, which are less studied, in comparison to those from other sources. Furthermore, this study expands the chemical toolbox for regioselective production of prenylated naphthalene derivatives. KEY POINTS: •Basidiomycetous prenyltransferase •Biochemical characterization •A DMATS prenyltransferase prenylating hydroxynaphthalene derivatives.


Asunto(s)
Dimetilaliltranstransferasa , Dimetilaliltranstransferasa/metabolismo , Naftoles , Prenilación , Especificidad por Sustrato
14.
J Nat Prod ; 86(7): 1779-1785, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37382166

RESUMEN

The hydroxylated and diacetylated cyclo-l-Trp-l-Leu derivative (-)-protubonine B was isolated from a culture of Aspergillus ustus 3.3904. Genome mining led to the identification of a putative biosynthetic gene cluster coding for a bimodular nonribosomal peptide synthetase, a flavin-dependent monooxygenase, and two acetyltransferases. Heterologous expression of the pbo cluster in Aspergillus nidulans showed that it is responsible for the formation of the isolated metabolite. Gene deletion experiments and structural elucidation of the isolated intermediates confirmed the biosynthetic steps. In vitro experiments with the recombinant protein proved that the flavin-dependent oxygenase is responsible for stereospecific hydroxylation at the indole ring accompanied by pyrrolidine ring formation.


Asunto(s)
Aspergillus nidulans , Oxigenasas , Oxigenasas/genética , Hidroxilación , Aspergillus nidulans/genética , Flavinas/genética , Familia de Multigenes
15.
Angew Chem Int Ed Engl ; 62(28): e202304252, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157140

RESUMEN

The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,ß'-disulfide formation in ETPs is not well-determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho-quinone methide (o-QM) intermediate and prove its involvement in the carbon-sulfur migration from an α,α'- to an α,ß'-disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD-dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,ß'-disulfide was initiated by Gln140 triggering proton abstraction for generation of the essential o-QM intermediate, accompanied by ß'-acetoxy elimination. Subsequent attack on the α,α'-disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs.


Asunto(s)
Disulfuros , Indolquinonas , Indolquinonas/química
16.
ACS Synth Biol ; 12(6): 1804-1812, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37183364

RESUMEN

Cyclodipeptides from fungi and bacteria are often modified by different tailoring enzymes. They display various biological and pharmacological activities, and some derivatives are used as drugs. In a previous study, we elucidated the function of the silent guatrypmethine gene cluster from Streptomyces cinnamoneus containing a cyclodipeptide synthase (CDPS) core gene gtmA and four genes gtmB-gtmE for tailoring enzymes. The latter are used in this study for the design of modified cyclodipeptides by genetic engineering. Addition of six different cyclodipeptides to the Streptomyces albus transformant harboring gtmB-gtmE led to the detection of different pathway products. Coexpression of five CDPS genes from four Streptomyces strains with gtmB-gtmE resulted in the formation of diketopiperazine derivatives, differing in their modification stages. Our results demonstrate the potential of rational gene combination to increase structural diversity.


Asunto(s)
Dicetopiperazinas , Streptomyces , Dicetopiperazinas/metabolismo , Óxido Nítrico Sintasa , Streptomyces/metabolismo , Péptido Sintasas/metabolismo
17.
Org Lett ; 25(22): 4092-4097, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37249271

RESUMEN

Most naturally occurring indole diterpenes share a 6/5/5/6/6/6 hexacyclic ring system, while a 6/8/6/6/6 pentacyclic skeleton is occasionally observed. In this study, we demonstrate the formation of an eight-membered C-N heteroring via nonenzymatic flavin-catalyzed oxidative indole ring opening. More interestingly, 18O-labeled experiments proved that the two incorporated oxygen atoms are predominantly originated from water instead of molecular oxygen. In this process, the oxidized form of flavin catalyzes two successive oxidations of amines to imines with involvement of hydrolysis for the ring expansion. The reduced flavin is then regenerated by oxidation with molecular oxygen to form H2O2.


Asunto(s)
Oxígeno , Agua , Solventes , Peróxido de Hidrógeno , Oxidación-Reducción , Flavinas/metabolismo , Indoles , Catálisis , Estrés Oxidativo
18.
J Nat Prod ; 86(4): 1053-1060, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37043818

RESUMEN

The highly oxygenated indole alkaloid speradine F (4) with a 6/5/6/5/5/5 hexacyclic skeleton was isolated from a culture of Penicillium palitans, together with its precursors ß-cyclopiazonic acid (ß-CPA, 5) and cyclopiazonic acid (CPA, 1). Gene deletion and heterologous expression led to the identification of the responsible five-gene spe cluster for the speradine skeleton formation. Precursor supply experiments proved that 1 was enzymatically converted, via 2-oxoCPA (2), to speradine A (3), which subsequently undergoes multistep nonenzymatic hydroxylations to 4.


Asunto(s)
Alcaloides Indólicos , Penicillium , Oxidación-Reducción , Penicillium/metabolismo
19.
Angew Chem Int Ed Engl ; 62(18): e202217212, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36867112

RESUMEN

Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of the biosynthetic pathway of pretrichodermamide A (1) in Trichoderma hypoxylon revealed a flexible catalytic machinery of multiple enzymes for generating ETP diversity. Seven tailoring enzymes encoded by the tda cluster are involved in 1 biosynthesis, that is, four P450s TdaB and TdaQ for 1,2-oxazine formation, TdaI for C7'-hydroxylation, and TdaG for C4, C5-epoxidation, two methyltransferases TdaH for C6'- and TdaO for C7'-O-methylation, and a reductase TdaD for furan opening. Gene deletions led to the identification of 25 novel ETPs, including 20 shunt products, indicating the catalytic promiscuity of Tda enzymes. Particularly, TdaG and TdaD accept various substrates and catalyze regiospecific reactions at different stages of 1 biosynthesis. Our study not only uncovers a hidden library of ETP alkaloids, but also helps to understand the hidden chemical diversity of natural products by pathway manipulation.


Asunto(s)
Metiltransferasas , Oxazinas/química , Estructura Molecular , Metiltransferasas/metabolismo , Modelos Moleculares
20.
J Agric Food Chem ; 71(11): 4675-4682, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36893066

RESUMEN

Geranylated chalcones mainly exist in plants, and many of them have attracted attention because of their diverse pharmacological and biological activities. Herein, we report geranylation of eight chalcones by the Aspergillus terreus aromatic prenyltransferase AtaPT. Ten new mono-geranylated enzyme products (1G-5G, 6G1, 6G2, 7G, 8G1, and 8G2) were obtained. Most of the products are C-geranylated products with prenyl moieties at ring B. In comparison, plant aromatic prenyltransferases usually catalyze the geranylation at ring A. Therefore, AtaPT can be used complementarily for chalcone geranylation to increase the structural diversity of small molecules. In addition, seven compounds (1G, 3G, 4G, 6G1, 7G, 8G1, and 8G2) exhibited a potential inhibitory effect on α-glucosidase with the IC50 values ranging from 45.59 ± 3.48 to 82.85 ± 2.15 µg/mL. Among them, compound 7G (45.59 ± 3.48 µg/mL) was the most potential α-glucosidase inhibitor, which is about seven times stronger than the positive control acarbose (IC50 = 346.63 ± 15.65 µg/mL).


Asunto(s)
Chalcona , Chalconas , Dimetilaliltranstransferasa , Dimetilaliltranstransferasa/genética , Estructura Molecular , Chalconas/farmacología , Inhibidores de Glicósido Hidrolasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...