Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39125802

RESUMEN

The hair follicle is the basis of hair regeneration, and the dermal papilla is one of the most important structures in hair regeneration. New intervention and reversal strategies for hair loss may arise due to the prevention of oxidative stress. GC/MS analysis was used to determine the compounds contained in NSO. Then, NSO was applied to DPC for cell proliferation and oxidative stress experiments. RNA-seq was performed in cells treated with NSO and minoxidil. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify the gene expression. The effects of NSO on hair length, weight, the number and depth of hair follicles, and the dermal thickness were also studied. GC/MS analysis showed that the main components of NSO were eicosapentaenoic acid, palmitic acid, and linoleic acid. NSO promotes DPC proliferation and reduces H2O2-mediated oxidative damage. NSO can also activate hair growth-related pathways and upregulate antioxidant-related genes analyzed by gene profiling. The topical application of NSO significantly promotes hair growth and increases hair length and weight in mice. NSO extract promotes hair growth and effectively inhibits oxidative stress, which is beneficial for the prevention and treatment of hair loss.


Asunto(s)
Proliferación Celular , Folículo Piloso , Cabello , Estrés Oxidativo , Proliferación Celular/efectos de los fármacos , Animales , Humanos , Folículo Piloso/efectos de los fármacos , Folículo Piloso/metabolismo , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/citología , Ratones , Estrés Oxidativo/efectos de los fármacos , Cabello/efectos de los fármacos , Cabello/crecimiento & desarrollo , Antioxidantes/farmacología , Dermis/metabolismo , Dermis/citología , Dermis/efectos de los fármacos
2.
Sci Data ; 11(1): 780, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013888

RESUMEN

Euglena gracilis (E. gracilis), pivotal in the study of photosynthesis, endosymbiosis, and chloroplast development, is also an industrial microalga for paramylon production. Despite its importance, E. gracilis genome exploration faces challenges due to its intricate nature. In this study, we achieved a chromosome-level de novo assembly (2.37 Gb) using Illumina, PacBio, Bionano, and Hi-C data. The assembly exhibited a contig N50 of 619 Kb and scaffold N50 of 1.12 Mb, indicating superior continuity. Approximately 99.83% of the genome was anchored to 46 chromosomes, revealing structural insights. Repetitive elements constituted 58.84% of the sequences. Functional annotations were assigned to 39,362 proteins, enhancing interpretative power. BUSCO analysis confirmed assembly completeness at 80.39%. This first high-quality E. gracilis genome offers insights for genetics and genomics studies, overcoming previous limitations. The impact extends to academic and industrial research, providing a foundational resource.


Asunto(s)
Euglena gracilis , Euglena gracilis/genética , Cromosomas , Microalgas/genética , Anotación de Secuencia Molecular , Glucanos
3.
J Trace Elem Med Biol ; 85: 127483, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878467

RESUMEN

INTRODUCTION: As an essential trace element, Copper (Cu) participates in numerous physiological and biological reactions in the body. Cu is closely related to heart health, and an imbalance of Cu will cause cardiac dysfunction. The research aims to examine how Cu deficiency affects the heart, assess mitochondrial function in the hearts, and disclose possible mechanisms of its influence. METHODS: Weaned mice were fed Cu-deficient diets and intraperitoneally given copper sulfate (CuSO4) to correct the Cu deficiency. The pathological change of the heart was assessed using histological inspection. Cardiac function and oxidative stress levels were evaluated by biochemical assay kits. ELISA and ATP detection kits were used to detect the levels of complexes I-IV in the mitochondrial respiratory chain (MRC) and ATP, respectively. Real time PCR was utilized to determine mRNA expressions, and Western blotting was adopted to determine protein expressions, of molecules related to mitochondrial fission and fusion. RESULTS: Cu deficiency gave rise to elevated heart index, cardiac histological alterations and oxidation injury, increased serum levels of creatine kinase (CK), lactic dehydrogenase (LDH), and creatine kinase isoenzyme MB (CK-MB) together with increased malondialdehyde (MDA) production, decreased the glutathione (GSH), Superoxide Dismutase (SOD), and Catalase (CAT) activities or contents. Besides, Cu deficiency caused mitochondrial damage characterized by decreased contents of complexes I-IV in the MRC and ATP in the heart. In the meantime, Cu deficiency also reduced protein and mRNA expressions of factors associated with mitochondrial fusion, including Mfn1 and Mfn2, while significantly increased factors Drip1 and Fis1 related to mitochondrial fission. However, adding CuSO4 improved the above changes significantly. CONCLUSION: According to research results, Cu deficiency can cause heart damage in mice, along with oxidative damage and mitochondrial dysfunction, which are closely related to mitochondrial fusion and fission disorders.


Asunto(s)
Cobre , Dinámicas Mitocondriales , Estrés Oxidativo , Animales , Cobre/deficiencia , Cobre/metabolismo , Ratones , Masculino , Miocardio/metabolismo , Miocardio/patología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología
4.
Toxicon ; 247: 107812, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38908527

RESUMEN

"Tannins" are compounds that belong to a group of secondary metabolites found in plants. They have a polyphenolic nature and exhibit active actions as first line defenses against invading pathogens. Several studies have demonstrated the multiple activities of tannins, highlighting their effectiveness as broad-spectrum antimicrobial agents. Tannins have reported as antibacterial, antifungal, and antiviral compounds by preventing enzymatic activities and inhibiting the synthesis of nucleic acids. Additionally, tannins primarily strengthen the plant cell wall, making it almost impenetrable to harmful pathogens. Most tannins are synthesized via the phenylpropanoid pathway to become secondary metabolites. Increased uptake of tannins has the potential to provide permanent immunity to subsequent infections by strengthening cell walls and producing antimicrobial compounds. Tannins also demonstrate a synergistic response with other defense-related molecules, such as phytoalexins and pathogenesis-related proteins, including antimicrobial peptides. Studying the mechanisms mediated by tannins on pathogen behaviors would be beneficial in stimulating plant defense against pathogens. This understanding could help explain the occurrence of diseases and outbreaks and enable potential mitigation in both natural and agricultural ecosystems.


Asunto(s)
Antiinfecciosos , Taninos , Taninos/farmacología , Antiinfecciosos/farmacología , Plantas
5.
Zootaxa ; 5406(4): 535-550, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38480130

RESUMEN

A new species of the genus Dugesia (Platyhelminthes, Tricladida, Dugesiidae) from Xiangxi River, Shennongjia Forestry District, Hubei Province, China, is described on the basis of an integrative approach, involving morphology, and molecular systematics. The new species Dugesia saccaria A-T. Wang & Sluys, sp. nov. is characterized by the following features: a dumb-bell-shaped, muscularized hump located just anterior to the knee-shaped bend in the bursal canal; a ventrally displaced ejaculatory duct, which, however, opens terminally through the dorsal portion of the blunt tip of the penis papilla; a ventrally located seminal vesicle, giving rise to a vertically running duct that eventually curves downwards to communicate with the ejaculatory duct via a small diaphragm; oviducts opening asymmetrically into the dorsal portion of the common atrium and at the knee-shaped part of the bursal canal. The phylogenetic position of the new species was determined using four molecular markers (18S rDNA; ITS-1; 28S rDNA; COI), which suggested that it groups with other species of Dugesia from the Australasian and Oriental biogeographical regions.


Asunto(s)
Planarias , Masculino , Animales , Planarias/anatomía & histología , Filogenia , Pene , China , ADN Ribosómico
6.
J Cosmet Dermatol ; 23(5): 1850-1861, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38327116

RESUMEN

BACKGROUND: The oxidative stress induced by ultraviolet (UV) radiation is a pivotal factor in skin aging and can even contribute to the development of skin cancer. AIM: This study explored the antioxidant effect and mechanism of water-soluble intracellular extract (WIE) of Desmodesmus sp.YT (YT), aiming to develop a natural antioxidant suitable for incorporation into cosmetics. METHODS: The study evaluated the scavenging capacity of YT-WIE against free radicals and assessed its impact on human skin fibroblasts (HSF) cell viability and UV resistance using Cell Counting Kit-8 (CCK-8). Transcriptome sequencing was employed to elucidate the mechanism of action, while RT-qPCR and western blot were used to validate the expression of key genes. RESULTS: YT-WIE displayed robust antioxidant activity, demonstrating potent scavenging abilities against 2,2-diphenyl-1-picrylhydrazyl (DPPH; IC50 = 0.55 mg mL-1), 2,2'-Azino-bis (3 ethylbenzothiazoline-6-sulfonic acid; ABTS; IC50 = 3.11 mg mL-1), Hydroxyl (·OH; IC50 = 2.21 mg mL-1), and Superoxide anion (O2 •-; IC50 = 0.98 mg mL-1). Furthermore, compared to the control group, the YT-WIE group exhibited an 89.30% enhancement in HSF viability and a 44.63% increase in survival rate post-UV irradiation. Significant upregulation of antioxidant genes (GCLC, GCLM, TXNRD1, HMOX1, NQO1) was observed with YT-WIE treatment at 400 µg mL-1, with fold increases ranging from 1.13 to 5.85 times. CONCLUSION: YT-WIE demonstrated considerable potential as an antioxidant, shielding human cells from undue oxidative stress triggered by external stimuli such as UV radiation. This suggests its promising application in cosmetics antioxidants.


Asunto(s)
Antioxidantes , Fibroblastos , Estrés Oxidativo , Piel , Rayos Ultravioleta , Humanos , Fibroblastos/efectos de la radiación , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Rayos Ultravioleta/efectos adversos , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Piel/efectos de la radiación , Piel/efectos de los fármacos , Piel/citología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Agua , Células Cultivadas
7.
Animals (Basel) ; 13(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958120

RESUMEN

Aquaculture has become the fastest growing sector in global agriculture. The environmental degradation, diseases, and high density of mariculture has made for an inevitable shift in mariculture production from coastal to deep-sea areas. The influence that traditional coastal and emerging deep-sea farming environments exert on aquatic growth, immunity and gut microbial flora is unclear. To address this question, we compared the growth performance, physiological indicators and intestinal microbiological differences of deep-sea and coastal aquaculture in the Guangxi Beibu Gulf of China. The results showed that the growth performance and the complement of C3 and C4 (C3, C4), superoxide dismutase (SOD), and lysozyme (LYS), these physiological and biochemical indicators in the liver, kidney, and muscle of Trachinotus ovatus (T. ovatus), showed significant differences under different rearing conditions. Metagenome sequencing analysis showed Ascomycota, Pseudomonadota, and Bacillota were the three dominant phyla, accounting for 52.98/53.32 (coastal/deep sea), 24.30/22.13, and 10.39/11.82%, respectively. Aligned against the CARD database, a total of 23/2 (coastal/deep-sea) antibiotic resistance genes were screened and grouped into 4/2 genotypes. It indicated that compared with deep-sea fish, higher biological oxygen levels (3.10 times), inorganic nitrogen (110.00 times) and labile phosphate levels (29.00 times) in coastal waters might contributed to the existence of eutrophication with antibiotic resistance. The results of the study can provide complementary data on the study of the difference between deep-sea farming and traditional coastal farming, serving as a reference to future in-depth work on the transformation of fisheries development and scientific standardization of deep-sea farming.

8.
Bioresour Technol ; 388: 129753, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37696340

RESUMEN

The quorum quenching (QQ) strategy has attracted increasing attention in membrane bioreactor (MBR) fouling control. However, the applicable QQ strain remains limited. This study investigated the antibiofouling performance of a new indigenous QQ bacterium, Delftia sp. JL5 (JL5) in MBR. JL5 produces intracellular acylase that irreversibly degrades N-acylhomoserine lactones (AHL), inhibited biofilm formation of quorum-sensing bacteria from activated sludge. During 120 days of operation, immobilized JL5 substantially delayed MBR biofouling by 2.1 and 2.9 times, at a flux rate of 30 L/(m2·h) and 20 L/(m2·h), respectively. A slower flux rate was favorable for effective mitigation of JL5 biofouling. JL5 reduced the AHL and extracellular polymeric substances of biocake without affecting the efficiency of waste removal. The presence of JL5 significantly changed the microbial structure of the membrane biocake, but not the activated sludge. Collectively, high activity, durability, and acid tolerance credited JL5 as a promising strain for QQ-MBR.

9.
Plants (Basel) ; 12(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631135

RESUMEN

The DUF668 gene performs a critical role in mitigating the impact of abiotic stress factors. In this study, we identified 30 DUF668 genes in a soybean genome, distributed across fifteen chromosomes. The phylogenetic analysis classified the DUF668 genes into three groups (group I, group II, and group III). Interestingly, gene structure analysis illustrated that several GmDUF668 genes were without introns. Furthermore, the subcellular localization results suggested that GmDUF668 proteins were present in the nucleus, mitochondria, cytoplasm, and plasma membrane. GmDUF668 promoters were analyzed in silico to gain insight into the presence of regulatory sequences for TFs binding. The expression profiling illustrated that GmDUF668 genes showed expression in leaves, roots, nodules, and flowers. To investigate their response to salt stress, we utilized the RNA sequencing data of GmDUF668 genes. The results unveiled that GmDUF668-8, GmDUF668-20, and GmDUF668-30 genes were upregulated against salt stress treatment. We further validated these findings using qRT-PCR analysis. These findings provide a scientific basis to explore the functions of GmDUF668 genes against different stress conditions.

10.
Antioxidants (Basel) ; 12(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37507872

RESUMEN

Alopecia has gradually become a problem that puzzles an increasing number of people. Dermal papilla cells (DPCs) play an important role in hair follicle (HF) growth; thus, exploring the effective chemicals or natural extracts that can remediate the growth of DPCs is vital. Our results showed that Schizochytrium sp.-extracted lipids (SEL) significantly promoted proliferation (up to 1.13 times) and survival ratio (up to 2.45 times) under oxidative stress. The treatment with SEL can protect DPCs against oxidative stress damage, reducing the reactive oxygen species (ROS) level by 90.7%. The relative gene transcription and translation were thoroughly analyzed using RNA-Seq, RT-qPCR, and Western blot to explore the mechanism. Results showed that SEL significantly inhibited the ferroptosis pathway and promoted the expression of antioxidant genes (up to 1.55-3.52 times). The in vivo application of SEL improved hair growth, with the length of new hair increasing by 16.7% and the length of new HF increasing by 92.6%, and the period of telogen shortening increased by 40.0%. This study proposes a novel therapeutic option for alopecia, with the effect and regulation mechanism of SEL on DPC systematically clarified.

11.
Bioresour Technol ; 384: 129317, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315625

RESUMEN

This study explores the simultaneous sulfamethoxazole (SMX) removal and short-chain fatty acids (SCFAs) production by a Clostridium sensu stricto-dominated microbial consortium. SMX is a commonly prescribed and persistent antimicrobial agent frequently detected in aquatic environments, while the prevalence of antibiotic-resistant genes limits the biological removal of SMX. Under strictly anaerobic conditions, sequencing batch cultivation coupled with co-metabolism resulted in the production of butyric acid, valeric acid, succinic acid, and caproic acid. Continuous cultivation in a CSTR achieved a maximum butyric acid production rate and yield of 0.167 g/L/h and 9.56 mg/g COD, respectively, while achieving a maximum SMX degradation rate and removal capacity of 116.06 mg/L/h and 55.8 g SMX/g biomass. Furthermore, continuous anaerobic fermentation reduced sul genes prevalence, thus limiting the transmission of antibiotic resistance genes during antibiotic degradation. These findings suggest a promising approach for efficient antibiotic elimination while simultaneously producing valuable products (e.g., SCFAs).


Asunto(s)
Antibacterianos , Sulfametoxazol , Fermentación , Ácidos Grasos Volátiles , Ácido Butírico
12.
Crit Rev Biotechnol ; : 1-23, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37158096

RESUMEN

Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.

13.
Clin Exp Hypertens ; 45(1): 2162537, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36780919

RESUMEN

OBJECTIVES: As a common and frequently occurring disease, heart failure has been paid more and more attention, but the mechanism of its occurrence and development is still unclear. This study investigated that PGAM5 expression levels in heart failure and its underlying mechanisms in vivo and in vitro. METHODS: The inhibition of PGAM5 mRNA expression levels in patients with heart failure was compared with the normal group. RESULTS: The serum of PGAM5 mRNA expression was negative correlation with collagen I and collagen III in patients with heart failure. PGAM5 mRNA and protein expression in the heart tissue of mice with heart failure were down-regulated at a time-dependent rate. The inhibition of PGAM5 presented heart failure in the model. PGAM5 reduced inflammation and inhibited ROS-induced oxidative stress in models of heart failure. PGAM5 reduced Ferroptosis in models of heart failure. PGAM5 regulated Keap1/Nrf2 signaling pathway. IP also showed that PGAM5 protein combined with the Keap1 protein. PGAM5 could increase Keap1 protein ubiquitination. Keap1 inhibition affected the effects of PGAM5 in model of heart failure. CONCLUSIONS: We conclude that the protection of PGAM5 reduced ROS-induced oxidative stress and ferroptosis by the Keap1/Nrf2 signaling pathway in heart failure, suggesting that targeting this mechanism of PGAM5 may be a feasible strategy to treat heart failure.


Asunto(s)
Ferroptosis , Insuficiencia Cardíaca , Ratones , Animales , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Fosfoproteínas Fosfatasas/metabolismo
14.
Chemosphere ; 317: 137933, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36690255

RESUMEN

Removal of phenolic pollutants from industrial wastewaters is always an important practical problem. Use of enzymes for dephenolization provides a green solution. In this work, enzymatic methods were developed by employing mushroom tyrosinase immobilized as enzyme-Cu3(PO4)2 hybrid nanoflowers and enzyme-metal organic framework (i.e., ZIF-8 and HKUST-1) hybrid composites, which were shown to be superior to processes mediated by tyrosinase immobilized on other supports in both dephenolization efficiency and reusability. Comparatively, tyrosinase@Cu3(PO4)2 and tyrosinase@HKUST-1 were better than tyrosinase@ZIF-8 in both specific activity and dephenolization efficiency. Typical phenolic pollutants, including 3 monophenols (phenol, p-cresol, p-chlorophenol) and 3 bisphenols (BPA, BPB, BPF), can be completely eliminated within 0.5-4 h. The dephenolization order was discussed based on the enzyme's substrate specificity. The operability and reusability of these hybrid biocomposites were highly improved by entrapping into alginate gels or by incorporating with modified magnetic Fe3O4 nanoparticles. Particularly, the magnetic biocatalyst was prepared via a facile one-pot/one-step de novo synthetic strategy, optimized by using response surface methodology (RSM). The as-prepared magnetic tyrosinase@mHKUST-1 retained a high dephenolization efficiency of 81% after 10 cycles and was effective for continuous dephenolization for at least 24 h. These hybrid biocomposites were also successfully applied to treatment of real industrial wastewater from a coke plant.


Asunto(s)
Estructuras Metalorgánicas , Monofenol Monooxigenasa , Aguas Residuales , Fenoles , Cloruro de Sodio , Enzimas Inmovilizadas
15.
Environ Sci Pollut Res Int ; 30(1): 1232-1243, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35913690

RESUMEN

Wastewater treatment plants have been described as a potential source of spreading pathogens to the receiving water. However, few studies are reporting the presence and concentration changes of pathogens in these matrices. High-throughput sequencing provides new insights into understanding the changes of bacterial communities throughout wastewater treatment plants (WWTPs). In this study, the changes in microbial community composition and the levels of representative pathogens of effluents during the wastewater treatment process in two municipal WWTPs (A and B) were analyzed using Illumina NovaSeq sequencing and qPCR. Proteobacteria was the most abundant phylum in all samples, accounting for 45.0-75.2% of the bacterial community, followed by Firmicutes, Bacteroidetes, Actinobacteria, and Nitrospirae. A slight difference was observed between the bacterial community compositions of WWTPs A and B. However, a significant difference in the community compositions of effluent samples at different treatment stages was observed. Nutrients had a more substantial impact on bacterial community composition than physicochemical factors. Most human-associated Bacteroides and Mycobacterium were eliminated during the wastewater treatment process in both WWTPs. The bacterial community richness in WWTP A was significantly higher than that in WWTP B. The results of this study will provide insights into the potential problems that exist in WWTPs. In turn, these insights can enable the efficient and stable operation of WWTPs and help prevent the spread of pathogens.


Asunto(s)
Microbiota , Purificación del Agua , Humanos , Aguas Residuales , Bacterias , Proteobacteria
16.
Animals (Basel) ; 12(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36290180

RESUMEN

The marine protist Aurantiochytrium produces several bioactive chemicals, including EPA (eicosapentaenoic acid), DHA (docosahexaenoic acid), and other critical fish fatty acids. It has the potential to improve growth and fatty acid profiles in aquatic taxa. This study evaluated zebrafish growth performance in response to diets containing 1% to 3% Aurantiochytrium sp. crude extract (TE) and single extract for 56 days. Growth performance was best in the 1% TE group, and therefore, this concentration was used for further analyses of the influence of Aurantiochytrium sp. Levels of hepatic lipase, glucose-6-phosphate dehydrogenase, acetyl-CoA oxidase, glutathione peroxidase, and superoxide dismutase increased significantly in response to 1% TE, while malic enzyme activity, carnitine lipid acylase, acetyl-CoA carboxylase, fatty acid synthase, and malondialdehyde levels decreased. These findings suggest that Aurantiochytrium sp. extract can modulate lipase activity, improve lipid synthesis, and decrease oxidative damage caused by lipid peroxidation. Transcriptome analysis revealed 310 genes that were differentially expressed between the 1% TE group and the control group, including 185 up-regulated genes and 125 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analyses of the differentially expressed genes revealed that Aurantiochytrium sp. extracts may influence liver metabolism, cell proliferation, motility, and signal transduction in zebrafish.

17.
Front Microbiol ; 13: 915773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204624

RESUMEN

Aurantiochytrium sp. belonging to Thraustochytrids are known for their capacity to produce long-chain polyunsaturated fatty acids (PUFAs). However, effects of cold stress accompanied with staged-temperature control on the fatty acid metabolism in Aurantiochytrium sp. were rarely studied. In this study, cold stress (15°C, 5°C) was applied for Aurantiochytrium sp., with the physiological responses (morphology, growth, fatty acid profiling) and gene expression related FA synthesis, lipid metabolism, and regulatory processes was observed. Results showed that there is a significant change for the lipid types under 5°C (251 species) and 15°C (97 species) treatment. The 5°C treatment was benefit for the C18-C22 PUFAs with the yield of docosahexaenoic acid (DHA) increased to 1.25 times. After incubation at 15°C, the accumulation of eicosadienoic acid (EA) (20:2) was increased to 2.00-fold. Based on transcriptomic and qPCR analysis, an increase in genes involved in fatty acid synthase (FAS) and polyketide synthase (PKS) pathways was observed under low-temperature treatment. With upregulation of 3-ketoacyl-CoA synthase (2.44-fold), ketoreductase (2.50-fold), and dTDP-glucose 4,6-Dehydratase (rfbB) (2.31-fold) involved in PKS pathway, the accumulation of DHA was enhanced under 5°C. While, FAS and fatty elongase 3 (ELO) involved in the FAS pathway were upregulated (1.55-fold and 2.45-fold, respectively) to accumulate PUFAs at 15°C. Additionally, glycerol-3-phosphate acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT), phosphatidic acid phosphatase (PAP), phosphatidylserine synthase (PSS), and phosphatidylserine decarboxylase (PSD) involved in glycerophospholipid biosynthesis were upregulated at 5°C increasing the accumulation of phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylinositol (PI). However, glycolysis and the TCA cycle were inhibited under 5°C. This study provides a contribution to the application of two-staged temperature control in the Aurantiochytrium sp. fermentation for producing cold stress-enhancing PUFAs, in order to better understand the function of the key genes for future genetic engineering.

18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(9): 925-931, 2022 Sep 10.
Artículo en Chino | MEDLINE | ID: mdl-36082559

RESUMEN

OBJECTIVE: To summarize the genetic characteristics of 671 Chinese pedigrees affected with Duchenne/Becker muscular dystrophy (DMD/BMD). METHODS: Clinical data of the pedigrees were collected. Multiplex PCR, multiple ligation dependent probe amplification (MLPA), next generation sequencing (NGS), Sanger sequencing and long read sequencing were used to detect the variant of DMD gene in the probands and their mothers, and prenatal diagnosis was provided for high risk pregnant women. RESULTS: Among 178 pedigrees analyzed by multiplex PCR, 44 variants of the DMD gene were detected, with the genetic diagnosis attained in 110 pedigrees. Among 493 pedigrees analyzed by MLPA in combination with NGS or Sanger sequencing, 294 pathogenic/possible pathogenic variants were identified, among which 45 were unreported previously, and the genetic diagnosis attained in 484 pedigrees. Structural variants of the DMD gene were identified in two pedigrees by long-read sequencing. Among 444 probands, 341 have inherited the DMD gene variant from their mothers (76.8%). Among 390 women with a high-risk, 339 have opted to have natural pregnancy and 51 chose preimplantation genetic testing for monogenetic disease (PGT-M). The detection rate of neonatal patients and carriers following natural pregnancy was significantly higher than that for PGT-M. CONCLUSION: Combined application of MLPA, NGS, Sanger sequencing and long-read sequencing is an effective strategy to detect DMD/BMD. PGT-M can effectively reduce the risk of fetuses. Above finding has expanded the spectrum of DMD gene variants and provided a basis for reproductive intervention for pregnancies with a high risk for DMD/BMD.


Asunto(s)
Distrofia Muscular de Duchenne , China , Distrofina/genética , Exones , Femenino , Pruebas Genéticas , Humanos , Recién Nacido , Reacción en Cadena de la Polimerasa Multiplex , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Mutación , Linaje , Embarazo , Diagnóstico Prenatal
20.
Zoolog Sci ; 39(2): 206-214, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35380192

RESUMEN

A new species of Dalyelliidae, Gieysztoria pellucida Wang and You, is described based on material collected in southern China through an integrative approach combining morphological, histological, and molecular (18S and 28S rDNA) data. Gieysztoria pellucida sp. nov. is morphologically characterized by a fan-shaped (about 270° when pressed) stylet, consisting of 13 similar distal spines and a broad girdle without fenestrae region. This stylet is distinct from that of any other similar species in the Aequales group to which this species belongs. In addition, specimens identifiable as Gieysztoria garudae Van Steenkiste, Van Mulken, and Artois, 2012 were discovered from the same location as G. pellucida sp. nov. Gieysztoria garudae has previously been known only from India; the present study thus represents the first record of the species from China.


Asunto(s)
Platelmintos , Animales , China , ADN Ribosómico , Agua Dulce , India , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA