Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Hematol Oncol ; 16(1): 63, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328852

RESUMEN

BACKGROUND: Early detection is critical for improving the survival of breast cancer (BC) patients. Exhaled breath testing as a non-invasive technique might help to improve BC detection. However, the breath test accuracy for BC diagnosis is unclear. METHODS: This multi-center cohort study consecutively recruited 5047 women from four areas of China who underwent BC screening. Breath samples were collected through standardized breath collection procedures. Volatile organic compound (VOC) markers were identified from a high-throughput breathomics analysis by the high-pressure photon ionization-time-of-flight mass spectrometry (HPPI-TOFMS). Diagnostic models were constructed using the random forest algorithm in the discovery cohort and tested in three external validation cohorts. RESULTS: A total of 465 (9.21%) participants were identified with BC. Ten optimal VOC markers were identified to distinguish the breath samples of BC patients from those of non-cancer women. A diagnostic model (BreathBC) consisting of 10 optimal VOC markers showed an area under the curve (AUC) of 0.87 in external validation cohorts. BreathBC-Plus, which combined 10 VOC markers with risk factors, achieved better performance (AUC = 0.94 in the external validation cohorts), superior to that of mammography and ultrasound. Overall, the BreathBC-Plus detection rates were 96.97% for ductal carcinoma in situ, 85.06%, 90.00%, 88.24%, and 100% for stages I, II, III, and IV BC, respectively, with a specificity of 87.70% in the external validation cohorts. CONCLUSIONS: This is the largest study on breath tests to date. Considering the easy-to-perform procedure and high accuracy, these findings exemplify the potential applicability of breath tests in BC screening.


Asunto(s)
Neoplasias de la Mama , Compuestos Orgánicos Volátiles , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Compuestos Orgánicos Volátiles/análisis , Estudios de Cohortes , Detección Precoz del Cáncer/métodos , Pruebas Respiratorias/métodos , Biopsia
2.
Front Public Health ; 10: 891766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558524

RESUMEN

Purpose: To standardize the radiography imaging procedure, an image quality control framework using the deep learning technique was developed to segment and evaluate lumbar spine x-ray images according to a defined quality control standard. Materials and Methods: A dataset comprising anteroposterior, lateral, and oblique position lumbar spine x-ray images from 1,389 patients was analyzed in this study. The training set consisted of digital radiography images of 1,070 patients (800, 798, and 623 images of the anteroposterior, lateral, and oblique position, respectively) and the validation set included 319 patients (200, 205, and 156 images of the anteroposterior, lateral, and oblique position, respectively). The quality control standard for lumbar spine x-ray radiography in this study was defined using textbook guidelines of as a reference. An enhanced encoder-decoder fully convolutional network with U-net as the backbone was implemented to segment the anatomical structures in the x-ray images. The segmentations were used to build an automatic assessment method to detect unqualified images. The dice similarity coefficient was used to evaluate segmentation performance. Results: The dice similarity coefficient of the anteroposterior position images ranged from 0.82 to 0.96 (mean 0.91 ± 0.06); the dice similarity coefficient of the lateral position images ranged from 0.71 to 0.95 (mean 0.87 ± 0.10); the dice similarity coefficient of the oblique position images ranged from 0.66 to 0.93 (mean 0.80 ± 0.14). The accuracy, sensitivity, and specificity of the assessment method on the validation set were 0.971-0.990 (mean 0.98 ± 0.10), 0.714-0.933 (mean 0.86 ± 0.13), and 0.995-1.000 (mean 0.99 ± 0.12) for the three positions, respectively. Conclusion: This deep learning-based algorithm achieves accurate segmentation of lumbar spine x-ray images. It provides a reliable and efficient method to identify the shape of the lumbar spine while automatically determining the radiographic image quality.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Humanos , Control de Calidad , Radiografía
3.
Front Cell Dev Biol ; 10: 845641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399499

RESUMEN

Pancreatic adenocarcinoma (PAAD) is the fourth leading cause of cancer-related deaths worldwide. 5-Hydroxymethylcytosine (5hmC)-mediated epigenetic regulation has been reported to be involved in cancer pathobiology and has emerged to be promising biomarkers for cancer diagnosis and prognosis. However, 5hmC alterations at long non-coding RNA (lncRNA) genes and their clinical significance remained unknown. In this study, we performed the genome-wide investigation of lncRNA-associated plasma cfDNA 5hmC changes in PAAD by plotting 5hmC reads against lncRNA genes, and identified six PAAD-specific lncRNAs with abnormal 5hmC modifications compared with healthy individuals. Then we applied machine-learning and Cox regression approaches to develop predictive diagnostic (5hLRS) and prognostic (5hLPS) models using the 5hmC-modified lncRNAs. The 5hLRS demonstrated excellent performance in discriminating PAAD from healthy controls with an area under the curve (AUC) of 0.833 in the training cohort and 0.719 in the independent testing cohort. The 5hLPS also effectively divides PAAD patients into high-risk and low-risk groups with significantly different clinical outcomes in the training cohort (log-rank test p = 0.04) and independent testing cohort (log-rank test p = 0.0035). Functional analysis based on competitive endogenous RNA (ceRNA) and enrichment analysis suggested that these differentially regulated 5hmC modified lncRNAs were associated with angiogenesis, circulatory system process, leukocyte differentiation and metal ion homeostasis that are known important events in the development and progression of PAAD. In conclusion, our study indicated the potential clinical utility of 5hmC profiles at lncRNA loci as valuable biomarkers for non-invasive diagnosis and prognostication of cancers.

4.
Front Genet ; 12: 690598, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34290743

RESUMEN

Recent findings have demonstrated the superiority and utility of microRNAs (miRNAs) as new biomarkers for cancer diagnosis, therapy, and prognosis. In this study, to explore the prognostic value of immune-related miRNAs in gastric cancer (GC), we analyzed the miRNA-expression profiles of 389 patients with GC, using data deposited in The Cancer Genome Atlas database. Using a forward- and backward-variable selection and multivariate Cox regression analyses model, we identified a nine-miRNA signature (the "ImmiRSig," consisting of miR-125b-5p, miR-99a-3p, miR-145-3p, miR-328-3p, miR-133a-5p, miR-1292-5p, miR-675-3p, miR-92b-5p, and miR-942-3p) in the training cohort that enabled the division of patients into high- and low-risk groups with significantly different survival rates. The ImmiRSig was successfully validated with an independent test cohort of 193 GC patients. Univariate and multivariate Cox regression analyses indicated that the ImmiRSig would serve as an independent prognostic factor after adjusting for other clinical covariates. Pending further prospective validation, the identified ImmiRSig appears to have significant clinical importance in terms of improving outcome predictions and guiding personalized treatment for patients with GC. Finally, significant associations between the ImmiRSig and the half-maximal inhibitory concentrations of chemotherapeutic agents were observed, suggesting that ImmiRSig may predict the clinical efficacy of chemotherapy.

5.
Nucleic Acids Res ; 48(D1): D40-D44, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31428785

RESUMEN

Epigenetic alterations, including 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and nucleosome positioning (NP), in cell-free DNA (cfDNA) have been widely observed in human diseases, and many available cfDNA-based epigenome-wide profiles exhibit high sensitivity and specificity in disease detection and classification. However, due to the lack of efficient collection, standardized quality control, and analysis procedures, efficiently integrating and reusing these data remain considerable challenges. Here, we introduce CFEA (http://www.bio-data.cn/CFEA), a cell-free epigenome database dedicated to three types of widely adopted epigenetic modifications (5mC, 5hmC and NP) involved in 27 human diseases. We developed bioinformatic pipelines for quality control and standard data processing and an easy-to-use web interface to facilitate the query, visualization and download of these cell-free epigenome data. We also manually curated related biological and clinical information for each profile, allowing users to better browse and compare cfDNA epigenomes at a specific stage (such as early- or metastasis-stage) of cancer development. CFEA provides a comprehensive and timely resource to the scientific community and supports the development of liquid biopsy-based biomarkers for various human diseases.


Asunto(s)
Ácidos Nucleicos Libres de Células , Bases de Datos Genéticas , Epigénesis Genética , Epigenoma , Epigenómica/métodos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Biomarcadores , Biología Computacional/métodos , Epigenómica/normas , Humanos , Programas Informáticos , Navegador Web
6.
Sensors (Basel) ; 18(5)2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29883410

RESUMEN

The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods.

7.
Front Plant Sci ; 8: 1545, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28936220

RESUMEN

The golden camellia, Camellia nitidissima Chi., is a well-known ornamental plant that is known as "the queen of camellias" because of its golden yellow flowers. The principal pigments in the flowers are carotenoids and flavonol glycosides. Understanding the biosynthesis of the golden color and its regulation is important in camellia breeding. To obtain a comprehensive understanding of flower development in C. nitidissima, a number of cDNA libraries were independently constructed during flower development. Using the Illumina Hiseq2500 platform, approximately 71.8 million raw reads (about 10.8 gigabase pairs) were obtained and assembled into 583,194 transcripts and 466, 594 unigenes. A differentially expressed genes (DEGs) and co-expression network was constructed to identify unigenes correlated with flower color. The analysis of DEGs and co-expressed network involved in the carotenoid pathway indicated that the biosynthesis of carotenoids is regulated mainly at the transcript level and that phytoene synthase (PSY), ß -carotene 3-hydroxylase (CrtZ), and capsanthin synthase (CCS1) exert synergistic effects in carotenoid biosynthesis. The analysis of DEGs and co-expressed network involved in the flavonoid pathway indicated that chalcone synthase (CHS), naringenin 3-dioxygenase (F3H), leucoanthocyanidin dioxygenase(ANS), and flavonol synthase (FLS) play critical roles in regulating the formation of flavonols and anthocyanidin. Based on the gene expression analysis of the carotenoid and flavonoid pathways, and determinations of the pigments, we speculate that the high expression of PSY and CrtZ ensures the production of adequate levels of carotenoids, while the expression of CHS, FLS ensures the production of flavonols. The golden yellow color is then the result of the accumulation of carotenoids and flavonol glucosides in the petals. This study of the mechanism of color formation in golden camellia points the way to breeding strategies that exploit gene technology approaches to increase the content of carotenoids and flavonol glucosides and to decrease anthocyanidin synthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA