Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 9: 1025, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29875745

RESUMEN

Previous work has explored link between mitochondrial biology and fungal pathogenicity in F1Fo-ATP synthase in Candida albicans. In this work we have detailed the more specific roles of the F1Fo-ATP synthase ß subunit, a key protein subunit of F1Fo-ATP synthase. The ability to assimilate alternative carbons in glucose-limited host niches is known to be a critical factor for infection caused by opportunistic pathogens including C. albicans. The function of the F1Fo-ATP synthase ß subunit was characterized through the construction of an ATP2 gene null mutant (atp2Δ/Δ) and the gene-reconstituted strain (atp2Δ/ATP2) in order to understand the link between carbon metabolism and C. albicans pathogenesis. Cell growth, viability, cellular ATP content, mitochondrial membrane potential (ΔΨm), and intracellular ROS were compared between null mutant and control strain. Results showed that growth of the atp2Δ/Δ mutant in synthetic medium was slower than in complex medium. However, the synthetic medium delayed the onset of reduced cell viability and kept cellular ATP content from becoming fully depleted. Consistent with these observations, we identified transcriptional changes in metabolic response that activated other ATP-generating pathways, thereby improving cell viability during the initial phase. Unlike glucose effects, the atp2Δ/Δ mutant exhibited an immediate and sharp reduction in cell viability on non-fermentable carbon sources, consistent with an immediate depletion of cellular ATP content. Along with a reduced viability in non-fermentable carbon sources, the atp2Δ/Δ mutant displayed avirulence in a murine model of disseminated candidiasis as well as lower fungal loads in mouse organs. Regardless of the medium, however, a decrease in mitochondrial membrane potential (ΔΨm) was found in the atp2Δ/Δ mutant but ROS levels remained in the normal range. These results suggest that the F1Fo-ATP synthase ß subunit is required for C. albicans pathogenicity and operates by affecting metabolic flexibility in carbon consumption.

2.
Front Microbiol ; 8: 285, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28280492

RESUMEN

The α subunit (ATP1) is a vital component of mitochondrial complex V which counts for the majority of cellular ATP production in a living organism. Nevertheless, how the α subunit influences other cellular processes such as pathogenicity in Candida albicans remains poorly understood. To address this question, ATP1 mutant (atp1Δ/Δ) and the gene-reconstituted strain (atp1Δ/ATP1) have been constructed in this study and their pathogenicity-related traits are compared to those of wild type (WT). In a murine model of disseminated candidiasis, atp1Δ/Δ infected mice have a significantly higher survival rate and experience a lower fungal burden in tissues. In in vitro studies atp1Δ/Δ lose a capability to damage or destroy macrophages and endothelial cells. Furthermore, atp1Δ/Δ is not able to grow under either glucose-denial conditions or high H2O2 conditions, both of which are associated with the potency of the macrophages to kill C. albicans. Defects in filamentation and biofilm formation may impair the ability of atp1Δ/Δ to penetrate host cells and establish robust colonies in the host tissues. In concert with these pathogenic features, intracellular ATP levels of atp1Δ/Δ can drop to 1/3 of WT level. These results indicate that the α subunit of Complex V play important roles in C. albicans pathogenicity.

3.
Microb Drug Resist ; 23(6): 674-681, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28080217

RESUMEN

In our earlier in vitro and in vivo studies, synergistic effects were observed when itraconazole or voriconazole were combined with tetrandrine (TET) against Aspergillus fumigatus, and the synergistic mechanism was related to inhibition of the drug efflux pump. Posaconazole (PCZ) is a broad-spectrum triazole antifungal agent used for the treatment of diverse fungal infections, including aspergillosis and candidiasis. Herein, the antifungal effects of TET are further investigated in vitro and in vivo alone or combined with PCZ against 20 clinical isolates of A. fumigatus. We found that the minimal inhibitory concentrations (MICs) of PCZ were decreased one- to twofold and three- to fivefold across a series of concentration gradients in vitro in presence of TET. Time-killing curves revealed that the synergy was dependent on TET and PCZ concentrations as well as incubation time. The combination could further downregulate the expression of MDR2, MDR3, MDR4, and ATRF in PCZ-resistant strain, however, it has subtle effects on TET-synergized mechanism. In addition, TET in combination with PCZ significantly prolonged mice survival time and reduced kidney and brain tissue burdens in vivo. Our data in vitro and in vivo demonstrate that TET is an effective synergist with azoles against A. fumigates.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Bencilisoquinolinas/farmacología , Triazoles/farmacología , Animales , Aspergilosis/tratamiento farmacológico , Candidiasis/tratamiento farmacológico , Farmacorresistencia Fúngica/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Itraconazol/farmacología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana/métodos , Voriconazol/farmacología
4.
Chin J Integr Med ; 22(12): 925-931, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26514966

RESUMEN

OBJECTIVE: To evaluate the acute and sub-chronic toxicity of intravenously administered tetrandrine (TET) in female BALB/c mice. METHODS: The median lethal dose (LD50) of intravenously administered TET was calculated in mice using Dixon's up-and-down method. In the acute toxicity study, mice were intravenously administered with TET at a single dose of 20, 100, 180, 260 and 340 mg/kg, respectively and were evaluated at 14 days after administration. In the sub-acute toxicity study, mice were intravenously administered various doses of TET (30, 90 and 150 mg/kg) each day for 14 consecutive days. Clinical symptoms, mortality, body weight, serum biochemistry, organ weight and histopathology were examined at the end of the experiment, as well as after a 1-week recovery period. RESULT: LD50 was found to be 444.67±35.76 mg/kg. In the acute toxicity study, no statistically signifificant differences in body weight, blood biochemistry, or organ histology were observed between the administration and control groups when mice were intravenously administered with single dose at 20, 100, 180, 260 and 340 mg/kg of TET (P >0.05). In the sub-acute toxicity study, no signifificant changes in body weight, biochemistry and organ histology were observed with up to 90 mg/kg of TET compared with the control group (P >0.05), however, in the 150 mg/kg administered group, TET induced transient toxicity to liver, lungs and kidneys, but withdrawal of TET can lead to reversal of the pathological conditions. CONCLUSIONS: The overall fifindings of this study indicate that TET is relatively non-toxic from a single dose of 20, 100, 180, 260 or 340 mg/kg, and that up to 90 mg/kg daily for 14 consecutive days can be considered a safe application dose.


Asunto(s)
Bencilisoquinolinas/administración & dosificación , Bencilisoquinolinas/toxicidad , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica , Administración Intravenosa , Animales , Peso Corporal/efectos de los fármacos , Femenino , Ratones Endogámicos BALB C , Especificidad de Órganos/efectos de los fármacos
5.
J Med Microbiol ; 64(9): 1008-1020, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26296880

RESUMEN

In this study, we investigated the in vitro antifungal effects of itraconazole/voriconazole (ITR/VRC) alone and in combination with tetrandrine (TET) against 23 clinical isolates of A. fumigatus using a chequerboard microdilution method. The dynamic antifungal effects of TET with ITR/VRC against A. fumigatus were assessed in vivo using time-kill curves following systemic infection of mice with A. fumigatus. After treatment, efflux pump activity was determined by the efflux of rhodamine 6G (R6G). When ITR was combined with TET, ITR MICs were reduced from 0.125-32 to 0.0625-2 µg ml(-1), and TET MICs were reduced from 256-512 to 8-64 µg ml(-1). When VRC was combined with TET, VRC MICs were reduced from 0.125-2 to 0.03125-0.5 µg ml(-1), and TET MICs were reduced from 256-512 to 8-256 µg ml(-1). Time-kill curves revealed that A. fumigatus viability was reduced after treatment with ITR/VRC combined with TET versus ITR/VRC alone. ITR/VRC combined with TET significantly prolonged mouse survival and reduced kidney and brain tissue burdens versus ITR/VRC alone (P < 0.05). Moreover, TET inhibited R6G efflux of A. fumigatus. Thus, in vitro and in vivo, TET acted synergistically with ITR/VRC against A. fumigatus, and the synergistic mechanism was related to inhibition of the drug efflux pump.


Asunto(s)
Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/efectos de los fármacos , Bencilisoquinolinas/uso terapéutico , Itraconazol/uso terapéutico , Voriconazol/uso terapéutico , Animales , Antifúngicos/administración & dosificación , Antifúngicos/uso terapéutico , Aspergilosis/microbiología , Bencilisoquinolinas/administración & dosificación , Ciclofosfamida/toxicidad , Quimioterapia Combinada , Huésped Inmunocomprometido , Inmunosupresores/toxicidad , Itraconazol/administración & dosificación , Ratones , Pruebas de Sensibilidad Microbiana , Voriconazol/administración & dosificación
6.
J Med Microbiol ; 63(Pt 7): 988-996, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24790082

RESUMEN

We found that tetrandrine (TET) can reverse the resistance of Candida albicans to fluconazole (FLC) and that this interaction is associated with the inhibition of drug efflux pumps. Mitochondrial aerobic respiration, which plays a major role in C. albicans metabolism, is the primary source of ATP for cellular processes, including the activation of efflux pumps. However, it was unclear if TET exerts its synergistic action against C. albicans via its impact on the mitochondrial aerobic respiratory metabolism. To investigate this mechanism, we examined the impact of FLC in the presence or absence of TET on two C. albicans strains obtained from a single parental source (FLC-sensitive strain CA-1 and FLC-resistant strain CA-16). We analysed key measures of energy generation and conversion, including the activity of respiration chain complexes I and III (CI and CIII), ATP synthase (CV) activity, and the generation of reactive oxygen species (ROS), and studied intracellular ATP levels and the mitochondrial membrane potential (ΔΨm), which has a critical impact on energy transport. Mitochondrial morphology was observed by confocal microscopy. Our functional analyses revealed that, compared with strains treated only with FLC, TET+FLC increased the ATP levels and decreased ΔΨm in CA-1, but decreased ATP levels and increased ΔΨm in CA-16 (P<0.05). Additionally, CI, CIII and CV activity decreased by 23-48%. The production of ROS increased by two- to threefold and mitochondrial morphology was altered in both strains. Our data suggested that TET impacted mitochondrial aerobic respiratory metabolism by influencing the generation and transport of ATP, reducing the utilization of ATP, and resulting in the inhibition of drug efflux pump activity. This activity contributed to the synergistic action of TET on FLC against C. albicans.


Asunto(s)
Antifúngicos/farmacología , Bencilisoquinolinas/farmacología , Candida albicans/efectos de los fármacos , Sinergismo Farmacológico , Fluconazol/farmacología , Adenosina Trifosfato/metabolismo , Antifúngicos/farmacocinética , Bencilisoquinolinas/farmacocinética , Farmacorresistencia Fúngica/efectos de los fármacos , Fluconazol/farmacocinética , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Especies Reactivas de Oxígeno/metabolismo
7.
Chin Med J (Engl) ; 126(11): 2098-102, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23769565

RESUMEN

BACKGROUND: The most critical mechanism governing drug resistance in Candida albicans (C. albicans) involves efflux pumps, the functionality of which largely depends on energy metabolism. Alcohol dehydrogenase I (ADH1) plays an important role in intracellular energy metabolism. The aim of this study was to explore the relationship between ADH1 and drug resistance in C. albicans. METHODS: Twenty clinical C. albicans samples isolated from individual patients diagnosed with vulvovaginal candidiasis, and two C. albicans strains obtained from a single parental source (the fuconazole (FLC)-sensitive strain CA-1S and the FLC-resistant strain CA-16(R)) were included in our study. In accordance with the Clinical and Laboratory Standards Institute (CLSI) M27-A3 guidelines, we used the microdilution method to examine the FLC minimum inhibitory concentrations (MICs) and real-time reverse transcription polymerase chain reaction (RT-PCR) to measure the mRNA expression levels of ADH1 and the azole resistance genes CDR1, CDR2, MDR1, FLU1 and ERG11 in all the isolates. RESULTS: A highly significant positive correlation between the mRNA levels of ADH1 and the MICs (rs = 0.921, P = 0.000), as well as positive correlations between the mRNA level of ADH1 and those of CDR1, CDR2 and FLU1 (rs of 0.704, 0.772 and 0.779, respectively, P < 0.01), were observed in the 20 clinical C. albicans samples. The relative expression of ADH1 was upregulated 10.63- to 17.61-fold in all of the drug-resistant isolates. No correlations were found between the mRNA levels of ADH1 and those of MDR1 or ERG11 (P > 0.05). The mRNA levels of the examined drug resistance genes were higher in the CA-16(R) strain than in CA-1(S), and the mRNA levels of ADH1 in CA-16(R) were 11.64-fold higher than those in CA-1(S) (P < 0.05). CONCLUSIONS: These results suggest that high levels of ADH1 transcription are implicated in FLC resistance in C. albicans and that the mRNA expression levels of ADH1 are positively correlated with those of CDR1, CDR2 and FLU1.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Alcohol Deshidrogenasa/genética , Candida albicans/efectos de los fármacos , Candidiasis Vulvovaginal/microbiología , Resistencia a Múltiples Medicamentos/genética , Proteínas Fúngicas/genética , Proteínas de Transporte de Membrana/genética , Farmacorresistencia Fúngica/genética , Femenino , Fluconazol/farmacología , Humanos , ARN Mensajero/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...