Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros










Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(23): e202403918, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38519423

RESUMEN

Precise design and tuning of Zn hopping/transfer sites with deeper understanding of the dendrite-formation mechanism is vital in artificial anode protective coating for aqueous Zn-ion batteries (AZIBs). Here, we probe into the role of anode-coating interfaces by designing a series of anhydride-based covalent organic frameworks (i.e., PI-DP-COF and PI-DT-COF) with specifically designed zigzag hopping sites and zincophilic anhydride groups that can serve as desired platforms to investigate the related Zn2+ hopping/transfer behaviours as well as the interfacial interaction. Combining theoretical calculations with experiments, the ABC stacking models of these COFs endow the structures with specific zigzag sites along the 1D channel that can accelerate Zn2+ transfer kinetics, lower surface-energy, homogenize ion-distribution or electric-filed. Attributed to these superiorities, thus-obtained optimal PI-DT-COF cells offer excellent cycling lifespan in both symmetric-cell (2000 cycles at 60 mA cm-2) and full-cell (1600 cycles at 2 A g-1), outperforming almost all the reported porous crystalline materials.

2.
Angew Chem Int Ed Engl ; 63(23): e202402458, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38545814

RESUMEN

Visible-light sensitive and bi-functionally favored CO2 reduction (CRR)/evolution (CER) photocathode catalysts that can get rid of the utilization of ultraviolet light and improve sluggish kinetics is demanded to conquer the current technique-barrier of traditional Li-CO2 battery. Here, a kind of redox molecular junction sp2c metal-covalent organic framework (i.e. Cu3-BTDE-COF) has been prepared through the connection between Cu3 and BTDE and can serve as efficient photocathode catalyst in light-assisted Li-CO2 battery. Cu3-BTDE-COF with redox-ability, visible-light-adsorption region, electron-hole separation ability and endows the photocathode with excellent round-trip efficiency (95.2 %) and an ultralow voltage hysteresis (0.18 V), outperforming the Schiff base COFs (i.e. Cu3-BTDA-COF and Cu3-DT-COF) and majority of the reported photocathode catalysts. Combined theoretical calculations with characterizations, Cu3-BTDE-COF with the integration of Cu3 centers, thiazole and cyano groups possess strong CO2 adsorption/activation and Li+ interaction/diffusion ability to boost the CRR/CER kinetics and related battery property.

3.
Adv Mater ; 36(15): e2310061, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227292

RESUMEN

Integrating the advantages of homogeneous and heterogeneous catalysis has proved to be an optimal strategy for developing catalytic systems with high efficiency, selectivity, and recoverability. Supramolecular metal-organic cages (MOCs), assembled by the coordination of metal ions with organic linkers into discrete molecules, have performed solvent processability due to their tunable packing modes, endowing them with the potential to act as homogeneous or heterogeneous catalysts in different solvent systems. Here, the design and synthesis of a series of stable {Cu3} cluster-based tetrahedral MOCs with varied packing structures are reported. These MOCs, as homogeneous catalysts, not only show high catalytic activity and selectivity regardless of substrate size during the CO2 cycloaddition reaction, but also can be easily recovered from the reaction media through separating products and co-catalysts by one-step work-up. This is because that these MOCs have varied solubilities in different solvents due to the tunable packing of MOCs in the solid state. Moreover, the entire catalytic reaction system is very clean, and the purity of cyclic carbonates is as high as 97% without further purification. This work provides a unique strategy for developing novel supramolecular catalysts that can be used for homogeneous catalysis and recycled in a heterogeneous manner.

4.
Nat Commun ; 15(1): 537, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225374

RESUMEN

In modern industries, the aerobic oxidation of C(sp3)-H bonds to achieve the value-added conversion of hydrocarbons requires high temperatures and pressures, which significantly increases energy consumption and capital investment. The development of a light-driven strategy, even under natural sunlight and ambient air, is therefore of great significance. Here we develop a series of hetero-motif molecular junction photocatalysts containing two bifunctional motifs. With these materials, the reduction of O2 and oxidation of C(sp3)-H bonds can be effectively accomplished, thus realizing efficient aerobic oxidation of C(sp3)-H bonds in e.g., toluene and ethylbenzene. Especially for ethylbenzene oxidation reactions, excellent catalytic capacity (861 mmol g cat-1) is observed. In addition to the direct oxidation of C(sp3)-H bonds, CeBTTD-A can also be applied to other types of aerobic oxidation reactions highlighting their potential for industrial applications.

5.
J Am Chem Soc ; 146(5): 3396-3404, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266485

RESUMEN

Covalent organic frameworks (COFs), with the features of flexible structure regulation and easy introduction of functional groups, have aroused broad interest in the field of photocatalysis. However, due to the low light absorption intensity, low photoelectron conversion efficiency, and lack of suitable active sites, it remains a great challenge to achieve efficient photocatalytic aerobic oxidation reactions. Herein, based on reticular chemistry, we rationally designed a series of three-motif molecular junction type COFs, which formed dual photosensitizer coupled redox molecular junctions containing multifunctional COF photocatalysts. Significantly, due to the strong light adsorption ability of dual photosensitizer units and integrated oxidation and reduction features, the PY-BT COF exhibited the highest activity for photocatalytic aerobic oxidation. Especially, it achieved a photocatalytic benzylamine conversion efficiency of 99.9% in 2.5 h, which is much higher than that of the two-motif molecular junctions with only one photosensitizer or redox unit lacking COFs. The mechanism of selective aerobic oxidation was studied through comprehensive experiments and density functional theory calculations. The results showed that the photoinduced electron transfer occurred from PY and then through triphenylamine to BT. Furthermore, the thermodynamics energy for benzylamine oxidation on PY-BT COF was much lower than that for others, which confirmed the synergistic effect of dual photosensitizer coupled redox molecular junction COFs. This work provided a new strategy for the design of functional COFs with three-motif molecular junctions and also represented a new insight into the multifunctional COFs for organic catalytic reactions.

6.
Natl Sci Rev ; 10(11): nwad226, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37818117

RESUMEN

Electrocatalytic CO2 reduction (ECR) coupled with organic oxidation is a promising strategy to produce high value-added chemicals and improve energy efficiency. However, achieving the efficient redox coupling reaction is still challenging due to the lack of suitable electrocatalysts. Herein, we designed two bifunctional polyimides-linked covalent organic frameworks (PI-COFs) through assembling phthalocyanine (Pc) and porphyrin (Por) by non-toxic hydrothermal methods in pure water to realize the above catalytic reactions. Due to the high conductivity and well-defined active sites with different chemical environments, NiPc-NiPor COF performs efficient ECR coupled with methanol oxidation reaction (MOR) (Faradaic efficiency of CO (FECO) = 98.12%, partial current densities of CO (jCO) = 6.14 mA cm-2 for ECR, FEHCOOH = 93.75%, jHCOOH = 5.81 mA cm-2 for MOR at low cell voltage (2.1 V) and remarkable long-term stability). Furthermore, experimental evidences and density functional theory (DFT) calculations demonstrate that the ECR process mainly conducts on NiPc unit with the assistance of NiPor, meanwhile, the MOR prefers NiPor conjugating with NiPc. The two units of NiPc-NiPor COF collaboratively promote the coupled oxidation-reduction reaction. For the first time, this work achieves the rational design of bifunctional COFs for coupled heterogeneous catalysis, which opens a new area for crystalline material catalysts.

7.
J Am Chem Soc ; 145(42): 23167-23175, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37820308

RESUMEN

The precise tuning of components, spatial orientations, or connection modes for redox units is vital for gaining deep insight into efficient artificial photosynthetic overall reaction, yet it is still hard achieve for heterojunction photocatalysts. Here, we have developed a series of redox molecular junction covalent organic frameworks (COFs) (M-TTCOF-Zn, M = Bi, Tri, and Tetra) for artificial photosynthetic overall reaction. The covalent connection between TAPP-Zn and multidentate TTF endows various connection modes between water photo-oxidation (multidentate TTF) and CO2 photoreduction (TAPP-Zn) centers that can serve as desired platforms to study the possible interactions between redox centers. Notably, Bi-TTCOF-Zn exhibits a high CO production rate of 11.56 µmol g-1 h-1 (selectivity, ∼100%), which is more than 2 and 6 times higher than those of Tri-TTCOF-Zn and Tetra-TTCOF-Zn, respectively. As revealed by theoretical calculations, Bi-TTCOF-Zn facilitates a more uniform distribution of energy-level orbitals, faster charge transfer, and stronger *OH adsorption/stabilization ability than those of Tri-TTCOF-Zn and Tetra-TTCOF-Zn.

8.
Angew Chem Int Ed Engl ; 62(44): e202311999, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37709724

RESUMEN

The high local electron density and efficient charge carrier separation are two important factors to affect photocatalytic activity, especially for the CO2 photoreduction reaction. However, the systematic studies on the structure-functional relationship regarding the above two factors based on precisely structure model are rarely reported. Herein, as a proof-of-concept, we developed a new strategy on the evaluation of local electron density by controlling the relative electron-deficient (ED) and electron-rich (ER) intensity of monomer at a molecular level based on three rational-designed vinylene-linked sp2 carbon-covalent organic frameworks (COFs). As expected, the as-prepared vinylene-linked sp2 carbon-conjugated metal-covalent organic framework (MCOFs) (VL-MCOF-1) with molecular junction exhibited excellent activities for CO2 -to-HCOOH conversion (283.41 µmol g-1 h-1 ) and high selectivity of 97.1 %, much higher than the VL-MCOF-2 and g-C34 N6 -COF, which is due to the synergistic effect of the multi-electronic metal clusters (Cu3 (PyCA)3 ) (PyCA=pyrazolate-4-carboxaldehyde) as strong ER roles and cyanopyridine units as ED roles and active sites, as well as the boosted photo-induced charge separation efficiency of vinyl connection and increased light utilization ability. These results not only provide a strategy for regulating the electron-density distribution of photocatalysts at the molecular level but also offers profound insights for metal clusters-based COFs to effective CO2 conversion.

9.
Angew Chem Int Ed Engl ; 62(31): e202307632, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37280179

RESUMEN

In this work, we innovatively assembled two types of traditional photosensitizers, that is pyridine ruthenium/ferrum (Ru(bpy)3 2+ /Fe(bpy)3 2+ ) and porphyrin/metalloporphyrin complex (2HPor/ZnPor) by covalent linkage to get a series of dual photosensitizer-based three-dimensional metal-covalent organic frameworks (3D MCOFs), which behaved strong visible light-absorbing ability, efficient electron transfer and suitable band gap for highly efficient photocatalytic hydrogen (H2 ) evolution. Rubpy-ZnPor COF achieved the highest H2 yield (30 338 µmol g-1 h-1 ) with apparent quantum efficiency (AQE) of 9.68 %@420 nm, which showed one of the best performances among all reported COF based photocatalysts. Furthermore, the in situ produced H2 was successfully tandem used in the alkyne hydrogenation with ≈99.9 % conversion efficiency. Theoretical calculations reveal that both the two photosensitizer units in MCOFs can be photoexcited and thus contribute optimal photocatalytic activity. This work develops a general strategy and shows the great potential of using multiple photosensitive materials in the field of photocatalysis.

10.
Angew Chem Int Ed Engl ; 62(31): e202303606, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37277319

RESUMEN

H2 O2 photosynthesis coupled with biomass valorization can not only maximize the energy utilization but also realize the production of value-added products. Here, a series of COFs (i.e. Cu3 -BT-COF, Cu3 -pT-COF and TFP-BT-COF) with regulated redox molecular junctions have been prepared to study H2 O2 photosynthesis coupled with furfuryl alcohol (FFA) photo-oxidation to furoic acid (FA). The FA generation efficiency of Cu3 -BT-COF was found to be 575 mM g-1 (conversion ≈100 % and selectivity >99 %) and the H2 O2 production rate can reach up to 187 000 µM g-1 , which is much higher than Cu3 -pT-COF, TFP-BT-COF and its monomers. As shown by theoretical calculations, the covalent coupling of the Cu cluster and the thiazole group can promote charge transfer, substrate activation and FFA dehydrogenation, thus boosting both the kinetics of H2 O2 production and FFA photo-oxidation to increase the efficiency. This is the first report about COFs for H2 O2 photosynthesis coupled with biomass valorization, which might facilitate the exploration of porous-crystalline catalysts in this field.

11.
Angew Chem Int Ed Engl ; 62(33): e202304728, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37321974

RESUMEN

Structural variants of high-nuclearity clusters are extremely important for their modular assembly study and functional expansion, yet the synthesis of such giant structural variants remains a great challenge. Herein, we prepared a lantern-type giant polymolybdate cluster (L-Mo132 ) containing equal metal nuclearity with the famous Keplerate type Mo132 (K-Mo132 ). The skeleton of L-Mo132 features a rare truncated rhombic triacontrahedron, which is totally different with the truncated icosahedral K-Mo132 . To the best of our knowledge, this is the first time to observe such structural variants in high-nuclearity cluster built up of more than 100 metal atoms. Scanning transmission electron microscopy reveals that L-Mo132 has good stability. More importantly, because the pentagonal [Mo6 O27 ]n- building blocks in L-Mo132 are concave instead of convex in the outer face, it contains multiple terminal coordinated water molecules on its outer surface, which make it expose more active metal sites to display superior phenol oxidation performance, which is more higher than that of K-Mo132 coordinated in M=O bonds on the outer surface.

12.
J Am Chem Soc ; 145(16): 8860-8870, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37070784

RESUMEN

The selective photoisomerization or photocyclization of stilbene to achieve value upgrade is of great significance in industry applications, yet it remains a challenge to accomplish both of them through a one-pot photocatalysis strategy under mild conditions. Here, a sevenfold interpenetrating 3D covalent organic framework (TPDT-COF) has been synthesized through covalent coupling between N,N,N,N-tetrakis(4-aminophenyl)-1,4-benzenediamine (light absorption and free radical generation) and 5,5'-(2,1,3-benzothiadiazole-4,7-diyl)bis[2-thiophenecarboxaldehyde] (catalytic center). The thus-obtained sevenfold interpenetrating structure presents a functional pore channel with a tunable photocatalytic ability and specific pore confinement effect that can be applied for selective stilbene photoisomerization and photocyclization. Noteworthily, it enables photogeneration of cis-stilbene or phenanthrene with >99% selectivity by simply changing the gas atmosphere under mild conditions (Ar, SeleCis. > 99%, SelePhen. < 1% and O2, SeleCis. < 1%, and SelePhen. > 99%). Theoretical calculations prove that different gas atmospheres possess varying influences on the energy barriers of reaction intermediates, and the pore confinement effect plays a synergistically catalytic role, thus inducing different product generation. This study might facilitate the exploration of porous crystalline materials in selective photoisomerization and photocyclization.

13.
J Am Chem Soc ; 145(11): 6112-6122, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36883963

RESUMEN

Rational design of crystalline catalysts with superior light absorption and charge transfer for efficient photoelectrocatalytic (PEC) reaction coupled with energy recovery remains a great challenge. In this work, we elaborately construct three stable titanium-oxo clusters (TOCs, Ti10Ac6, Ti10Fc8, and Ti12Fc2Ac4) modified with a monofunctionalized ligand (9-anthracenecarboxylic acid (Ac) or ferrocenecarboxylic acid (Fc)) and bifunctionalized ligands (Ac and Fc). They have tunable light-harvesting and charge transfer capacities and thus can serve as outstanding crystalline catalysts to achieve efficient PEC overall reaction, that is, the integration of anodic organic pollutant 4-chlorophenol (4-CP) degradation and cathodic wastewater-to-H2 conversion. These TOCs can all exhibit very high PEC activity and degradation efficiency of 4-CP. Especially, Ti12Fc2Ac4 decorated with bifunctionalized ligands exhibits better PEC degradation efficiency (over 99%) and H2 generation than Ti10Ac6 and Ti10Fc8 modified with a monofunctionalized ligand. The study of the 4-CP degradation pathway and mechanism revealed that such better PEC performance of Ti12Fc2Ac4 is probably due to its stronger interactions with the 4-CP molecule and better •OH radical production. This work not only presents the effective combination of organic pollutant degradation and simultaneously H2 evolution reaction using crystalline coordination clusters as both anodic and cathodic catalyst but also develops a new PEC application for crystalline coordination compounds.

14.
Angew Chem Int Ed Engl ; 62(11): e202300125, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36661867

RESUMEN

The inhomogeneous consumption of anions and direct contact between electrolyte and anode during the Zn-deposition process generate Zn-dendrites and side reactions that can aggravate the space-charge effect to hinder the practical implementation of zinc-metal batteries (ZMBs). Herein, electrospray has been applied for the scalable fabrication (>10 000 cm2 in a batch-experiment) of hetero-metallic cluster covalent-organic-frameworks (MCOF-Ti6 Cu3 ) nanosheet-coating (MNC) with integrated micro space electrostatic field for ZMBs anode protection. The MNC@Zn symmetric cell presents ultralow overpotential (≈72.8 mV) over 10 000 cycles at 1 mAh cm-2 with 20 mA cm-2 , which is superior to bare Zn and state-of-the-art porous crystalline materials. Theoretical calculations reveal that MNC with integrated micro space electrostatic field can facilitate the deposition-kinetic and homogenize the electric field of anode to significantly promote the lifespan of ZMBs.

15.
Adv Mater ; 35(7): e2208846, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36444853

RESUMEN

The elaborate design of powerful Li-S binders with extended-functions like polysulfides adsorption/catalysis and Li+ hopping/transferring in addition to robust adhesion-property has remained a challenge. Here, an in situ cathode-interweaving strategy based on metalloporphyrin based covalent-bonding organic polymer (M-COP, M = Mn, Ni, and Zn) binders is reported for the first time. Thus-produced functional binders possess excellent mechanical-strengths, polysulfides adsorption/catalysis, and Li+ hopping/transferring ability. Specifically, the modulus of Mn-COP can reach up to ≈54.60 GPa (≈40 times higher than poly(vinylidene fluoride)) and the relative cell delivers a high initial-capacity (1027 mAh g-1 , 1 C and 913 mAh g-1 , 2 C), and excellent cycling-stability for >1000 cycles even at 4 C. The utilization-rate of sulfur can reach up to 81.8% and the electrodes based on these powerful binders can be easily scale-up fabricated (≈20 cm in a batch-experiment). Noteworthy, Mn-COP based cell delivers excellent capacities at a high sulfur-loading (8.6 mg cm-2 ) and low E/S ratio (5.8 µL mg-1 ). In addition, theoretical calculations reveal the vital roles of metalloporphyrin and thiourea-groups in enhancing the battery-performance.

16.
Angew Chem Int Ed Engl ; 62(9): e202218868, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36581593

RESUMEN

The full reaction photosynthesis of H2 O2 that can combine water-oxidation and oxygen-reduction without sacrificial agents is highly demanded to maximize the light-utilization and overcome the complex reaction-process of anthraquinone-oxidation. Here, a kind of oxidation-reduction molecular junction covalent-organic-framework (TTF-BT-COF) has been synthesized through the covalent-coupling of tetrathiafulvalene (photo-oxidation site) and benzothiazole (photo-reduction site), which presents visible-light-adsorption region, effective electron-hole separation-efficiency and photo-redox sites that enables full reaction generation of H2 O2 . Specifically, a record-high yield (TTF-BT-COF, ≈276 000 µM h-1 g-1 ) for H2 O2 photosynthesis without sacrificial agents has been achieved among porous crystalline photocatalysts. This is the first work that can design oxidation-reduction molecular junction COFs for full reaction photosynthesis of H2 O2 , which might extend the scope of COFs in H2 O2 production.

17.
Small ; 19(5): e2206616, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36440668

RESUMEN

Anisotropically hybridized porous crystalline Li-S battery separators based on porous crystalline materials that can meet the multiple functionalities of both anodic and cathodic sides are much desired for Li-S battery yet still challenging in directional design. Here, an anisotropically hybridized separator (CPM) based on an ionic liquid-modified porphyrin-based covalent-organic framework (COF-366-OH-IL) and catalytically active metal-organic framework (Ni3 (HITP)2 ) that can integrate the lithium-polysulfides (LiPSs) adsorption/catalytic conversion and ion-conduction sites together to directionally meet the requirements of electrodes is reported. Remarkably, the-obtained separator exhibits an exceptional high Li+ transference-number (tLi+  = 0.8), ultralow polarization-voltage (<30 mV), high initial specific-capacity (921.38 mAh g-1 at 1 C), and stable cycling-performance, much superior to polypropylene and monolayer-modified separators. Moreover, theoretical calculations confirm the anisotropic effect of CPM on the anodic side (e.g., Li+ transfer, LiPSs adsorption, and anode-protection) and cathodic side (e.g., LiPSs adsorption/catalysis). This work might provide a new perspective for separator exploration.

18.
Sci Adv ; 8(49): eadd5598, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490347

RESUMEN

Photo- or electroreduction of carbon dioxide into highly valued products offers a promising strategy to achieve carbon neutrality. Here, a series of polyoxometalate-based metal-organic frameworks (M-POMOFs) were constructed by metalloporphyrins [tetrakis(4-carboxyphenyl)-porphyrin-M (M-TCPPs)] and reductive POM for photo- and electrocatalytic carbon dioxide reductions (PCR and ECR, respectively), and the mysteries between the roles of single metal site and cluster in catalysis were disclosed. Iron-POMOF exhibited an excellent selectivity (97.2%) with high methane production of 922 micromoles per gram in PCR, together with superior Faradaic efficiency for carbon dioxide to carbon monoxide (92.1%) in ECR. The underlying mechanisms were further clarified. Photogenerated electrons transferred from iron-TCPP to the POM cluster for methane generation under irradiation, while the abundant electrons flowed to the center of iron-TCPP for carbon monoxide formation under the applied electric field. The specific multielectron products generated on iron-POMOF through switching driving forces to control electron flow direction between single metal site and cluster catalysis.

19.
Angew Chem Int Ed Engl ; 61(50): e202212162, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36229417

RESUMEN

Strategy that can design powerful photothermal-catalysts to achieve photothermal-effect assisted coupling-catalysis is much desired for the improvement of energy conversion efficiency and redox product value in CO2 electroreduction system. Herein, a kind of bifunctional viologen-containing covalent organic framework (Ni-2CBpy2+ -COF) has been prepared and successfully applied in photothermal-assisted co-electrolysis of CO2 and methanol. Specifically, the FECO (cathode) and FEHCOOH (anode) for Ni-2CBpy2+ -COF can reach up to ≈100 % at 1.9 V with ≈31.5 % saved overall electricity-consumption when the anodic oxygen evolution reaction (OER) is replaced by methanol oxidation. The superior performance could be attributed to the cyclic diquats in Ni-2CBpy2+ -COF that enhance the photothermal effect (ΔT=49.1 °C) to accelerate faster charge transfer between catalyst and immediate species as well as higher selectivity towards desired products as revealed by DFT calculations and characterizations.

20.
Small ; 18(48): e2205444, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36284496

RESUMEN

Metal-oxo clusters have emerged as advanced proton conductors with well-defined and tunable structures. Nevertheless, the exploitation of metal-oxo clusters with high and stable proton conductivity over a relatively wide temperature range still remains a great challenge. Herein, three sulfate groups decorated zirconium-oxo clusters (Zr6 , Zr18 , and Zr70 ) as proton conductors are reported, which exhibit ultrahigh bulk proton conductivities of 1.71 × 10-1 , 2.01 × 10-2 , and 3.73 × 10-2  S cm-1 under 70 °C and 98% relative humidity (RH), respectively. Remarkably, Zr6 and Zr70 with multiple sulfate groups as proton hopping sites show ultralow activation energies of 0.22 and 0.18 eV, respectively, and stable bulk conductivities of >10-2  S cm-1 between 30 and 70 °C at 98% RH. Moreover, a time-dependent proton conductivity test reveals that the best performing Zr6 can maintain high proton conductivity up to 15 h with negligible loss at 70 °C and 98% RH, representing one of the best crystalline cluster-based proton conducting materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...