Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39001814

RESUMEN

Objective Lipotoxicity is a well-established contributor to cardiomyocyte death and heart damage, with ferroptosis being identified as a crucial death mode in cardiomyocyte disease. This study aims to explore the potential role and mechanism of ferroptosis in lipotoxicity-induced myocardial injury. Methods Eight-weeks high-fat diet (HFD) SD rat and H9c2 cardiomyocytes treated with palmitic acid (PA) were established for in vivo and in vitro lipotoxic model. Ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) were used to inhibit ferroptosis. Myocardial-specific STING knockdown rat (Stingmyo-KD) with HFD was further introduced. Rat cardiac structure and function, cell viability, the level of lipid peroxidation, malondialdehyde (MDA), glutathione (GSH), mitochondrial function, ferroptosis related proteins and STING pathway related proteins in H9c2 cells/myocardium were detected. Results HFD rats with ferroptosis inhibitor showed improved cardiac structure and function, reduced lipid peroxidation and restored GSH, which was further confirmed in H9c2 cell. The time-dependent activation of the STING pathway following PA stimulation was observed. Knockdown the expression of STING could reduce PA-induced cell death, lipid peroxidation and MDA levels while restoring the GSH. In addition, both HFD Stingmyo-KD rats and HFD rats with systematic inhibited by STING inhibitor exhibited mitigating lipotoxicity-induced myocardial ferroptosis and reducing myocardial injury. Innovation and conclusion These findings suggest that lipotoxicity can induce ferroptosis in cardiomyocytes through the activation of the STING pathway, providing new targets, and strategies for the treatment of lipotoxicity cardiomyopathy.

2.
Front Microbiol ; 15: 1402235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974026

RESUMEN

Introduction: The H9N2 subtype is a predominant avian influenza virus (AIV) circulating in Chinese poultry, forming various genotypes (A-W) based on gene segment origins. This study aims to investigate the genotypic distribution and pathogenic characteristics of H9N2 isolates from wild birds and domestic poultry in Yunnan Province, China. Methods: Eleven H9N2 strains were isolated from fecal samples of overwintering wild birds and proximate domestic poultry in Yunnan, including four from common cranes (Grus grus), two from bar-headed geese (Anser indicus), and five from domestic poultry (Gallus gallus). Phylogenetic analysis was conducted to determine the genotypes, and representative strains were inoculated into Yunnan mallard ducks to assess pathogenicity. Results: Phylogenetic analysis revealed that five isolates from domestic birds and one from a bar-headed goose belong to genotype S, while the remaining five isolates from wild birds belong to genotype A. These bird-derived strains possess deletions in the stalk domain of NA protein and the N166D mutation of HA protein, typical of poultry strains. Genotype S H9N2 demonstrated oropharyngeal shedding, while genotype A H9N2 exhibited cloacal shedding and high viral loads in the duodenum. Both strains caused significant pathological injuries, with genotype S inducing more severe damage to the thymus and spleen, while genotype A caused duodenal muscle layer rupture. Discussion: These findings suggest that at least two genotypes of H9N2 are currently circulating in Yunnan, and Yunnan mallard ducks potentially act as intermediaries in interspecies transmission. These insights highlight the importance of analyzing the current epidemiological transmission characteristics of H9N2 among wild and domestic birds in China.

3.
Org Lett ; 26(25): 5306-5311, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38869452

RESUMEN

Dehydration of alcohols is one of the most fundamental transformations in the organic chemistry class and one of the most widely used methods for producing alkenes in synthetic research. Numerous methods and reagents have been developed to control the regio- and stereoselectivity as well as the dehydration efficiency of normal alcohols. Despite these achievements, regio- and stereoselective and predictable dehydration of allylic alcohol has seldom been reported, except for limited substrates with a native preferred elimination position, as a result of the challenges that many potential dienes could be formed via 1,2- or 1,4-syn- or anti-elimination. Here, we report a tBuOK/potassium 2,2-difluoroacetate-mediated 1,4-syn-dehydration of allylic alcohol for the synthesis of regio- and stereodefined conjugated dienes via an in situ generated directing group strategy. This reaction exhibits a broad substrate scope and good functional group compatibility for primary-tertiary alcohols. The simple and scalable (up to 0.6 mol) procedure with readily available and inexpensive reagents makes it a practical method for conjugated diene synthesis. Mechanistic studies reveal that an acetate with tert-butoxide and allyloxide acetal moiety is formed as an intermediate, in which the acetate and the acetal act as the directing group for the base-promoted elimination. An unusual H2 evolution is also involved in the reaction.

4.
Gene ; 927: 148699, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880185

RESUMEN

Aeonium arboreum 'Halloween', a popular indoor ornamental succulent in China, changes its leaf colour to red on light exposure. However, the underlying molecular mechanisms is still vague. Comparative analysis of transcriptome data from 'Halloween' leaves treated under dark and light conditions revealed two R2R3-MYB transcription factors, AaMYB113 and AaMYB114, that may mediate anthocyanin accumulation. In this study, we cloned the AaMYB113 and AaMYB114 genes, encoding proteins of 279 and 248 amino acids, respectively. Transcriptional activity analysis revealed that AaMYB113 exhibits strong transcriptional activity, in contrast to AaMYB114, which demonstrates minimal activity. Transient expression studies in tobacco leaves demonstrated that AaMYB113 induced red pigmentation, whereas AaMYB114 did not. Subsequent stable overexpression in Arabidopsis thaliana confirmed that AaMYB113, but not AaMYB114, could similarly turn Arabidopsis leaves red. Further stable transformation of AaMYB113 in tobacco affected multiple floral components, including leaves, petals, calyx, flower tubes, and filaments, turning them red. Quantitative real-time PCR (qRT-PCR) assay in leaves of AaMYB113 stably transformed tobacco and Arabidopsis revealed upregulation of anthocyanin biosynthesis-related structural genes and TT8-like transcription factors. Moreover, the dual luciferase analysis confirmed that AaMYB113 can activate the promoters of 'Halloween' anthocyanin synthesis structural genes, AaCHS, AaCHI, AaF3H, AaDFR and AaANS. The above results indicate that AaMYB113 can promote anthocyanin synthesis, while AaMYB114 does not have this function. This study contributes significantly to the limited body of research on the molecular mechanisms of anthocyanin synthesis in succulents, advancing our understanding of how these pathways are regulated in 'Halloween' succulents and potentially other species.

5.
Cell Rep Med ; 5(5): 101559, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38744275

RESUMEN

Dysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However, their exact roles in triggering arrhythmia remain elusive. Here, using an in vitro coculture system with sympathetic neurons, cardiomyocytes, and adipocytes, we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY), which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R, NCX, or CaMKII. Moreover, increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia.


Asunto(s)
Adipocitos , Tejido Adiposo , Arritmias Cardíacas , Leptina , Miocitos Cardíacos , Neuropéptido Y , Pericardio , Humanos , Animales , Pericardio/metabolismo , Pericardio/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Neuropéptido Y/metabolismo , Leptina/metabolismo , Adipocitos/metabolismo , Masculino , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas/metabolismo , Neuronas/patología , Intercambiador de Sodio-Calcio/metabolismo , Femenino , Receptores de Neuropéptido Y/metabolismo , Persona de Mediana Edad , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/patología , Sistema Nervioso Simpático/metabolismo , Ratones , Tejido Adiposo Epicárdico
6.
Circ Arrhythm Electrophysiol ; 17(6): e012486, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38690652

RESUMEN

BACKGROUND: 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) has shown potential in protecting against heart disease, but its relationship with atrial fibrillation (AF) remains unknown. METHODS: Coronary sinus (CS) and femoral vein blood samplings were synchronously collected from AF and non-AF subjects (paroxysmal supraventricular tachycardia or idiopathic premature ventricular complexes) who underwent catheter ablation. First, untargeted metabolomic profiling was performed in a discovery cohort (including 12 AF and 12 non-AF subjects) to identify the most promising CS or femoral vein metabolite. Then, the selected metabolite was further measured in a validation cohort (including 119 AF and 103 non-AF subjects) to confirm its relationship with left atrium remodeling and 1-year postablation recurrence of AF. Finally, the biological function of the selected metabolite was validated in a rapid-paced cultured HL-1 atrial cardiomyocytes model. RESULTS: Metabolomic analysis identified CS 12,13-diHOME as the most pronounced change metabolite correlated with left atrium remodeling in the discovery cohort. In the validation cohort, CS 12,13-diHOME was significantly lower in patients with AF than non-AF controls (84.32±20.13 versus 96.24±23.56 pg/mL; P<0.01), and associated with worse structural, functional, and electrical remodeling of left atrium. Multivariable regression analyses further demonstrated that decreased CS 12,13-diHOME was an independent predictor of 1-year postablation recurrence of AF (odds ratio, 0.754 [95% CI, 0.648-0.920]; P=0.005). Biological function validations showed that 12,13-diHOME treatment significantly protect the cell viability, improved the expression of MHC (myosin heavy chain) and Cav1.2 (L-type calcium channel α1c), and attenuated mitochondrial damage in the rapid-paced cultured HL-1 cardiomyocytes model. CONCLUSIONS: CS metabolite 12,13-diHOME is decreased in patients with AF and can serve as a novel biomarker for left atrium remodeling.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Biomarcadores , Ablación por Catéter , Seno Coronario , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Fibrilación Atrial/metabolismo , Fibrilación Atrial/diagnóstico , Humanos , Masculino , Femenino , Biomarcadores/sangre , Biomarcadores/metabolismo , Persona de Mediana Edad , Seno Coronario/metabolismo , Seno Coronario/fisiopatología , Metabolómica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Anciano , Estudios de Casos y Controles , Recurrencia , Función del Atrio Izquierdo , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/metabolismo , Valor Predictivo de las Pruebas
7.
Biochem Genet ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767822

RESUMEN

To investigate the impact of four single nucleotide polymorphisms (SNPs) of the HIF1α gene and its interaction with Helicobacter pylori (H. pylori) infection on susceptibility to gastric cancer (GC).Logistic regression was used to test the relationship between four SNPs of HIF1α gene and the susceptibility of GC. A generalized multifactor dimensionality reduction (GMDR) model was used to assess the HIF1α gene-H. pylori infection interaction.Logistic regression analysis indicated that both the rs11549465-CT genotype and the T allele were associated with an increased risk of GC, adjusted OR (95% CI) were 1.63 (1.09-2.20) (CT vs. CC) and 1.70 (1.13-2.36) (T vs. C), respectively. We also found that both the rs11549467-A allele and rs11549467-GA genotype were associated with an increased risk of GC, and adjusted OR (95% CI) were 2.21 (1.61-2.86) (GA vs. GG), 2.13 (1.65-2.65) (A vs. G), respectively. However, no statistically significant impact of rs2057482 or rs1957757 on risk of GC was found. The GMDR model indicated a statistically significant two-dimensional model combination (including rs11549467 and H. pylori infection). The selected model had testing balanced accuracy of 0.60 and the best cross-validation consistencies of 10/10 (p = 0.0107). Compared with H. pylori infection negative participants with rs11549467-GG genotype, H. pylori positive participants with the rs11549467-GA genotype had the highest GC risk, the OR (95% CI) was 3.04 (1.98-4.12).The rs11549467-A allele and rs11549467-GA genotype was associated with increased GC risk. Additionally, the gene-environment interaction between HIF-1α-rs11549467 and H. pylori infection was also correlated with an increased risk of GC.

8.
Insects ; 15(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38535389

RESUMEN

Potatoes hold the distinction of being the largest non-cereal food crop globally. The application of insecticides has been the most common technology for pest control. The repeated use of synthetic insecticides of the same chemical class and frequent applications have resulted in the emergence of insecticide resistance. Two closely related pests that feed on potato crops are the potato tuber moth, Phthorimaea operculella, and the tomato leafminer, Phthorimaea absoluta (syn. Tuta absoluta). Previous studies indicated the existence of insecticide resistance to various classes of insecticides including organophosphates, carbamates, and pyrethroids in field populations of P. operculella and P. absoluta. However, the exact mechanisms of insecticide resistance in P. operculella and to a lesser extent P. absoluta remain still poorly understood. Detecting resistance genotypes is crucial for the prediction and management of insecticide resistance. In this study, we identified multiple genetic mutations related to insecticide resistance in two species of Phthorimaea. An unexpected genetic divergence on target-site mutations was observed between P. operculella and P. absoluta. Three mutations (A201S, L231V, and F290V) in Ace1 (acetylcholinesterase), four mutations (M918T, L925M, T928I, and L1014F) in VGSC (voltage-gated sodium channel), and one mutation (A301S) in RDL (GABA-gated chloride channel) have been detected with varying frequencies in Chinese P. absoluta field populations. In contrast, P. operculella field populations showed three mutations (F158Y, A201S, and L231V) in Ace1, one mutation (L1014F) in VGSC at a lower frequency, and no mutation in RDL. These findings suggest that pyrethroids, organophosphates, and carbamates are likely to be ineffective in controlling P. absoluta, but not P. operculella. These findings contributed to a deeper understanding of the presence of target-site mutations conferring resistance to commonly used (and cheap) classes of insecticides in two closely related potato pests. It is recommended to consider the resistance status of both pests for the implementation of resistance management strategies in potatoes.

9.
Nat Chem ; 16(3): 353-362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355829

RESUMEN

Linkage chemistry and functional molecules derived from the stereogenic sulfur(VI) centre have important applications in organic synthesis, bioconjugation, drug discovery, agrochemicals and polymeric materials. However, existing approaches for the preparation of optically active S(VI)-centred compounds heavily rely on synthetic chiral S(IV) pools, and the reported linkers of S(VI) lack stereocontrol. A modular assembly method, involving sequential ligand exchange at the S(VI) centre with precise control of enantioselectivity, is appealing but remains elusive. Here we report an asymmetric three-dimensional sulfur(VI) fluoride exchange (3D-SuFEx) reaction based on thionyl tetrafluoride gas (SOF4). A key step involves the chiral ligand-induced enantioselective defluorinative substitution of iminosulfur oxydifluorides using organolithium reagents. The resulting optically active sulfonimidoyl fluorides allow for further stereospecific fluoride-exchange by various nucleophiles, thereby establishing a modular platform for the asymmetric SuFEx ligation and the divergent synthesis of optically active S(VI) functional molecules.

10.
Cell Death Dis ; 15(1): 66, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238307

RESUMEN

Gasdermin-E (GSDME), the executioner of pyroptosis when cleaved by caspase 3, plays a crucial role in tumor defense and the response to chemotherapy drugs in cells. So far, there are poorly known mechanisms for the expression regulation of GSDME during cell death. Here, we identify the transcription factor Sp1 (Specificity protein 1) as a positive regulator of GSDME-mediated pyroptosis. Sp1 directly interacts with the GSDME promoter at -36 ~ -28 site and promotes GSDME gene transcription. Further, Sp1 knockdown or inhibition suppresses GSDME expression, thus reducing chemotherapy drugs (topotecan, etoposide, doxorubicin, sorafinib and cisplatin) induced cell pyroptosis. The regulation process synergizes with STAT3 (Signal transducer and activator of transcription 3) activity and antagonizes with DNA methylation but barely affects GSDMD-mediated pyroptosis or TNF-induced necroptosis. Our current finding reveals a new regulating mechanism of GSDME expression, which may be a viable target for the intervention of GSDME-dependent inflammatory diseases and cancer therapy.


Asunto(s)
Piroptosis , Receptores de Estrógenos , Receptores de Estrógenos/metabolismo , Muerte Celular , Cisplatino/farmacología , Doxorrubicina/farmacología , Caspasa 3/metabolismo
11.
Biomed Rep ; 20(1): 1, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38222865

RESUMEN

The present study aimed to investigate the accuracy of new noninvasive markers in predicting liver fibrosis among individuals with primary biliary cholangitis (PBC). This retrospective analysis included subjects with PBC who had liver biopsies. Scheuer's classification was used to determine the fibrosis stage. The bilirubin to albumin (Alb) ratio (BAR), fibrosis index based on the four factors (FIB-4), γ-glutamyl transpeptidase to platelet (PLT) ratio (GPR), red cell distribution width to PLT ratio (RPR), aspartate aminotransferase (AST) to alanine aminotransferase ratio (AAR), AST to PLT ratio index (APRI) and total bilirubin to PLT ratio (TPR) were calculated based on the laboratory parameters. A novel index called BARP was conceived as BAR x RPR. A total of 78 individuals with PBC were included in the study, 84.6% of whom had significant fibrosis, 30.8% had advanced fibrosis and 15.4% had cirrhosis. In the multivariate analysis, Alb was determined to be an independent predictor of advanced fibrosis (odds ratio=0.823, P=0.034). The area under the receiver operating characteristic curves (AUROCs) of the BAR, GPR, TPR and BARP were statistically significant in predicting severe fibrosis (P<0.05) and were 0.747, 0.684, 0.693 and 0.696, respectively. In assessing advanced fibrosis, the AUROCs for the AAR, APRI, BAR, FIB-4, RPR, TPR and BARP were 0.726, 0.650, 0.742, 0.716, 0.670, 0.735 and 0.750, respectively. The AUROCs for the APRI, BAR, FIB-4, RPR, TPR and BARP for cirrhosis prediction were 0.776, 0.753, 0.821, 0.819, 0.808 and 0.832, respectively. By comparing the AUROCs, it was demonstrated that the diagnostic capabilities of the BARP (P=0.021) and TPR (P=0.044) were superior to those of the APRI in predicting advanced fibrosis. In conclusion, the BAR, BARP and TPR were of predictive value for the grade of liver fibrosis in PBC and Alb had a diagnostic value in identifying early fibrosis. The aforementioned noninvasive indices may be used for predicting histologic stages of PBC.

12.
Cardiovasc Diabetol ; 23(1): 31, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218861

RESUMEN

BACKGROUND: Type 1 diabetes (T1D) is a significant risk factor for a range of cardiovascular diseases. Nonetheless, the causal relationship between T1D and non-ischemic cardiomyopathy (NICM) remains to be elucidated. Furthermore, the mechanisms responsible for the progression from T1D to NICM have not been definitively characterized. OBJECTIVE: The aim of this study was to conduct a Mendelian randomization (MR) study to investigate the causal effects of T1D and its complications on the development of NICM. Additionally, this study aimed to conduct a mediation analysis to identify potential mediators within this correlation. METHODS: Genetic variants were used as instrumental variables for T1D. The summary data for T1D were obtained from two genome-wide association study datasets. The summary data for T1D with complications and NICM were obtained from the Finnish database. Two-sample MR, multivariable MR and mediation MR were conducted in this study. RESULTS: The study revealed a causal association between T1D, T1D with complications, and NICM (with odds ratios of 1.02, 95% CI 1.01-1.04, p = 1.17e-04 and 1.03, 95% CI 1.01-1.05, p = 3.15e-3). Even after adjusting for confounding factors such as body mass index and hypertension, T1D remained statistically significant (with odds ratio of 1.02, 95% CI 1.01-1.04, p = 1.35e-4). Mediation analysis indicated that monokine induced by gamma interferon may play a mediating role in the pathogenesis of T1D-NICM (mediation effect indicated by odds ratio of 1.005, 95% CI 1.001-1.01, p = 4.9e-2). CONCLUSION: The study demonstrates a causal relationship between T1D, its complications, and NICM. Additionally, monokine induced by gamma interferon may act as a potential mediator in the pathogenesis of T1D-NICM.


Asunto(s)
Cardiomiopatías , Diabetes Mellitus Tipo 1 , Isquemia Miocárdica , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/genética , Estudio de Asociación del Genoma Completo , Interferón gamma , Análisis de la Aleatorización Mendeliana , Monocinas , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Polimorfismo de Nucleótido Simple
14.
Int Urol Nephrol ; 56(1): 325-334, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37368084

RESUMEN

OBJECTIVE: To investigate the risk factors of acute kidney injury (AKI) patients with acute myocardial infarction (AMI) and establish potential microRNA (miRNA) biomarkers in the peripheral blood of AMI-AKI patients. METHODS: Patients hospitalized from 2016 to 2020 and diagnosed with AMI (with AKI or without AKI groups) were recruited. The data of the two groups were compared and the risk factors of AMI-AKI were analyzed by logistic regression. The receiver operator characteristics (ROC) curve was drawn and the predictive value of risk factors in AMI-AKI was evaluated. Six AMI-AKI patients were selected and six healthy subjects were enrolled as the control. The peripheral blood samples of the two groups were collected for miRNA high-throughput sequencing. RESULTS: A total of 300 AMI patients were collected, including 190 patients with AKI and 110 patients without AKI. Multivariate logistic regression analysis indicated that diastolic pressure (68-80 mmHg), urea nitrogen, creatinine, serum uric acid (SUA), aspartate aminotransferase (AST), and left ventricular ejection fraction were the dependent risk factors of AMI-AKI patients (P < 0.05). ROC curve showed that the incidence of AMI-AKI patients was most correlated with urea nitrogen, creatinine, and SUA. In addition, 60 differentially expressed miRNAs were identified between AMI-AKI and controls. Then, hsa-miR-2278, hsa-miR-1827, and hsa-miR-149-5p were more corrected with predictors. Twelve of them targeted 71 genes involved in phagosome, oxytocin signaling pathway, and microRNAs in cancer pathways. CONCLUSION: Urea nitrogen, creatinine, and SUA were the dependent risk factors and important predictors for AMI-AKI patients. Three miRNAs may be considered as biomarkers for AMI-AKI.


Asunto(s)
Lesión Renal Aguda , MicroARNs , Infarto del Miocardio , Humanos , Creatinina , Volumen Sistólico , Ácido Úrico , Función Ventricular Izquierda , MicroARNs/genética , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Biomarcadores , Nitrógeno , Urea
15.
Gene ; 896: 148031, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38008272

RESUMEN

Anthocyanin glycoside is a water-soluble flavonoid compound that colors plants and aids in stress resistance. The mechanism driving the evolution of the anthocyanin synthesis pathway in plants remains unclear. Aeonium plants are highly regarded as model organisms for studying adaptive evolution. These plants can be categorized into various types, each distinguished by the content and distribution of anthocyanins in their leaves. The categories include red leaves, green leaves, black leaves, yellow leaves, and a classification known as the 'spot brocade series. In this study, we successfully assembled and annotated the genome of cultivar 'Aeonium arboreum 'Velour'' at chromosomal level. The genome size is 1,334.85 Mb containing 18 chromosomes in a single set, with a contig N50 of 23.47 Mb and a Scaffold N50 of 25.07 Mb. Through homology prediction, de novo prediction, and transcriptome prediction, we identified 166,228 coding genes, 161,656 of which were successfully annotated in the database. Comparative genomic analysis revealed that Aeonium arboreum 'Velour' underwent an independent genome-wide replication event after differentiating from Sedum album, Kalanchoe laxiflora, and Kalanchoe fedtschenkoi. It also shared a genome-wide replication event with Sedum album and Kalanchoe laxiflora. Aeonium arboreum 'Velour' exhibits a higher number of multi-copy gene families compared to other species. A total of 5,129 gene families unique to Aeonium arboreum 'Velour' were identified, primarily enriched in various metabolic pathways, including monoterpenoid biosynthesis, sesquiterpene and triterpene biosynthesis, cyanamide acid metabolism, flavonoid and flavonol biosynthesis, phosphonate and phosphinate metabolism, fatty acid degradation, biosynthesis of unsaturated fatty acid, ether lipid metabolism, tyrosine metabolism, and isoflavone biosynthesis according to the KEGG pathway analysis. Aeonium arboreum 'Velour' and Sedum album diversion dates back to approximately 43.11 million years ago during the Paleogene period, marked by the expansion of 2,807 gene families. In contrast, the divergence from Kalanchoe laxiflora and Kalanchoe fedtschenkoi began around 57.28 million years ago, with 219 gene families expanding. GO analysis highlighted that most of the expansion or contraction gene families were predominantly enriched in flower organs, leaf organ development, anthocyanin metabolism regulation, and light energy absorption and utilization. Remarkably, anthocyanin metabolism regulation is enriched to 80 expanded genes, including 36 bHLH transcription factors, possibly functioning as photosensitive pigment interaction factors (PIFs). We speculate that flavonoids play a pivotal role in the adaptation of Aeonium arboreum 'Velour' to environmental stress. Moreover, the evolution of the anthocyanin synthesis pathway is potentially driven by the plant's capability to absorb and utilize light energy, especially in high CO2 and high-temperature settings characteristic of the early Paleogene.


Asunto(s)
Antocianinas , Transcriptoma , Flavonoides/genética , Plantas/genética , Cromosomas , Regulación de la Expresión Génica de las Plantas
16.
Plant Cell Environ ; 47(1): 230-245, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37750501

RESUMEN

Laboratory studies have revealed that strigolatone (SL) and karrikin (KAR) signalling mediate responses to abiotic and biotic stresses, and reshape branching architecture that could increase reproductive performance and crop yields. To understand the ecological function of SL and KAR signalling, transgenic lines of wild tobacco Nicotiana attenuata, silenced in SL/KAR biosynthesis/signalling were grown in the glasshouse and in two field plots in the Great Basin Desert in Utah over four field seasons. Of the lines silenced in SL and KAR signalling components (irMAX2, irD14, irKAI2 and irD14 × irKAI2 plants), which exhibited the expected increases in shoot branching, only irMAX2 plants showed a strong leaf-bleaching phenotype when grown in the field. In the field, irMAX2 plants had lower sugar and higher leaf amino acid contents, lower lifetime fitness and were more susceptible to herbivore attack compared to wild-type plants. These irMAX2 phenotypes were not observed in glasshouse-grown plants. Transcriptomic analysis revealed dramatic responses to high-light intensity in irMAX2 leaves in the field: lutein contents decreased, and transcriptional responses to high-intensity light, singlet oxygen and hydrogen peroxide increased. PAR and UV-B manipulations in the field revealed that the irMAX2 bleaching phenotype is reversed by decreasing PAR, but not UV-B fluence. We propose that NaMAX2 functions in high-light adaptation and fitness optimisation by regulating high-light responses independently of its roles in the SL and KAR signalling pathways. The work provides another example of the value of studying the function of genes in the complex environments in which plants evolved, namely nature.


Asunto(s)
Nicotiana , Hojas de la Planta , Nicotiana/metabolismo , Perfilación de la Expresión Génica
17.
Mol Neurodegener ; 18(1): 94, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041169

RESUMEN

Parkinson's disease (PD), one of the most devastating neurodegenerative brain disorders, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) and deposits of α-synuclein aggregates. Currently, pharmacological interventions for PD remain inadequate. The cell necroptosis executor protein MLKL (Mixed-lineage kinase domain-like) is involved in various diseases, including inflammatory bowel disease and neurodegenerative diseases; however, its precise role in PD remains unclear. Here, we investigated the neuroprotective role of MLKL inhibition or ablation against primary neuronal cells and human iPSC-derived midbrain organoids induced by toxic α-Synuclein preformed fibrils (PFFs). Using a mouse model (Tg-Mlkl-/-) generated by crossbreeding the SNCA A53T synuclein transgenic mice with MLKL knockout (KO)mice, we assessed the impact of MLKL deficiency on the progression of Parkinsonian traits. Our findings demonstrate that Tg-Mlkl-/- mice exhibited a significant improvement in motor symptoms and reduced phosphorylated α-synuclein expression compared to the classic A53T transgenic mice. Furthermore, MLKL deficiency alleviated tyrosine hydroxylase (TH)-positive neuron loss and attenuated neuroinflammation by inhibiting the activation of microglia and astrocytes. Single-cell RNA-seq (scRNA-seq) analysis of the SN of Tg-Mlkl-/- mice revealed a unique cell type-specific transcriptome profile, including downregulated prostaglandin D synthase (PTGDS) expression, indicating reduced microglial cells and dampened neuron death. Thus, MLKL represents a critical therapeutic target for reducing neuroinflammation and preventing motor deficits in PD.


Asunto(s)
Enfermedad de Parkinson , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Ratones Noqueados , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo , Sustancia Negra
18.
Sci Rep ; 13(1): 17257, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828353

RESUMEN

Renal ischemia/reperfusion (I/R) injury, which leads to acute kidney injury (AKI), is a major cause of morbidity and mortality in a variety of clinical situations. This study aimed to investigate the protective role of Mfn2 during renal I/R injury. Overexpression of Mfn2 in NRK-52E rat renal tubular epithelial cells and rats, then we constructed hypoxia reoxygenation (H/R) cells and I/R rat model. Apoptosis, ROS, ATP, Ca2+ levels in cells and rats, as well as renal tissue and functional injury in rats were detected respectively. Endoplasmic reticulum (ER) stress was further examined in cells and rats. The morphological changes of mitochondria-associated ER membranes (MAMs) were also detected. Mfn2 expression is reduced in H/R-treated NRK-52E cells and renal tissue of I/R rats. At the cellular level, overexpression of Mfn2 promoted cell proliferation, inhibited cell apoptosis, attenuated mitochondrial damage and Ca2+ overload, and ER stress. In addition, Mfn2 also restored the MAMs structure. In vivo experiments found that overexpression of Mfn2 could improve renal function and alleviate tissue injury. Concomitant with elevated Mfn2 expression in the kidney, reduced renal cell apoptosis, restored mitochondrial function, and reduced calcium overload. Finally, ER stress in rat kidney tissue was alleviated after overexpression of Mfn2. These results reveal that Mfn2 contributes to ER stress, mitochondrial function, and cell death in I/R injury, which provides a novel therapeutic target for AKI.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Ratas , Animales , Línea Celular , Riñón/metabolismo , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/metabolismo , Apoptosis , Mitocondrias/metabolismo , Isquemia/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Reperfusión
19.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 80-84, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37715422

RESUMEN

Cervical cancer is the second leading cause of cancer death among women worldwide. Identification of effective genes along with biological markers as targeting agents is very necessary for the diagnosis and treatment of this disease. Bioinformatics techniques along with genetic and molecular investigations have provided the possibility of studying different levels of information such as the genome, transcriptome, proteome, and metabolize with high depth and accuracy. The collection of these data provides comprehensive and valuable information about the investigated phenotypes, including complex diseases such as cancer. In this study, we examined three genes LRP11, FUBP1, and TET1 related to cervical cancer. The results of this study showed that the level of expression of these genes is high in lymph nodes and the thyroid and is less in the pancreas and liver. Also, the expression level of the FUBP1 gene is higher than that of LRP11, and the expression level of the LRP11 gene is higher than that of TET1. Regarding the structure and proteomics of the studied genes, it can be seen that due to the presence of more domains in the LRP11 and FUBP1 genes, these genes probably independently participate in various functions and have a wider range of activity than the TET1 gene. Also, the analysis of the stability of the examined genes showed that the stability of the FUBP1 gene is relatively higher than that of the TET1 gene, and this gene is also more stable than the LRP11 gene. Considering that these genes are effective key genes for the early detection of cervical cancer, it is hoped that they will be used as markers in the diagnosis and treatment of cervical cancer.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/genética , Hígado , Biología Computacional , Ganglios Linfáticos , Fenotipo , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN
20.
Viruses ; 15(8)2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37631996

RESUMEN

Fowl adenoviruses (FAdVs) are distributed worldwide in poultry and incriminated as the etiological agents for several health problems in fowls, and are capable of crossing species barriers between domestic and wild fowls. An FAdV strain was, for the first time, isolated from black-necked crane in this study, and was designated as serotype 4 Fowl aviadenovirus C (abbreviated as BNC2021) according to the phylogenetic analysis of its DNA polymerase and hexon gene. The viral genomic sequence analysis demonstrated that the isolate possessed the ORF deletions that are present in FAdV4 strains circulating in poultry fowls in China and the amino acid mutations associated with viral pathogenicity in the hexon and fiber 2 proteins. A viral challenge experiment with mallard ducks demonstrated systemic viral infection and horizontal transmission. BNC2021 induced the typical clinical signs of hepatitis-hydropericardium syndrome (HHS) with swelling and inflammation in multiple organs and showed significant viral replication in all eight organs tested in the virus-inoculated ducks and their contactees at 6 dpi. The findings highlight the importance of surveillance of FAdVs in wild birds.


Asunto(s)
Aviadenovirus , Sepsis , Animales , Filogenia , Serogrupo , Genómica , Aves , Patos , Hexametonio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA