Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1334430, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384767

RESUMEN

This study aimed to enhance the use of male sterility in pepper to select superior hybrid generations. Transcriptomic and proteomic analyses of fertile line 1933A and nucleic male sterility line 1933B of Capsicum annuum L. were performed to identify male sterility-related proteins and genes. The phylogenetic tree, physical and chemical characteristics, gene structure characteristics, collinearity and expression characteristics of candidate genes were analyzed. The study identified 2,357 differentially expressed genes, of which 1,145 and 229 were enriched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, respectively. A total of 7,628 quantifiable proteins were identified and 29 important proteins and genes were identified. It is worth noting that the existence of CaPRX genes has been found in both proteomics and transcriptomics, and 3 CaPRX genes have been identified through association analysis. A total of 66 CaPRX genes have been identified at the genome level, which are divided into 13 subfamilies, all containing typical CaPRX gene conformal domains. It is unevenly distributed across 12 chromosomes (including the virtual chromosome Chr00). Salt stress and co-expression analysis show that male sterility genes are expressed to varying degrees, and multiple transcription factors are co-expressed with CaPRXs, suggesting that they are involved in the induction of pepper salt stress. The study findings provide a theoretical foundation for genetic breeding by identifying genes, metabolic pathways, and molecular mechanisms involved in male sterility in pepper.

2.
Entropy (Basel) ; 25(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37238508

RESUMEN

Adding time delay to nonlinear systems can significantly improve their performance, making it possible to construct image-encryption algorithms with higher security. In this paper, we propose a time-delayed nonlinear combinatorial hyperchaotic map (TD-NCHM) with a wide hyperchaotic interval. Based on TD-NCHM, we develop a fast and secure image-encryption algorithm that includes a plaintext-sensitive key-generation method and a simultaneous row-column shuffling-diffusion encryption process. Plenty of experiments and simulations demonstrate the superiority of the algorithm in terms of efficiency, security, and practical value in secure communications.

3.
Front Genet ; 13: 941954, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246640

RESUMEN

Ovate family proteins (OFPs) are transcriptional inhibitors that regulate plant growth and development and play important roles in the synthesis of secondary cell walls during pollen development. This study identified the pepper OFP gene family based on the genome-wide analysis and used bioinformatics methods to provide a fundamental profile of the gene family. 74 OFP genes with typical Ovate domain were identified in cultivated pepper Zunla-1, wild pepper Chiltepin and CM334. Chromosome mapping revealed that CazOFP genes were unevenly distributed on 11 chromosomes and Chr00 in Zunla-1, CacOFP genes on 12 chromosomes in Chiltepin, and CamOFP genes on 12 chromosomes and two Scaffflods in CM334. Gene structure analysis revealed that CaOFP genes possessed 1-3 exons, and the analysis of physicochemical properties suggested that CaOFPs were hydrophilic. Many cis-acting elements were identified in the promoter region of CaOFP genes, including ABRE, ARE, Box 4, G-box, TC-rich, and TCT-motif. The expression patterns of pepper at different growth stages showed that CaOFP genes were actively involved in the growth and fruit development of pepper, and CazOFP16 and CazOFP17 were actively involved in response to multiple hormones and stress events. qRT-PCR was also used to verify the expression of CazOFP gene in two developmental stages of seven pepper varieties with different fruit shapes, and it was found that CaOFP genes may be involved in the formation of fruit type in pepper. This study provides theoretical and practical evidence for future research on the OFP gene family.

4.
Front Genet ; 12: 680457, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539731

RESUMEN

The Na+/H+ exchangers (NHXs) are a class of transporters involved in ion balance during plant growth and abiotic stress. We performed systematic bioinformatic identification and expression-characteristic analysis of CaNHX genes in pepper to provide a theoretical basis for pepper breeding and practical production. At the whole-genome level, the members of the CaNHX gene family of cultivated and wild pepper were systematically identified using bioinformatics methods. Sequence alignment and phylogenetic tree construction were performed using MEGA X software, and the gene functional domain, conserved motif, and gene structure were analyzed and visualized. At the same time, the co-expression network of CaNHX genes was analyzed, and salt-stress analysis and fluorescence quantitative verification of the Zunla-1 cultivar under stress conditions were performed. A total of 9 CaNHX genes were identified, which have typical functional domains of the Na+/H+ exchanger gene. The physical and chemical properties of the protein showed that the protein was hydrophilic, with a size of 503-1146 amino acids. Analysis of the gene structure showed that Chr08 was the most localized chromosome, with 8-24 exons. Cis-acting element analysis showed that it mainly contains cis-acting elements such as light response, salicylic acid response, defense, and stress response. Transcriptom and co-expression network analysis showed that under stress, the co-expressed genes of CaNHX genes in roots and leaves were more obvious than those in the control group, including ABA, IAA, and salt. The transcriptome and co-expression were verified by qRT-PCR. In this study, the CaNHX genes were identified at the genome level of pepper, which provides a theoretical foundation for improving the stress resistance, production, development, and utilization of pepper in genetic breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...