Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2400127, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623969

RESUMEN

Stabilizing the Zn anode/electrolyte interface is critical for advancing aqueous zinc ion storage technologies. Addressing this challenge helps minimize parasitic reactions and controls the formation of Zn dendrites, which is fundamental to achieving highly reversible Zn electrochemistry. In this study, 2% by volume of dimethyl sulfoxide (DMSO) is introduced into the baseline zinc sulfate (ZS) electrolyte, which acts as an efficient regulator to form a robust solid-electrolyte interphase (SEI) on the Zn anode. This innovative approach enables uniform Zn deposition and does not substantially modify the Zn2+ solvation structure. The Zn||Zn symmetric cell exhibits an extended cycle life of nearly one calendar year (>8500 h) at a current density of 0.5 mA cm-2 and an areal capacity of 0.5 mAh cm-2. Impressive full cell performance can be achieved. Specifically, the Zn||VS2 full cell achieves an areal capacity of 1.7 mAh cm-2, with a superior negative-to-positive capacity ratio of 2.5, and an electrolyte-to-capacity ratio of 101.4 µL mAh-1, displaying remarkable stability over 1000 cycles under a high mass loading of 11.0 mg cm-2 without significant degradation. This innovative approach in electrolyte engineering provides a new perspective on in situ SEI design and furthers the understanding of Zn anode stabilization.

2.
Small ; 20(3): e2304901, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37695085

RESUMEN

Aqueous rechargeable Zn metal batteries (ARZBs) are extensively studied recently because of their low-cost, high-safety, long lifespan, and other unique merits. However, the terrible ion conductivity and insufficient interfacial redox dynamics at low temperatures restrict their extended applications under harsh environments such as polar inspections, deep sea exploration, and daily use in cold regions. Electrolyte modulation is considered to be an effective way to achieve low-temperature operation for ARZBs. In this review, first, the fundamentals of the liquid-solid transition of water at low temperatures are revealed, and an in-depth understanding of the critical factors for inferior performance at low temperatures is given. Furthermore, the electrolyte modulation strategies are categorized into anion/concentration regulation, organic co-solvent/additive introduction, anti-freezing hydrogels construction, and eutectic mixture design strategies, and emphasize the recent progress of these strategies in low-temperature Zn batteries. Finally, promising design principles for better electrolytes are recommended and future research directions about high-performance ARZBs at low temperatures are provided.

3.
Nano Lett ; 23(20): 9491-9499, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37843076

RESUMEN

An electrolyte additive, with convenient operation and remarkable functions, has been regarded as an effective strategy for prolonging the cycle life of aqueous zinc ion batteries. However, it is still difficult to dynamically regulate the unstable Zn interface during long-term cycling. Herein, tricine was introduced as an efficient regulator to achieve a pH-stable and byproduct-free interface. The functional zwitterion of tricine not only inhibits interfacial pH perturbation and parasitic reactions by the trapping effect of an anionic group (-COO-) but also simultaneously creates a uniform electric field by the electrostatic shielding effect of a cationic group (-NH2+). Such synergy accordingly eliminates dendrite formation and creates a chemical equilibrium in the electrolyte, endowing the Zn||Zn cell with long-term Zn plating/stripping for 2060 h at 5 mA cm-2 and 720 h at 10 mA cm-2. As a result, the Zn||VS2 full cell under a high cathodic loading mass (8.6 mg cm-2) exhibits exceptional capacity retention of 93% after 1000 cycles.

4.
Small ; 17(35): e2101728, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34278715

RESUMEN

Zinc metal is an ideal candidate for aqueous rechargeable batteries due to its high theoretical capacity and natural abundance. However, its commercialization is inevitably challenged by several critical factors such as dendrite growth and parasitic side-reactions, leading to low coulombic efficiency and a limited lifespan. Herein, a modified Zn foil with a zincophilic ZnSe layer deposited by a simple selenization process is proposed. An order of magnitude stronger adsorption capability toward Zn2+ ions and uniform ion diffusion tunnels of ZnSe enables lower nucleation energy barrier and faster ion-diffusion kinetics. Meanwhile, detrimental Zn corrosion in aqueous system is also effectively mitigated. As a result, ZnSe@Zn anode shows reversible Zn plating/stripping (1700 h at 1 mA cm-2 ) with ultra-low voltage hysteresis (41 mV), contributing to exceptional cycling stability over 500 cycles with negligible capacity fading for the ZnSe@Zn/MnO2 full cell.


Asunto(s)
Compuestos de Manganeso , Zinc , Electrodos , Óxidos
5.
Adv Sci (Weinh) ; 8(1): 2002722, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437582

RESUMEN

Zinc-ion batteries (ZIBs) have attracted intensive attention due to the low cost, high safety, and abundant resources. However, up to date, challenges still exist in searching for cathode materials with high working potential, excellent electrochemical activity, and good structural stability. To address these challenges, microstructure engineering has been widely investigated to modulate the physical properties of cathode materials, and thus boosts the electrochemical performances of ZIBs. Here, the recent research efforts on the microstructural engineering of various ZIB cathode materials are mainly focused upon, including composition and crystal structure selection, crystal defect engineering, interlayer engineering, and morphology design. The dependency of cathode performance on aqueous electrolyte for ZIB is further discussed. Finally, future perspectives and challenges on microstructure engineering of cathode materials for ZIBs are provided. It is aimed to provide a deep understanding of the microstructure engineering effect on Zn2+ storage performance.

6.
ChemSusChem ; 13(6): 1379-1391, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31821700

RESUMEN

Lamellar molybdenum disulfide (MoS2 ) has attracted a wide range of research interests in recent years because of its two-dimensional layered structure, ultrathin thickness, large interlayer distance, adjustable band gap, and capability to form different crystal structures. These special characteristics and high anisotropy have made MoS2 widely applicable in energy storage and harvesting. In this Minireview, a systematic and comprehensive introduction to MoS2 , as well as its composites, is presented. It is aimed to summarize the various synthetic methods of MoS2 -based composites and their application in energy-storage devices (lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, and supercapacitors) in detail. Based on recent studies, this Minireview provides important and comprehensive guidelines for further study and development efforts in the MoS2 in energy-storage field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...