Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(30): e202400157, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38520385

RESUMEN

Up to now, the mainstream adoption of renewable energy has brought about substantial transformations in the electricity and energy sector. This shift has garnered considerable attention within the scientific community. Supercapacitors, known for their exceptional performance metrics like good charge/discharge capability, strong power density, as well as extended cycle longevity, have gained widespread traction across various sectors, including transportation and aviation. Metal-organic frameworks (MOFs) with unique traits including adaptable structure, highly customizable synthetic methods, and high specific surface area, have emerged as strong candidates for electrode materials. For enhancing the performance, MOFs are commonly compounded with other conducting materials to increase capacitance. This paper provides a detailed analysis of various common preparation strategies and characteristics of MOFs. It summarizes the recent application of MOFs and their derivatives as supercapacitor electrodes alongside other carbon materials, metal compounds, and conductive polymers. Additionally, the challenges encountered by MOFs in the realm of supercapacitor applications are thoroughly discussed. Compared to previous reviews, the content of this paper is more comprehensive, offering readers a deeper understanding of the diverse applications of MOFs. Furthermore, it provides valuable suggestions and guidance for future progress and development in the field of MOFs.

2.
J Colloid Interface Sci ; 657: 91-101, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38035423

RESUMEN

Layered double hydroxides (LDHs) with unique layered structure have excellent theoretical capacitance. Nevertheless, the constrained availability of electrically active sites and cationic species curtails their feasibility for practical implementation within supercapacitors. Most of the reported materials are bimetallic hydroxides, and fewer studies are on trimetallic hydroxides. In here, the hollow dodecahedron NiCoZn-LDH is synthesized using CoZn metal-organic frameworks (CoZn-MOFs) as template. Its morphology and composition are studied in detail. Concurrently, the effect of the amount of third component on the resulting structure of NiCoZn-LDH is also researched. Benefiting from its favorable structural and compositional attributes to efficient transfer of ions and electrons, NiCoZn-LDH-200 demonstrates outstanding specific capacitance of 1003.3F g-1 at 0.5 A/g. Furthermore, flexible asymmetric supercapacitor utilizing NiCoZn-LDH-200 as the positive electrode and activated carbon (AC) as the negative electrode reveals favorable electrochemical performances, including a notable specific capacitance of 184.7F g-1 at 0.5 A/g, a power density of 368.21 W kg-1 at a high energy density of 65.66 Wh kg-1, an energy density of 31.78 Wh kg-1 at a high power density of 3985.97 W kg-1, a capacitance retention of 92 % after 8000 cycles at 5 A/g, and a good capacitance retention of 90 % after 500 cycles of bending. The template method presented herein can effectively solve the problem of easy accumulation and improve the electrochemical properties of the materials, which exhibits a broad research prospect.

3.
J Colloid Interface Sci ; 658: 889-902, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157613

RESUMEN

In contemporary times, electromagnetic radiation poses a significant threat to both human health and the normal functioning of electronic devices. Developing composites as adsorption materials possess exceptional electromagnetic wave absorption performances can efficient address this critical issue. Herein, hollow core-shell NiCo2O4@polypyrrole nanofibers/reduced graphene oxide (NiCo-HFPR) composites are fabricated by the combination of electrostatic spinning, air calcination, in-situ polymerization, freeze-drying and hydrazine vapor reduction. As anticipated, NiCo-HFPR-0.2 exhibits noteworthy properties, with the minimum reflection loss (RLmin) of -61.20 dB at 14.26 GHz and 1.56 mm, as well as the effective absorption bandwidth (EAB) of 4.90 GHz at 1.57 mm. Additionally, the simulation procedure is employed to determine the radar cross-section (RCS) attenuation. In comparison to a singular perfect electrically conductive (PEC) layer, the PEC layer coated with NiCo-HFPR-0.2 consistently yields an RCS value below -10 dB m2 within the range of -60° < θ < 60°. The RCS attenuation value of the NiCo-HFPR-0.2 coating achieves an outstanding 31.0 dB m2 at θ = 0°, strongly affirming the ability to effectively attenuate electromagnetic wave in real-world applications. The employed experimental methodology, the meticulously crafted composite, and the simulation outcomes presented in this study bear great promise for the progressive advancement of both theoretical investigations and practical applications within the domain of electromagnetic wave absorption.

4.
ACS Appl Mater Interfaces ; 15(37): 44205-44211, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672356

RESUMEN

Liquid crystal elastomers (LCEs) have been optimized by combining cross-linkers and dynamic bonds to achieve a reversible actuation behavior comparable to living skeletal muscles. In this study, one unique type of segment with 2-fold dynamic properties was introduced into LCEs, which offered not only dynamic diselenide covalent bonds for thermo-/photoplasticity but also H-bond arrays for dynamic cross-linking and mechanical robustness. Besides self-healing, self-welding, and recyclability, the LCEs were reprogrammable with elevated temperature or intensive visible light irradiation. The resultant LCEs gave an actuation blocking stress of 1.96 MPa and an elastic modulus of 14.4 MPa at 80 °C. The actuation work capacity reached 135.2 kJ m-3. When incorporating the Joule electrode or photothermal materials, the LCEs could be programmed as the electricity-driven and photothermal artificial muscles and thereby promised the application both as a biomimetic artificial hand and as an energy collector from sunlight. Thus, the 2-fold dynamic LCEs offered the pathway of enabling the reversible actuation behavior comparable to living skeletal muscles and promising applications in sustainable actuators, artificial muscles, and soft robots.


Asunto(s)
Cristales Líquidos , Músculo Esquelético , Biomimética , Módulo de Elasticidad , Elastómeros
5.
J Colloid Interface Sci ; 652(Pt B): 1631-1644, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666195

RESUMEN

Composite materials that combine magnetic and dielectric losses offer a potential solution to enhance impedance match and significantly improve microwave absorption. In this study, Co3O4/ZnCo2O4 and ZnCo2O4/ZnO with varying metal oxide compositions are successfully synthesized, which are achieved by modifying the ratios of Co2+ and Zn2+ ions in the CoZn bimetallic metal-organic framework (MOF) precursor, followed by a high-temperature oxidative calcination process. Subsequently, a layer of polypyrrole (PPy) is coated onto the composite surfaces, resulting in the formation of core-shell structures known as Co3O4/ZnCo2O4@PPy (CZCP) and ZnCo2O4/ZnO@PPy (ZCZP) composites. The proposed method allows for rapid adjustments to the metal oxide composition within the inner shell, enabling the creation of composites with varying degrees of magnetic losses. The inclusion of PPy in the outer shell serves to enhance the bonding strength of the entire composite structure while contributing to conductive and dielectric losses. In specific experimental conditions, when the loading is set at 50 wt%, the CZCP composite exhibits an effective absorption bandwidth (EAB) of 5.58 GHz (12.42 GHz-18 GHz) at a thickness of 1.53 mm. Meanwhile, the ZCZP composite demonstrates an impressive minimum reflection loss (RLmin) of -71.2 dB at 13.04 GHz, with a thickness of 1.84 mm. This study offers a synthesis strategy for designing absorbent composites that possess light weight and excellent absorptive properties, thereby contributing to the advancement of electromagnetic wave absorbing materials.

6.
J Colloid Interface Sci ; 652(Pt A): 258-271, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595443

RESUMEN

Nowadays, electromagnetic radiation significantly impacts the normal operation of electronic devices and poses risks to human health. To effectively address this problem, the development of composites that exhibit exceptional electrochemical wave absorption through the combination of different components holds great promise. In this study, we have successfully prepared 1D Ni nanochains@Zn2+ doping polypyrrole/reduced graphene oxide (Ni NCs@Z-P/RGO, denoted as R-x) composites using a combination of hydrothermal, solvothermal, in situ polymerization, and physical blending methods. Notably, the R-2 composite demonstrates a remarkable minimum reflection loss (RLmin) of -63.58 dB at 14.3 GHz, with a thickness of 1.61 mm. Furthermore, the R-2 composite exhibits an impressive effective absorption bandwidth (EAB) of 5.08 GHz (11.92 GHz-17 GHz) at a thickness of 1.67 mm. These outstanding performances can be attributed to the synergistic effect of the different components and a well-thought-out structural design. Moreover, to showcase the practical applicability of the material, we have conducted additional investigations on the reduction of the radar cross-sectional area (RCS). The results strongly demonstrate that the prepared composite material, when used as a coating, effectively reduces the RCS value by up to 26.6 dB m2 for R-2 at θ = 0°. The experimental methods and simulations presented in this study hold significant potential for application in wave absorption research and practical implementations. Additionally, the prepared Ni NCs@Z-P/RGO composites demonstrate feasibility as wave-absorbing materials for future utilization.

7.
Langmuir ; 39(29): 10098-10111, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37432980

RESUMEN

Adsorption materials have demonstrated huge potential in treating sewage; however, it is a great challenge to fabricate an adsorbent effectively adsorbing multiple dyestuffs and heavy metal ions simultaneously. Here, a magnetic core@shell Fe3O4@polypyrrole@sodium dodecyl sulfate (Fe3O4@PPy@SDS) composite is prepared through the combination of a hydrothermal method, an in situ polymerization method, and modification, exhibiting enhanced selective removal of five dyestuffs (methylene blue (MB), malachite green (MG), rhodamine B (RhB), Congo red (CR), acid red 1 (AR1)), and heavy metal ions (Mn(VII)). The effects of adsorbent type, time, initial concentration of the adsorbate, and temperature on adsorption performances are investigated in detail. Kinetics and isotherm studies indicate that all adsorption processes are more in line with the pseudo-second-order kinetic model and the Langmuir model, the diffusion behavior is controlled by intraparticle diffusion and liquid film diffusion, and research of thermodynamics reveals a spontaneous endothermic behavior. The removal efficiency after five desorption-adsorption cycles can still reach more than 90%. The prepared Fe3O4@PPy@SDS composite is an efficient and promising renewable adsorbent for the treatment of dyestuffs and Mn(VII), exhibiting a wide range of applications in the field of adsorption.

8.
J Colloid Interface Sci ; 649: 943-954, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37392684

RESUMEN

The design of heterostructures with reasonable chemical composition and spatial structure is one of the effective strategies to achieve high performances electromagnetic wave (EMW) absorption. Herein, reduced graphene oxide (rGO) nanosheets decorated with hollow core-shell Fe3O4@PPy (FP) microspheres have been prepared by the combination of hydrothermal method, in situ polymerization method, directional freeze-drying and hydrazine vapor reduction. FP acting as traps can consume EMW trapped into their interior through the magnetic and dielectric losses. RGO nanosheets forming the conductive network are served as multi-reflected layers. Moreover, the impedance matching is optimized by the synergistic effect between FP and rGO. As expected, the synthetic Fe3O4@PPy/rGO (FPG) composite shows excellent EMW absorption performances with the minimum reflect loss (RLmin) of -61.20 dB at 1.89 mm and the effective absorption bandwidth (EAB) of 5.26 GHz at 1.71 mm. The excellent performances for the heterostructure are attributed to the synergistic effect of conductive loss, dielectric loss, magnetic loss, multiple reflection loss, and optimized impedance matching. This work provides a simple and effective strategy for the fabrication of lightweight, thin and high-performances EMW absorbing materials.

9.
J Colloid Interface Sci ; 634: 481-494, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36542977

RESUMEN

Recently, electromagnetic radiation is a serious threat to equipment accuracy, military safety and human health. The combination with different materials to fabricate absorber composites with well-designed morphology is expected to ameliorate this issue. In here, CuS/Fe3O4@polypyrrole (CuS/Fe3O4@PPy) flower-like composites are constructed by the combination of hydrothermal method, solvothermal method and in-situ polymerization. CuS with flower-like structure consisting of nanosheets can provide a conductive backbone and large specific surface area. Hollow Fe3O4 microspheres play a key role in deciding magnetic loss, and electromagnetic waves can penetrate their hollow structure, result in multiple reflection and refraction. PPy coating can enhance the combined strength of composite, and effectively consume microwaves by scattering and multiple refraction in the intercalated structure. As expected, the minimum reflection loss (RLmin) of CuS/Fe3O4@PPy composites is -74.12 dB at 8.16 GHz with a thickness of 2.96 mm, and the effective absorption bandwidth (EAB) is 4.6 GHz (13.4-18.0 GHz) at 1.68 mm. The excellent electromagnetic wave absorption performances are attributed to the synergy effect of different components. This work provides a unique strategy for the structural design of flower-like microspheres in the field of electromagnetic wave absorption.


Asunto(s)
Polímeros , Pirroles , Humanos , Conductividad Eléctrica , Microesferas
10.
ACS Appl Mater Interfaces ; 14(51): 57092-57101, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516406

RESUMEN

Achieving ultraviolet and narrowband emission simultaneously in nondoped organic light-emitting diodes (OLEDs) remains a tremendous challenge. Here, a "space-crowded donor-acceptor-donor" molecular design strategy is proposed for developing ultraviolet pure organic fluorophores by the nearby substituted positions at the phenyl linker between carbazole and pyridine units. Benefitting from the large steric hindrance effect, multiple intramolecular interactions, and low-frequency vibronic coupling dominated excited state property, all the emitters exhibit excellent fluorescence efficiencies at the solid state as well as the narrow full width at half maximums (FWHMs). Moreover, the effect of different substitution positions of pyridine on the structure-property relationship is also revealed. Consequently, the nondoped OLEDs exhibit an electroluminescence emission peak of 397 nm with FWHMs of 17 and 22 nm. Due to the high-lying reverse intersystem crossing process, external quantum and exciton utilization efficiencies of 3.6 and 54.55%, respectively, have been achieved based on the emitter with para-linkage. These findings may pave an avenue for the development of high-performance narrowband ultraviolet materials and OLEDs.

11.
J Colloid Interface Sci ; 627: 113-125, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35842962

RESUMEN

The development of microwave absorbing materials with strong absorption capacity, wide bandwidth and light weight has always been a topic of concern. Herein, one-dimensional (1D) M (Co, Ni)@polyaniline (PANI) nanochains (NCs) with adjustable thickness have been successfully synthesized by reducing the mental ions under a parallel magnetic field, pretreating metal nanochains with KH550 and pre-oxidization of aniline monomer. It is found that Co has a more favorable absorption width for electromagnetic waves (EMW) and Ni aims at the absorption intensity. Furthermore, the effect of metal elements on adjusting impedance matching is more significant than their magnetic loss for composites. The minimum reflection loss (RLmin) of CoP2 can be up to -73.16 dB at 4.63 mm and the effective absorption bandwidth (EAB) is 4.98 GHz at 2.17 mm, while those of NiP2 are -65.06 dB at 3.88 mm and 5.02 GHz at 2.05 mm. The increase of PANI content can significantly reduce the matching thickness. And the RLmin of CoP3 and NiP3 can reach -58.72 dB at 2.32 mm and -65.96 dB at 1.59 mm, respectively. The absorption mechanism reveals that the matching thickness of the quarter-wavelength determines frequency location. And high absorption intensity is attributed to the synergistic effects of impedance matching, conduction loss, polarization loss, and magnetic loss. This work provides a theoretical basis for designing PANI or other conducting polymers coating magnetic nanochains for electromagnetic absorbing materials with strong absorption capacity, wide bandwidth and light weight.

12.
Nanoscale ; 10(43): 20414-20425, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30377681

RESUMEN

Nickel selenide (NiSe) nanoparticles uniformly supported on graphene nanosheets (G) to form NiSe-G nanohybrids were prepared by an in situ hydrothermal process. The uniform distribution of NiSe on graphene bestowed the NiSe-G nanohybrid with faster charge transport and diffusion along with abundant accessible electrochemical active sites. The synergistic effect between NiSe nanoparticles and graphene nanosheets for supercapacitor applications was systematically investigated for the first time. The freestanding NiSe-G nanohybrid electrode exhibited better electrochemical performance with a high specific capacitance of 1280 F g-1 at a current density of 1 A g-1 and a capacitance retention of 98% after 2500 cycles relative to that of NiSe nanoparticles. Furthermore, an asymmetric supercapacitor device assembled using the NiSe-G nanohybrid as the positive electrode, activated carbon as the negative electrode and an electrospun PVdF membrane containing 6 M KOH as both the separator and the electrolyte delivered a high energy density of 50.1 W h kg-1 and a power density of 816 W kg-1 at an extended operating voltage of 1.6 V. Thus, the NiSe-G nanohybrid can be used as a potential electrode material for high-performance supercapacitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...