Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 149: 109584, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670411

RESUMEN

Pseudomonas plecoglossicida, the causative agent of Visceral White Spot Disease, poses substantial risks to large yellow croaker (Larimichthys crocea) aquaculture. Previous genome-wide association studies (GWAS), directed towards elucidating the resistance mechanisms of large yellow croaker against this affliction, suggested that the transmembrane protein 208 (named Lctmem208) may confer a potential advantage. TMEM proteins, particularly TMEM208 located in the endoplasmic reticulum, plays significant roles in autophagy, ER stress, and dynamics of cancer cell. However, research on TMEM's function in teleost fish immunity remains sparse, highlighting a need for further study. This study embarks on a comprehensive examination of LcTmem208, encompassing cloning, molecular characterization, and its dynamics in immune function in response to Pseudomonas plecoglossicida infection. Our findings reveal that LcTmem208 is highly conserved across teleost species, exhibiting pronounced expression in immune-relevant tissues, which escalates significantly upon pathogenic challenge. Transcriptome analysis subsequent to LcTmem208 overexpression in kidney cells unveiled its pivotal role in modulating immune-responsive processes, notably the p53 signaling pathway and cytokine-mediated interactions. Enhanced phagocytic activity in macrophages overexpressing LcTmem208 underscores its importance in innate immunity. Taken together, this is the first time reported the critical involvement of LcTmem208 in regulating innate immune responses of defensing P. plecoglossicida, thereby offering valuable insights into teleost fish immunity and potential strategies for the selective breeding of disease-resistant strains of large yellow croaker in aquaculture practices.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Perfilación de la Expresión Génica , Inmunidad Innata , Perciformes , Infecciones por Pseudomonas , Pseudomonas , Animales , Enfermedades de los Peces/inmunología , Perciformes/inmunología , Perciformes/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Pseudomonas/fisiología , Inmunidad Innata/genética , Perfilación de la Expresión Génica/veterinaria , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/veterinaria , Regulación de la Expresión Génica/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Transcriptoma , Filogenia , Alineación de Secuencia/veterinaria , Clonación Molecular
2.
Artículo en Inglés | MEDLINE | ID: mdl-38218563

RESUMEN

Four tyrosine kinase inhibitors, alectinib, apatinib, lenvatinib and anlotinib, have been shown to be effective in the treatment of clinical tumors, but their cardiac risks have also raised concerns. In this study, zebrafish embryos at 6 h post fertilization (hpf) were exposed to the four drugs at concentrations of 0.05-0.2 mg/L until 72 hpf, and then the development of these embryos was quantified, including heart rate, body length, yolk sac area, pericardial area, distance between venous sinus and balloon arteriosus (SV-BA), separation of cardiac myocytes and endocardium, gene expression, vascular development and oxidative stress. At the same exposure concentrations, alectinib and apatinib had little effect on the cardiac development of zebrafish embryos, while lenvatinib and anlotinib could induce significant cardiotoxicity and developmental toxicity, including shortened of body length, delayed absorption of yolk sac, pericardial edema, prolonged SV-BA distance, separation of cardiomyocytes and endocardial cells, and downregulation of key genes for heart development. Heart rate decreased in all four drug treatment groups. In terms of vascular development, alectinib and apatinib did not inhibit the growth of embryonic intersegmental vessels (ISVs) and retinal vessels, while lenvatinib and anlotinib caused serious vascular toxicity, and the inhibition of anlotinib in vascular development was more obvious. Besides, the level of reactive oxygen species (ROS) in the lenvatinib and anlotinib treatment groups was significantly increased. Our results provide reference for comparing the cardiotoxicity of the four drugs.


Asunto(s)
Carbazoles , Cardiotoxicidad , Indoles , Compuestos de Fenilurea , Piperidinas , Piridinas , Quinolinas , Pez Cebra , Animales , Cardiotoxicidad/metabolismo , Embrión no Mamífero
3.
Fish Shellfish Immunol ; 143: 109217, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37951319

RESUMEN

Cytoglobin (Cygb) is a 21-kDa heme-protein that belongs to the globin superfamily and is expressed in vertebrate tissues. It can participate in the oxidative stress response in organisms through the porphyrin ring. Previous studies have shown that this protein, also known as YdCygb, has potential immune abilities in the infection of Vibrio harveyi in yellow drum (Nibea albiflora). In this study, we report the role of Cygb in the immune response of teleost fish for the first time. Quantitative RT-PCR analysis indicated that YdCygb was highly expressed in the liver and intestine of yellow drum, and its expression can be upregulated by pathogenic attack. The cellular distribution of YdCygb-EGFP proteins was observed in cell membrane, cytoplasm, and nucleus in the kidney cells of N. albiflora. Furthermore, a comparative transcriptome analysis between the YdCygb overexpression group and control vector group identified 28 differentially expressed genes (DEGs). The analysis showed that ANPEP, CLDN5, ORM1/2, SERPINC1 and HPN and ITGAM might play important regulatory roles to Cygb in fish. Notably, using GST-pull down technology, we identified 3-phosphoglyceraldehyde dehydrogenase and intermediate filament protein as direct interactors with YdCygb, playing a role against V. harveyi. The molecular and functional characterization of YdCygb provides better understanding of the genetic basis of disease resistance traits in yellow drum and sheds new light on the functioning of Cygb and its potential regulatory signaling pathway as well.


Asunto(s)
Perciformes , Animales , Citoglobina/genética , Perciformes/genética , Transcriptoma , Peces/genética , Inmunidad
4.
Small ; : e2304635, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37786271

RESUMEN

Rapid detachment of impacting droplets from underlying substrate is highly preferred for mass, momentum, and energy exchange in many practical applications. Driven by this, the past several years have witnessed a surge in engineering macrotexture to reduce solid-liquid contact time. Despite these advances, these strategies in reducing contact time necessitate the elegant control of either the spatial location for droplet contact or the range of impacting velocity. Here, this work circumvents these limitations by designing a dual gradient surface consisting of a vertical spacing gradient made of tapered pillar arrays and a lateral curvature gradient characterized as macroscopic convex. This design enables the impacting droplets to self-adapt to asymmetric or pancake bouncing mode accordingly, which renders significant contact time reduction (up to ≈70%) for a broad range of impacting velocities (≈0.4-1.4 m s-1 ) irrespective of the spatial impacting location. This new design provides a new insight for designing liquid-repellent surfaces, and offers opportunities for applications including dropwise condensation, energy conversion, and anti-icing.

5.
Nat Commun ; 14(1): 5953, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741844

RESUMEN

Developing versatile, scalable, and durable coatings that resist the accretion of matters (liquid, vapor, and solid phases) in various operating environments is important to industrial applications, yet has proven challenging. Here, we report a cellular coating that imparts liquid-repellence, vapor-imperviousness, and solid-shedding capabilities without the need for complicated structures and fabrication processes. The key lies in designing basic cells consisting of rigid microshells and releasable nanoseeds, which together serve as a rigid shield and a bridge that chemically bonds with matrix and substrate. The durability and strong resistance to accretion of different matters of our cellular coating are evidenced by strong anti-abrasion, enhanced anti-corrosion against saltwater over 1000 h, and maintaining dry in complicated phase change conditions. The cells can be impregnated into diverse matrixes for facile mass production through scalable spraying. Our strategy provides a generic design blueprint for engineering ultra-durable coatings for a wide range of applications.

6.
Fish Shellfish Immunol ; 141: 109061, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37683807

RESUMEN

Vibrio harveyi is the primary pathogenic bacteria affecting Nibea albiflora aquaculture. In a previous phase, our laboratory intentionally exposed N. albiflora to V. harveyi and analyzed the outcomes using a combination of genome-wide association study (GWAS) and RNA-seq. The results revealed that the antimicrobial peptide NK-lysin (YdNkl-1) was a candidate gene for resistance to V. harveyi disease in N. albiflora. To investigate the role of the antimicrobial peptide NK-lysin in N. albiflora's antimicrobial immunity, we screened the YdNkl-1 gene from the transcriptome database. The full-length cDNA of YdNkl-1 gene is 508 bp, with an open reading frame (ORF) of 477 bp, encoding 158 amino acids. The deduced amino acid sequence of YdNkl-1 contains a signal peptide (1st-22nd amino acids) and a Saposin B domain (50th-124th amino acids), akin to mammalian NK-lysin. Phylogenetic tree analysis confirmed that the NK-lysin of teleost fish clustered into a single species, and YdNkl-1 was most closely related to Larimichthys crocea. Subcellular localization showed that YdNkl-1 was distributed in cytoplasm and nucleus of yellow drum kidney cells. Furthermore, YdNkl-1 mRNA transcripts were significantly up-regulated in the skin, gill, intestine, head-kidney, liver, and spleen after V. harveyi infection, suggesting a critical role in N. albiflora's defense against V. harveyi infection. Additionally, we purified and observed the YdNkl-1 protein, which exhibited a potent membrane-disrupting effect on V. harveyi, Pseudomonas plecoglossicida, Vibrio parahaemolyticus, Escherichia coli and Bacillus subtilis. These findings underscore the significance of NK-lysin in N. albiflora's resistance to V. harveyi infection and provide new insights into the crucial role of NK-lysin in the innate immunity of teleost fishes.


Asunto(s)
Enfermedades de los Peces , Perciformes , Vibrio parahaemolyticus , Animales , Filogenia , Estudio de Asociación del Genoma Completo , Secuencia de Bases , Proteínas de Peces/química , Perciformes/genética , Perciformes/metabolismo , Antibacterianos , Peces/genética , Vibrio parahaemolyticus/genética , Inmunidad Innata/genética , Clonación Molecular , Péptidos Antimicrobianos , Mamíferos/metabolismo
7.
Fish Shellfish Immunol ; 142: 109044, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657557

RESUMEN

Galectins are a family of evolutionarily conserved lectins that contain carbohydrate recognition domains (CRDs) specifically recognizing ß-galactoside. Galectin-9 plays a crucial role in various biological processes during pathogenic infections. In a previous study, galectin-9 was identified as a candidate gene for resistance to Vibrio harveyi disease in yellow drum using a genome-wide association study (GWAS) analysis. In this study, a galectin-9 gene was identified from Nibea albiflora and named YdGal-9. The mRNA transcripts of YdGal-9 were distributed in all the detected tissues and the highest level was found in the kidney. The subcellular localization of YdGal-9-EGFP proteins was observed in both nucleus and cytoplasm in the kidney cells of N. albiflora. The expression of YdGal-9 in the brain increased significantly after infection with Vibrio harveyi. The red blood cells from rabbits, Larimichthys crocea, and N. albiflora were agglutinated by the purified recombinant YdGal-9 proteins. The results of the agglutination activity of deletion mutants of YdGal-9 proved that the conserved sugar binding motifs (H-NPR and WG-EE-) were critical for YdGal-9's agglutination activity. In addition, YdGal-9 killed some gram-negative bacteria by inducing cell wall destruction including Pseudomonas plecoglossicida, Aeromonas hydrophila, Escherichia coli, V. parahemolyticus, V. harveyi, and V. alginolyticus. Taken together, these results suggested that the YdGal-9 protein of N. albiflora played a vital role in fighting bacterial infections.


Asunto(s)
Perciformes , Vibrio , Animales , Conejos , Estudio de Asociación del Genoma Completo , Vibrio/genética , Galectinas/química , Perciformes/genética , Filogenia , Proteínas de Peces/química
8.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37511297

RESUMEN

Galectins are proteins that play a crucial role in the innate immune response against pathogenic microorganisms. Previous studies have suggested that Galectin-3 could be a candidate gene for antibacterial immunity in the large yellow croaker Larimichthys crocea. In this study, we cloned the Galectin-3 gene in the large yellow croaker, and named it LcGal-3. The deduced amino acid sequence of LcGal-3 contains a carbohydrate recognition domain with two conserved ß-galactoside binding motifs. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that LcGal-3 was expressed in all the organs/tissues that were tested, with the highest expression level in the gill. In Larimichthys crocea kidney cell lines, LcGal-3 protein was distributed in both the cytoplasm and nucleus. Moreover, we found that the expression of LcGal-3 was significantly upregulated upon infection with Pseudomonas plecoglossicida, as demonstrated by qRT-PCR analyses. We also purified the LcGal-3 protein that was expressed in prokaryotes, and found that it has the ability to agglutinate large yellow croaker red blood cells in a Ca2+-independent manner. The agglutination activity of LcGal-3 was inhibited by lipopolysaccharides (LPS) in a concentration-dependent manner, as shown in the sugar inhibition test. Additionally, LcGal-3 exhibited agglutination and antibacterial activities against three Gram-negative bacteria, including P. plecoglossicida, Vibrio parahaemolyticus, and Vibrio harveyi. Furthermore, we studied the agglutination mechanism of the LcGal-3 protein using blood coagulation tests with LcGal-3 deletion and point mutation proteins. Our results indicate that LcGal-3 protein plays a critical role in the innate immunity of the large yellow croaker, providing a basis for further studies on the immune mechanism and disease-resistant breeding in L. crocea and other marine fish.


Asunto(s)
Enfermedades de los Peces , Perciformes , Vibrio parahaemolyticus , Animales , Galectina 3/genética , Galectina 3/metabolismo , Secuencia de Bases , Proteínas de Peces/metabolismo , Vibrio parahaemolyticus/metabolismo , Galectinas/metabolismo , Perciformes/genética , Perciformes/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Filogenia , Inmunidad Innata/genética
9.
Int J Biol Macromol ; 247: 125734, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37423436

RESUMEN

Molecular dissection of disease resistance against Vibrio harveyi infection in yellow drum at the genome-wide level uncovered a C-type lectin-like receptor cluster of differentiation CD302 (named as YdCD302) in our previous study. Here, the gene expression pattern of YdCD302 and its function in mediating the defense response to V. harveyi attack were investigated. Gene expression analysis demonstrated that YdCD302 was ubiquitously distributed in various tissues with the highest transcript abundance in liver. The YdCD302 protein exhibited agglutination and antibacterial activity against V. harveyi cells. Binding assay indicated that YdCD302 can physically interact with V. harveyi cells in a Ca2+-independent manner, and the interaction can activate reactive oxygen species (ROS) production in the bacterial cells to induce RecA/LexA-mediated cell death. After infection with V. harveyi, the expression of YdCD302 can be up-regulated significantly in the main immune organs of yellow drum and potentially further trigger the cytokines involved innate immunity. These findings provide insight into the genetic basis of the disease resistance trait in yellow drum and shed light on the functioning of the CD302 C-type lectin-like receptor in host-pathogen interactions. The molecular and functional characterization of YdCD302 is a significant step towards a better understanding of disease resistance mechanisms and the development of new strategies for disease control.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Lectinas Tipo C , Perciformes , Vibriosis , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Animales , Vibrio/fisiología , Vibriosis/inmunología , Vibriosis/metabolismo , Vibriosis/veterinaria , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/metabolismo , Clonación Molecular , Secuencia de Aminoácidos , Secuencia de Bases , Interacciones Huésped-Patógeno , Inmunidad Innata
10.
Fish Physiol Biochem ; 49(4): 737-750, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37464180

RESUMEN

The sphk1 gene plays a crucial role in cell growth and signal transduction. However, the developmental functions of the sphk1 gene during early vertebrate zebrafish embryo remain not completely understood. In this study, we constructed zebrafish sphk1 mutants through CRISPR/Cas9 to investigate its role in zebrafish embryonic development. Knockout of the sphk1 gene was found to cause abnormal development in zebrafish embryos, such as darkening and atrophy of the head, trunk deformities, pericardial edema, retarded yolk sac development, reduced heart rate, and premature death. The acetylcholinesterase activity was significantly increased after the knockout of sphk1, and some of the neurodevelopmental genes and neurotransmission system-related genes were expressed abnormally. The deletion of sphk1 led to abnormal expression of immune genes, as well as a significant decrease in the number of hematopoietic stem cells and neutrophils. The mRNA levels of cardiac development-related genes were significantly decreased. In addition, cell apoptosis increases in the sphk1 mutants, and the proliferation of head cells decreases. Therefore, our study has shown that the sphk1 is a key gene for zebrafish embryonic survival and regulation of organ development. It deepened our understanding of its physiological function. Our study lays the foundation for investigating the mechanism of the sphk1 gene in early zebrafish embryonic development.


Asunto(s)
Mortalidad Prematura , Pez Cebra , Animales , Pez Cebra/genética , Acetilcolinesterasa , Embrión no Mamífero/anomalías , Desarrollo Embrionario , Apoptosis/genética , Regulación del Desarrollo de la Expresión Génica
11.
Mar Biotechnol (NY) ; 25(3): 372-387, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37171708

RESUMEN

Edwardsiella anguillarum is a bacterium that commonly infects cultivated eels. Outer membrane protein A (OmpA) emulsified with Freund's adjuvant has been shown to be an effective fishery vaccine against this pathogen. However, the specific roles of OmpA in the vaccine have not been fully explored. In this study, we performed RNA-seq in the liver of a European eel (Anguilla anguilla) after challenge with E. anguillarum in eels previously immunized with an OmpA subunit vaccine. Our aim was to elucidate the differentially alternative splicing (DAS) and differentially expressed long noncoding RNAs (DE-lncRNAs) using a genome-wide transcriptome. The results showed after that at 28 days post-immunization, eels challenged with E. anguillarum (Con_inf) exhibited severe pathological changes in the liver. In contrast, the OmpA infused eels (OmpA_inf group) showed infiltrated lymphocytes, while Freund's adjuvant-inoculated eels (FCIA_inf group) showed edema of hepatocytes and blood coagulation. The relative percent survival (RPS) was 77.7% and 44.4% for OmpA_inf and FCIA_inf compared to the Con_inf group. We identified 37 DE-lncRNAs and 293 DAS genes between OmpA_inf and FCIA_inf. Interactions between DAS gene-expressed proteins indicated that 66 expressed proteins formed 20 networks. Additionally, 33 DE-lncRNAs interacted with 194 target genes formed 246 and 41 networks in co-expression and co-location. Taken together, our findings demonstrate that the OmpA subunit vaccine elicits a higher RPS and provides novel insights into the role of OmpA through DAS genes and DE-lncRNAs perspective. These results are significant for the development of fishery subunit vaccines.


Asunto(s)
Anguilla , Enfermedades de los Peces , ARN Largo no Codificante , Animales , Anguilla/genética , Adyuvante de Freund , Empalme Alternativo , Vacunas de Subunidad , Enfermedades de los Peces/microbiología
12.
Innovation (Camb) ; 4(2): 100389, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36895759

RESUMEN

Developing versatile and robust surfaces that mimic the skins of living beings to regulate air/liquid/solid matter is critical for many bioinspired applications. Despite notable achievements, such as in the case of developing robust superhydrophobic surfaces, it remains elusive to realize simultaneously topology-specific superwettability and multipronged durability owing to their inherent tradeoff and the lack of a scalable fabrication method. Here, we present a largely unexplored strategy of preparing an all-perfluoropolymer (Teflon), nonlinear stability-assisted monolithic surface for efficient regulating matters. The key to achieving topology-specific superwettability and multilevel durability is the geometric-material mechanics design coupling superwettability stability and mechanical strength. The versatility of the surface is evidenced by its manufacturing feasibility, multiple-use modes (coating, membrane, and adhesive tape), long-term air trapping in 9-m-deep water, low-fouling droplet transportation, and self-cleaning of nanodirt. We also demonstrate its multilevel durability, including strong substrate adhesion, mechanical robustness, and chemical stability, all of which are needed for real-world applications.

13.
Environ Sci Pollut Res Int ; 30(18): 52732-52748, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36847949

RESUMEN

Over-track buildings in metro depots become more and more prevalent in metropolis with the increase in population and the decrease of construction land. However, the train-induced vibration greatly reduces the comfort of occupants living in the over-track buildings. Owing to complex vibration sources and numerous transfer paths, it is a challenging task to analyze and predict the vibration characteristics accurately in the building. In this paper, a field measurement campaign of vibration was conducted in the Guanhu metro depot in Guangzhou, China. A novel formulation based on the operational transfer path analysis (OTPA) and singular value decomposition (SVD) is proposed to analyze the measured data and predict the train-induced vibration in the building. In this study, the vibration contributions from each transfer path to the target points in the building were obtained and the predominant transfer paths were identified further. Besides, the vibration at target points in the building was predicted using the vibration at path points and transmissibility functions from transfer paths. This study provides insights into the prediction and evaluation of vibration transmissions from vibration source to upper floors of over-track building.


Asunto(s)
Vibración , China
14.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834706

RESUMEN

Galectins are proteins that are involved in the innate immune response against pathogenic microorganisms. In the present study, the gene expression pattern of galectin-1 (named as NaGal-1) and its function in mediating the defense response to bacterial attack were investigated. The tertiary structure of NaGal-1 protein consists of homodimers and each subunit has one carbohydrate recognition domain. Quantitative RT-PCR analysis indicated that NaGal-1 was ubiquitously distributed in all the detected tissues and highly expressed in the swim-bladder of Nibea albiflora, and its expression could be upregulated by the pathogenic Vibrio harveyi attack in the brain. Expression of NaGal-1 protein in HEK 293T cells was distributed in the cytoplasm as well as in the nucleus. The recombinant NaGal-1 protein by prokaryotic expression could agglutinate red blood cells from rabbit, Larimichthys crocea, and N. albiflora. The agglutination of N. albiflora red blood cells by the recombinant NaGal-1 protein was inhibited by peptidoglycan, lactose, D-galactose, and lipopolysaccharide in certain concentrations. In addition, the recombinant NaGal-1 protein agglutinated and killed some gram-negative bacteria including Edwardsiella tarda, Escherichia coli, Photobacterium phosphoreum, Aeromonas hydrophila, Pseudomonas aeruginosa, and Aeromonas veronii. These results set the stage for further studies of NaGal-1 protein in the innate immunity of N. albiflora.


Asunto(s)
Galectina 1 , Perciformes , Animales , Conejos , Galectina 1/metabolismo , Secuencia de Aminoácidos , Galectinas/metabolismo , Perciformes/genética , Inmunidad Innata , Clonación Molecular , Filogenia , Proteínas de Peces/genética
15.
Sci Adv ; 8(51): eade2085, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542697

RESUMEN

Manipulating liquid is of great significance in fields from life sciences to industrial applications. Owing to its advantages in manipulating liquids with high precision and flexibility, electrowetting on dielectric (EWOD) has been widely used in various applications. Despite this, its efficient operation generally needs electrode arrays and sophisticated circuit control. Here, we develop a largely unexplored triboelectric wetting (TEW) phenomenon that can directly exploit the triboelectric charges to achieve the programmed and precise water droplet control. This key feature lies in the rational design of a chemical molecular layer that can generate and store triboelectric charges through agile triboelectrification. The TEW eliminates the requirement of the electric circuit design and additional source input and allows for manipulating liquids of various compositions, volumes, and arrays on various substrates in a controllable manner. This previously unexplored wetting mechanism and control strategy will find diverse applications ranging from controllable chemical reactions to surface defogging.

16.
Sci Data ; 9(1): 670, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329044

RESUMEN

Nibea coibor belongs to Sciaenidae and is distributed in the South China Sea, East China Sea, India and the Philippines. In this study, we sequenced the DNA of a male Nibea coibor using PacBio long-read sequencing and generated chromatin interaction data. The genome size of Nibea coibor was estimated to be 611.85~633.88 Mb based on k-mer counts generated with Jellyfish. PacBio sequencing produced 29.26 Gb of HiFi reads, and Hifiasm was used to assemble a 627.60 Mb genome with a contig N50 of 10.66 Mb. We further found the canonical telomeric repeats "TTAGGG" to be present at the telomeres of all 24 chromosomes. The completeness of the assembly was estimated to be 98.9% and 97.8% using BUSCO and Merqury, respectively. Using the combination of ab initio prediction, protein homology and RNAseq annotation, we identified a total of 21,433 protein-coding genes. Phylogenetic analyses showed that Nibea coibor and Nibea albiflora are closely related. The results provide an important basis for research on the genetic breeding and genome evolution of Nibea coibor.


Asunto(s)
Cromosomas , Perciformes , Animales , Masculino , Cromosomas/genética , Genoma , Anotación de Secuencia Molecular , Perciformes/genética , Filogenia , Análisis de Secuencia de ADN
17.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35955424

RESUMEN

The large yellow croaker (Larimichthys crocea) is one of the most economically valuable mariculture fish in China. Infection of Pseudomonas plecoglossicida can cause an outbreak of "internal organ white-spot disease", which seriously affects the aquaculture of the large yellow croaker. Ubiquitylation is closely related to the post-translation modification of proteins and plays a vital role in many hosts' immune defense pathways, while the E2-binding enzyme is a key factor in ubiquitination. Our previous genome-wide association study found that the ubiquitin-binding enzyme E2G1 (designed LcUbe2g1) was one of the candidate genes related to disease resistance in large yellow croaker. In this study, we analyzed the molecular characteristics, function, and immune mechanism of the LcUbe2g1. The full-length cDNA is 812 bp, with an open reading frame of 513 bp, encoding 170 amino acid residues. The results of the RT-qPCR and immunohistochemistry analysis revealed that its transcription and translation were significantly activated by the infection of P. plecoglossicida in large yellow croaker. Immunocytochemistry experiments verified the co-localization of LcUBE2G1 and the ubiquitin proteins in the head kidney cells of large yellow croaker. Through GST pull-down, we found that LcUBE2G1 interacted with NEDD8 to co-regulate the ubiquitination process. The above results indicate that LcUBE2G1 is essential in the regulation of ubiquitination against P. plecoglossicida infection in large yellow croaker, which lays a foundation for further study on the resistance mechanism of internal organ white-spot disease.


Asunto(s)
Enfermedades de los Peces , Perciformes , Animales , Resistencia a la Enfermedad , Enfermedades de los Peces/genética , Proteínas de Peces/metabolismo , Estudio de Asociación del Genoma Completo , Perciformes/genética , Perciformes/metabolismo , Filogenia , Pseudomonas , Ubiquitinas/metabolismo
18.
Biomimetics (Basel) ; 7(3)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35892358

RESUMEN

Surface bacterial fouling has become an urgent global challenge that calls for resilient solutions. Despite the effectiveness in combating bacterial invasion, antibiotics are susceptible to causing microbial antibiotic resistance that threatens human health and compromises the medication efficacy. In nature, many organisms have evolved a myriad of surfaces with specific physicochemical properties to combat bacteria in diverse environments, providing important inspirations for implementing bioinspired approaches. This review highlights representative natural antibacterial surfaces and discusses their corresponding mechanisms, including repelling adherent bacteria through tailoring surface wettability and mechanically killing bacteria via engineering surface textures. Following this, we present the recent progress in bioinspired active and passive antibacterial strategies. Finally, the biomedical applications and the prospects of these antibacterial surfaces are discussed.

19.
Mar Biotechnol (NY) ; 24(4): 763-775, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35895229

RESUMEN

Large yellow croaker (Larimichthys crocea), yellow drum (Nibea albiflora), and Chinese seabass (Lateolabrax maculatus) are important economic marine fishes in China. The conserved non-coding elements (CNEs) in the liver tissues of the three kinds of fish are directly or indirectly involved in the regulation of gene expression and affect liver functions. However, the fishes' CNEs and even chromatin accessibility landscape have not been effectively investigated. Hence, this study established the landscapes of the fishes' genome-wide chromatin accessibility and CNEs by detecting regions of the open chromatin in their livers using an assay for transposase-accessible chromatin by high-throughput sequencing (ATAC-seq) and comparative genomics approach. The results showed that Smad1, Sp1, and Foxl1 transcription factor binding motifs were considerably enriched in the chromatin accessibility landscape in the liver of the three species, and the three transcription factors (TFs) had a wide range of common targets. The hypothetical gene set was targeted by one, two, or all three TFs, which was much higher than would be expected for an accidental outcome. The gene sets near the CNEs were mainly enriched through processes such as a macromolecule metabolic process and ribonucleoprotein complex biogenesis. The active CNEs were found in the promoter regions of genes such as ap1g1, hax1, and ndufs2. And 5 CNEs were predicted to be highly conserved active enhancers. These results demonstrated that Smad1, Sp1, and Foxl1 might be related to the liver function in the three fishes. In addition, we found a series of ATAC-seq-labeled CNEs located in the gene promoter regions, and highly conserved H3k27ac + -labeled CNEs located in the liver function genes. The highly conserved nature of these regulatory elements suggests that they play important roles in the liver in fish. This study mined the landscape of chromatin accessibility and CNEs of three important economic fishes to fill the knowledge gaps in this field. Moreover, the work provides useful data for the industrial application and theoretical research of these three fish species.


Asunto(s)
Cromatina , Perciformes , Animales , Cromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hígado/metabolismo , Perciformes/genética , Perciformes/metabolismo , Factores de Transcripción/genética
20.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742917

RESUMEN

Phosphoribosyl pyrophosphate synthetases (EC 2.7.6.1) are key enzymes in the biological synthesis of phosphoribosyl pyrophosphate and are involved in diverse developmental processes. In our previous study, the PRPS1 gene was discovered as a key disease-resistance candidate gene in yellow drum, Nibea albiflora, in response to the infection of Vibrio harveyi, through genome-wide association analysis. This study mainly focused on the characteristics and its roles in immune responses of the PRPS1 gene in yellow drum. In the present study, the NaPRPS1 gene was cloned from yellow drum, encoding a protein of 320 amino acids. Bioinformatic analysis showed that NaPRPS1 was highly conserved during evolution. Quantitative RT-PCR demonstrated that NaPRPS1 was highly expressed in the head-kidney and brain, and its transcription and translation were significantly activated by V. harveyi infection examined by RT-qPCR and immunohistochemistry analysis, respectively. Subcellular localization revealed that NaPRPS1 was localized in cytoplasm. In addition, semi-in vivo pull-down assay coupled with mass spectrometry identified myeloid differentiation factor 88 (MyD88) as an NaPRPS1-interacting patterner, and their interaction was further supported by reciprocal pull-down assay and co-immunoprecipitation. The inducible expression of MyD88 by V. harveyi suggested that the linker molecule MyD88 in innate immune response may play together with NaPRPS1 to coordinate the immune signaling in yellow drum in response to the pathogenic infection. We provide new insights into important functions of PRPS1, especially PRPS1 in the innate immunity of teleost fishes, which will benefit the development of marine fish aquaculture.


Asunto(s)
Enfermedades de los Peces , Perciformes , Ribosa-Fosfato Pirofosfoquinasa/metabolismo , Vibrio , Animales , Enfermedades de los Peces/genética , Peces/genética , Estudio de Asociación del Genoma Completo , Inmunidad Innata/genética , Factor 88 de Diferenciación Mieloide/genética , Perciformes/genética , Fosforribosil Pirofosfato , Vibrio/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...