Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(12): 6363-6374, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38470241

RESUMEN

The programmed self-assembly of patchy nanoparticles (NPs) through a bottom-up approach is an efficient strategy for producing highly organized materials with a predetermined architecture. Herein, we report the preparation of di- and trivalent silica NPs with polystyrene (PS)/poly(4-vinylbenzyl azide) (PVBA) patches and assemble them in a THF mixture by lowering the solvent quality. Silica-PS/PVBA colloidal hybrid clusters were synthesized through the seeded growth emulsion copolymerization of styrene and 4-vinylbenzyl azide (VBA) in varying ratios. Subsequently, macromolecules on silica NPs originating from the copolymerization of growing PS or PVBA chains with the surface-grafted MMS compatibilizer are engineered by fine-tuning of polymer compositions or adjustment of solvent qualities. Moreover, multistage silica regrowth of tripod and tetrapod allowed a fine control of the patch-to-particle size ratio ranging from 0.69 to 1.54. Intriguingly, patchy silica NPs (1-, 2-, 3-PSNs) rather than hybrid clusters are successfully used as templates for multistep regrowth experiments, leading to the formation of silica NPs with a new morphology and size controllable PVBA/PS patches. Last but not least, combined with mesoscale dynamics simulations, the self-assembly kinetics of 2-PSN and 3-PSN into linear colloidal polymers and honeycomb-like lattices are studied. This work paves a new avenue for constructing colloidal polymers with a well-defined sequence and colloidal crystals with a predetermined architecture.

2.
Sci Rep ; 14(1): 4758, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413678

RESUMEN

The relationship between social support and mortality, especially cardio-cerebrovascular mortality, still has some limitations in the assessment of social support, sample selection bias, and short follow-up time. We used the data from 2005 to 2008 National Health and Nutrition Examination Survey to examine this relationship. The study analyzed a total of 6776 participants, divided into Group 1, Group 2, and Group 3 according to the social support score (0-1; 2-3; 4-5). Multivariable adjusted COX regression analyses of our study showed that Group 3 and Group 2 had a reduced risk of all-cause and cardio-cerebrovascular mortality (Group 3 vs 1, HR: 0.55, P < 0.001; HR: 0.4, P < 0.001; Group 2 vs 1, HR: 0.77, P = 0.017; HR: 0.58, P = 0.014) compared with Group 1. The same results were observed after excluding those who died in a relatively short time. Additionally, having more close friends, being married or living as married, and enough attending religious services were significantly related to a lower risk of mortality after adjustment. In brief, adequate social support is beneficial in reducing the risk of all-cause mortality and cardio-cerebrovascular mortality in middle-aged and older adults, especially in terms of attending religious services frequency, the number of close friends, and marital status.


Asunto(s)
Amigos , Apoyo Social , Persona de Mediana Edad , Humanos , Anciano , Encuestas Nutricionales , Análisis de Regresión
3.
J Biomol Struct Dyn ; 41(22): 12552-12564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36655391

RESUMEN

CDC25B belongs to the CDC25 family, and it plays an important part in regulating the activity of CDK/CyclinA. Studies have shown that CDC25B is closely related to cancer development. When CYS473 on CDC25B is mutated into ASP, the affinity between CDC25B and CDK2/CyclinA weakens, and their dissociation speed is greatly improved. However, the mechanism by which the CDC25BC473D mutant weakens its binding to CDK2/CyclinA is unclear. In order to study the effect of CDC25BC473D mutants on CDK2/CyclinA substrates, we constructed and verified the rationality of the CDC25BWT:CDK2/CyclinA system and CDC25BC473D:CDK2/CyclinA system and conducted molecular dynamics (MD) simulation analysis. In the post-analysis, the fluctuations of residues ARG488-SER499, LYS541-TRP550 on CDC25B and residues ASP206-ASP210 on CDK2 were massive in the mutant CDC25BC473D:CDK2/CyclinA system. And the interactions between residue ARG492 and residue GLU208, residue ARG544 and residue GLU42, residue ARG544 and TRP550 were weakened in the mutant CDC25BC473D:CDK2/CyclinA system. The results showed that when CYS473 on CDC25B was mutated into ASP473, the mutant CDC25BC473D:CDK2/CyclinA system was less stable than the wild-type CDC25BWT:CDK2/CyclinA system. Finally, active site CYS473 of CDC25B was speculated to be the key residue, which had great effects on the binding between CDC25BCYS473 and CDK2 in the CDC25BC473D:CDK2/CyclinA system. Consequently, overall analyses appeared in this study ultimately provided a useful understanding of the weak interactions between CDC25BCYS473D and CDK2/CyclinA.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación de Dinámica Molecular , Dominio Catalítico , Mutación
4.
Bioorg Chem ; 121: 105648, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35180489

RESUMEN

The thiophene [2,3-d]pyrimidine structure-like small molecules were discovered from structure-based virtual screening of 1 billion compounds. Base on enzyme activity assay results, a SHP2-specific molecule inhibitor Comp#2 with IC50 of 1.174 µM, 85-fold more selective for SHP2 than the highly related SHP1 (IC50 > 100 µM). The compound can effectively inhibit SHP2-mediated cell signaling and cancer cell proliferation, including cervix cancer, human pancreatic cancer, large cell lung cancer, and mouse glioma cell. Moreover, the in vivo assay indicated that Comp#2 could inhibit cervix cancer tumors growth in BABL/c mice. This work has shown the specific SHP2 inhibitor can inhibit glioblastoma growth in vivo.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Neoplasias del Cuello Uterino , Animales , Barrera Hematoencefálica/metabolismo , Proliferación Celular , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Ratones
5.
J Mol Graph Model ; 109: 108030, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34509094

RESUMEN

Cell division cycle 25B (CDC25B) was responsible for regulating the various stages of cell division in the cell cycle. R492L was one of the common types of CDC25B mutants. Researches showed that compared to CDC25BWT, CDC25BR492L mutant had a ∼100-fold reduction in the rate constant for forming phosphatase intermediate (k2). However, the molecular basis of how the CDC25BR492L mutant influenced the process of binding between CDC25B and CDK2/CyclinA was not yet known. Therefore, the optimizations of three-dimensional structure of the CDC25BWT-CDK2/CyclinA system and the CDC25BR492L-CDK2/CyclinA system were constructed by ZDOCK and RDOCK, and five methods were employed to verify the reasonability of the docking structure. Then the molecular dynamics simulations on the two systems were performed to explore the reason why CDC25BR492L mutant caused the weak interactions between CDC25BR492L and CDK2/CyclinA, respectively. The remote docking site (Arg488-Tyr497) and the second active site (Lys538-Arg544) of CDC25B were observed to have high fluctuations in the CDC25BR492L-CDK2/CyclinA system with post-analysis, where the high fluctuation of these two regions resulted in weak interactions between CD25B and CDK2. In addition, Asp38-Glu42 and Asp206-Asp210 of CDK2 showed the slightly descending fluctuation, and CDK2 revealed an enhanced the self-interaction, which made CDK2 keep a relatively stable state in the CDC25BR492L-CDK2/CyclinA system. Finally, Leu492 of CDC25B was speculated to be the key residue, which had great effects on the binding between CDC25BR492L and CDK2 in the CDC25BR492L-CDK2/CyclinA system. Consequently, overall analyses appeared in this study ultimately offered a helpful understanding of the weak interactions between CDC25BR492L and CDK2.


Asunto(s)
Simulación de Dinámica Molecular , Dominio Catalítico , Quinasa 2 Dependiente de la Ciclina/genética
6.
Mol Divers ; 25(3): 1873-1887, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33392964

RESUMEN

The E69K mutation is one of the most frequent protein tyrosine phosphatase-2 (SHP2) mutations in leukemia, and it can cause the increase in the protein activity. Recent studies have shown that the E69K mutation was fairly sensitive to the allosteric inhibitor of SHP2 (SHP099). However, the molecular mechanism of the allosteric drug SHP099 inhibiting SHP2E69K remains unclear. Thus, the molecular dynamic simulations and the post-dynamics analyses (RMSF, PCA, DCCM, RIN and the binding free energies) for SHP2WT, SHP2WT-SHP099, SHP2E69K and SHP2E69K-SHP099 were carried out, respectively. Owing to the strong binding affinity of SHP099 to residues Thr219 and Arg220, the flexibility of linker region (residues Val209-Arg231) was reduced. Moreover, the presence of SHP099 kept the autoinhibition state of the SHP2 protein through enhancing the interactions between the linker region and Q loop in PTP domain, such as Thr219/Val490, Thr219/Asn491, Arg220/Ile488 and Leu254/Asn491. In addition, it was found that the residues (Thr219, Arg220, Leu254 and Asn491) might be the key residues responsible for the conformational changes of protein. Overall, this study may provide an important basis for understanding how the SHP099 effectively inhibited the SHP2E69K activity at the molecular level.


Asunto(s)
Regulación Alostérica , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Piperidinas/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Pirimidinas/química , Estabilidad de Medicamentos , Enlace de Hidrógeno , Estructura Molecular , Piperidinas/farmacología , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Pirimidinas/farmacología , Relación Estructura-Actividad
7.
J Biomol Struct Dyn ; 39(1): 45-62, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31842717

RESUMEN

Owing to their inhibitory role in regulating oligodendrocyte differentiation and apoptosis, protein tyrosine phosphatase sigma (PTPσ) and leukocyte common antigen-related phosphatase (LAR) play a crucial potential role in treating spinal cord injury (SCI) disease. In this research, the computer aided drug design (CADD) methods were applied to discover the potential dual-target drug involving virtual screen, molecular docking and molecular dynamic simulation. Initially, the top 20 compounds with higher docking score than the positive controls (ZINC13749892, ZINC14516161) were virtually screened out from NCI and ZINC databases, and then were submitted in ADMET to predict their drug properties. Among these potential compounds, ZINC72417086 showed a higher docking score and satisfied Lipinski's rule of five. In addition, the post-analysis demonstrated that when ZINC72417086 bound to PTPσ and LAR, it could stable proteins conformations and destroy the residues interactions between P-loop and other loop regions in active pocket. Meanwhile, residue ARG1595 and ARG1528 could play a crucial role in in the inhibition of PTPσ and LAR, respectively. This research offered a novel approach for rapid discovery of dual-target leads compounds to treat SCI.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Antígenos Comunes de Leucocito , Simulación del Acoplamiento Molecular , Monoéster Fosfórico Hidrolasas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo
8.
J Mol Graph Model ; 103: 107807, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33338846

RESUMEN

Abnormal activation of Ras/MAPK signaling pathway could trigger excessive cell division. Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2) could promote Ras/MAPK activation by integrating growth factor signals. Thus, SHP2 inhibitors had become a hot topic in the treatment of cancer. SHP2F285S, mutation in SHP2, was detected in leukemia variants. The compound 2 (3-benzyl-8-chloro-2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-one) had been reported that it was a potent allosteric inhibitor of both SHP2 wild type (SHP2WT) and the F285S mutant (SHP2F285S). However, the mechanism of inhibition remained to be further discovered. Herein, molecular docking and molecular dynamic (MD) simulation were performed to explain the inhibition mechanism of compound 2 on SHP2WT and SHP2F285S. Overall, the molecular docking analysis revealed that compound 2 maintained the "close" structure of SHP2 protein probably by locking the C-SH2 and PTP domain. Next, post-analysis demonstrated that compound 2 might make TYR66-GLU76 of D'E-loop in N-SH2 and GLU258-LYS266 of B'C-loop, HIS458-ARG465 of P-loop, VAL497-THR507 of Q-loop in PTP domain regions tightly connect and much easier maintain "self-inhibited" conformation of SHP2F285S-compound2 than that of SHP2WT-compound2. Importantly, GLU76 of D'E-loop could play a vital role in inhibition of SHP2WT-compound2 and SHP2F285S-compound2. This work provided a reliable clue to develop novel inhibitors for leukemia related to SHP2F285S.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Conformación Molecular , Simulación del Acoplamiento Molecular , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo
9.
Bioorg Chem ; 105: 104391, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33113413

RESUMEN

PTPN11 (coding the gene of SHP2), a classic non-receptor protein tyrosine phosphatase, is implicated in multiple cell signaling pathway. Abnormal activation of SHP2 has been shown to contribute to a variety of human diseases, including Juvenile myelomonocytic leukemia (JMML), Noonan syndrome and tumors. Thus, the SHP2 inhibitors have important therapeutic value. Here, based on the compound PubChem CID 8,478,960 (IC50 = 45.01 µM), a series of thiophene [2,3-d] pyrimidine derivatives (IC50 = 0.4-37.87 µM) were discovered as novel and efficient inhibitors of SHP2 through powerful "core hopping" and CDOCKER technology. Furthermore, the SHP2-PTP phosphatase activity assay indicated that Comp#5 (IC50 = 0.4 µM) was the most active SHP2 inhibitor. Subsequently, the effects of Comp#5 on the structure and function of SHP2 were investigated through molecular dynamics (MD) simulation and post-kinetic analysis. The result indicated that Comp#5 enhanced the interaction of residues THR357, ARG362, LYS366, PRO424, CYS459, SER460, ALA461, ILE463, ARG465, THR507 and GLN510 with the surrounding residues, improving the stability of the catalytic active region and the entrance of catalytic active region. In particular, the Comp#5 conjugated with residue ARG362, elevating the efficient and selectivity of SHP2 protein. The study here may pave the way for discovering the novel SHP2 inhibitors for suffering cancer patients.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Pirimidinas/farmacología , Tiofenos/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Análisis de Componente Principal , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química
10.
Bioorg Chem ; 100: 103875, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380342

RESUMEN

SHP2 is a non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene, which affects the transduction of multiple signaling pathways, including RAS-ERK, PI3K-AKT and JAK-STAT. SHP2 also plays an important role in the programmed cell death pathway (PD-1/PD-L1). Studies have shown that SHP2 is associated with a variety of cancers, including breast, liver and gastric cancers. Therefore, the development of SHP2 inhibitors has attracted extensive attention. In this study, based on the known inhibitor 1 (SHP099), novel SHP2 inhibitors were designed by means of scaffold hopping, and 35 pyridine derivatives as SHP2 inhibitors were found. The in vitro enzyme activity assay was performed on these compounds, and multiple selective SHP2 inhibitors with activity potency similar to that of SHP099 were obtained. Among them, compound (2-(4-(aminomethyl)piperidin-1-yl)-5-(2,3-dichlorophenyl)pyridin-3-yl)methanol (11a) was the most potent and highly selective SHP2 inhibitor with an in vitro enzyme activity IC50 value of 1.36 µM. Fluorescence titration assay verified that 11a bound directly to SHP2 protein. Subsequently, cell assay of representative compounds showed that these compounds could effectively inhibit the proliferation of Ba/F3 cells. In addition, the pharmacokinetic characteristics of the designed compounds were analyzed by the in silico ADMET prediction. Molecular docking study provided more detailed information on the binding mode of compounds and SHP2 protein. In brief, this study reported for the first time that pyridine derivatives as novel SHP2 inhibitors had good inhibitory activity and selectivity, providing new clues for the development of small molecule SHP2 inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Piridinas/química , Piridinas/farmacología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Humanos , Ratones , Modelos Biológicos , Simulación del Acoplamiento Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Piridinas/síntesis química , Piridinas/farmacocinética
11.
J Biomol Struct Dyn ; 38(14): 4232-4245, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31588870

RESUMEN

Owing to its negative regulatory role in insulin signaling, protein tyrosine phosphatase of leukocyte antigen-related protein (PTP-LAR) was widely thought as a potential drug target for diabetes. Now, it was urgent to search for potential LAR inhibitors targeting diabetes. Initially, the pharmacophore models of LAR inhibitors were established with the application of the HypoGen module. The cost analysis, test set validation, as well as Fischer's test was used to verify the efficiency of pharmacophore model. Then, the best pharmacophore model (Hypo-1-LAR) was applied for the virtual screening of the ZINC database. And 30 compounds met the Lipinski's rule of five. Among them, 10 compounds with better binding affinity than the known LAR inhibitor (BDBM50296375) were discovered by docking studies. Finally, molecular dynamics simulations and post-analysis experiments (RMSD, RMSF, PCA, DCCM and RIN) were conducted to explore the effect of ligands (ZINC97018474 and Compound 1) on LAR and preliminary understand why ZINC97018474 had better inhibitory activity than Compound 1 (BDBM50296375). Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Leucocitos , Ligandos , Simulación del Acoplamiento Molecular
12.
J Biomol Struct Dyn ; 38(9): 2509-2520, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31258001

RESUMEN

Noonan syndrome with multiple lentigines (NSML), formerly known as LEOPARD syndrome (LS), is an autosomal dominant inherited multisystemic disorder. Most patients involve mutation in SHP2 encoded by tyrosine-protein phosphatase non-receptor type 11 (PTPN11) gene. Studies have shown that NSML-associated Y279C mutation exhibited the reduced phosphatase activity, leading to loss-of-function (LOF) of SHP2. However, the effect of the Y279C mutation on the SHP2 at the molecular level is unclear. In this study, molecular dynamics simulations of SHP2 wild-type (SHP2WT) and Y279C mutant (SHP2Y279C) were performed to investigate the structural differences in proteins after Y279C mutation and to find out the reason for loss-of-function of SHP2. Through a series of post-dynamic analyses, it was found that the protein occupied a smaller phase space after Y279C mutation, showing reduced flexibility. Specifically, due to the mutation of Y279C, the secondary structures of these two regions (residues Lys70-Ala72 and Gly462-Arg465) were significantly transformed from Turn to α-helix and ß-strand. Furthermore, by calculating the residue interaction network, hydrogen bond occupancy and binding free energy, it was further revealed that the conformational differences between SHP2WT and SHP2Y279C systems were mainly caused by the differences in the interaction between Arg465-Phe469, Ile463-Gly467, Cys279-Lys70, Cys459-Ala72, Gly464-Phe71, Phe71-Ile463, Ile463-Ala505 and Arg465-Glu361. Consequently, this finding is expected to provide a new insight into the reason for loss-of-function of SHP2 caused by Y279C mutation.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Síndrome LEOPARD , Simulación de Dinámica Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Humanos , Enlace de Hidrógeno , Mutación , Estructura Secundaria de Proteína
13.
J Biomol Struct Dyn ; 38(18): 5338-5348, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31787068

RESUMEN

The overexpression of PTP-LAR could cause the insulin resistance, so PTP-LAR might be a promising target for treating diabetes. In this study, we applied the computer modeling methods with fragment replace approach to screen the fragment database by targeting PTP domain and site B with the aim to discover potent and selective PTP-LAR inhibitors. A series of novel 4-thiazolidone derivatives were gained. The results of their ADMET predictions indicated that these new compounds might become drug candidates. The series of these derivatives were synthesized. Subsequently, their PTP-LAR inhibitory activities were assayed. The compound7d showed highly selectivity for PTP-LAR (10.41 µM) over its close homolog PTP1B (IC50=44.40 µM), SHP2 (IC50>122.81 µM) and CDC25B (IC50>122.81 µM) and docking and molecular dynamics simulation were applied to propose the most likely binding mode of compound7d with PTP-LAR. Thus, our findings reported here may pave a way for discovering potential selective PTP-LAR inhibitors.AbbreviationsPTP-LARHuman leukocyte common antigen-relatedPTPProtein Tyrosine PhosphataseIRinsulin receptorPTP1BProtein tyrosine phosphatase-1BLRPLung resistance proteinADMETabsorption, distribution, metabolism, excretion, toxicityPPBplasma protein bindingBBBblood brain barrier penetrationCYP450cytochrome P450HIAhuman intestinal absorptionTLCthin-layer chromatographyUVUltra VioletNMRnuclear magnetic resonanceTMStetramethylsilaneMSmass spectrometryANManisotropic network modePDBProtein Data BankDMFN,N-DimethylformamidepNPPpara-nitrophenyl phosphateDTTdithiothreitolMDmolecular dynamicRMSDroot-mean-square deviationRMSFroot-mean-square fluctuationSPCsingle-point chargePMEParticle Mesh EwaldMM-PBSAmolecular mechanics Poisson Boltzmann surface areaH bond, hydrogen bondVDWVan der WaalsCommunicated by Ramaswamy H. Sarma.


Asunto(s)
Diabetes Mellitus , Inhibidores Enzimáticos , Antígenos Comunes de Leucocito , Simulación por Computador , Diabetes Mellitus/tratamiento farmacológico , Antígenos HLA , Humanos
14.
J Biomol Struct Dyn ; 38(15): 4432-4448, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31625456

RESUMEN

Owing to their unique functions in regulating the synapse activity of protein tyrosine phosphatases delta (PTPδ) that has drawn special attention for developing drugs to autism spectrum disorders (ASDs). In this study, the PTPδ pharmacophore was first established by the structure-based pharmacophore method. Subsequently, 10 compounds contented Lipinski's rule of five was acquired by the virtual screening of the PTPδ pharmacophore against ZINC and PubChem databases. Then, the 10 identified molecules were discovered that had better binding affinity than a known PTPδ inhibitors compound SCHEMBL16375396. Two compounds SCHEMBL16375408 and ZINC19796658 with high binding score, low toxicity were gained. They were observed by docking analysis and molecular dynamics simulations that the novel potential inhibitors not only possessed the same function as SCHEMBL16375396 did in inhibiting PTPδ, but also had more favorable conformation to bind with the catalytic active regions. This study provides a new method for identify PTPδ inhibitor for the treatment of ASDs disease.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Dominio Catalítico , Simulación del Acoplamiento Molecular , Proteínas Tirosina Fosfatasas
15.
J Comput Aided Mol Des ; 33(8): 759-774, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31300938

RESUMEN

SHP2 phosphatase, encoded by the PTPN11 gene, is a non-receptor PTP, which plays an important role in growth factor, cytokine, integrin, hormone signaling pathways, and regulates cellular responses, such as proliferation, differentiation, adhesion migration and apoptosis. Many studies have reported that upregulation of SHP2 expression is closely related to human cancer, such as breast cancer, liver cancer and gastric cancer. Hence, SHP2 has become a promising target for cancer immunotherapy. In this paper, we reported the identification of compound 1 as SHP2 inhibitor. Fragment-based ligand design, De novo design, ADMET and Molecular docking were performed to explore potential selective SHP2 allosteric inhibitors based on SHP836. The results of docking studies indicated that the selected compounds had higher selective SHP2 inhibition than existing inhibitors. Compound 1 was found to have a novel selectivity against SHP2 with an in vitro enzyme activity IC50 value of 9.97 µM. Fluorescence titration experiment confirmed that compound 1 directly bound to SHP2. Furthermore, the results of binding free energies demonstrated that electrostatic energy was the primary factor in elucidating the mechanism of SHP2 inhibition. Dynamic cross correlation studies also supported the results of docking and molecular dynamics simulation. This series of analyses provided important structural features for designing new selective SHP2 inhibitors as potential drugs and promising candidates for pre-clinical pharmacological investigations.


Asunto(s)
Inhibidores Enzimáticos/química , Neoplasias/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/ultraestructura
16.
J Cell Biochem ; 120(10): 17015-17029, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31125141

RESUMEN

Diabetic macular edema, also known as diabetic eye disease, is mainly caused by the overexpression of vascular endothelial protein tyrosine phosphatase (VE-PTP) at hypoxia/ischemic. AKB-9778 is a known VE-PTP inhibitor that can effectively interact with the active site of VE-PTP to inhibit the activity of VE-PTP. However, the binding pattern of VE-PTP with AKB-9778 and the dynamic implications of AKB-9778 on VE-PTP system at the molecular level are poorly understood. Through molecular docking, it was found that the AKB-9778 was docked well in the binding pocket of VE-PTP by the interactions of hydrogen bond and Van der Waals. Furthermore, after molecular dynamic simulations on VE-PTP system and VE-PTP AKB-9778 system, a series of postdynamic analyses found that the flexibility and conformation of the active site undergone an obvious transition after VE-PTP binding with AKB-9778. Moreover, by constructing the RIN, it was found that the different interactions in the active site were the detailed reasons for the conformational differences between these two systems. Thus, the finding here might provide a deeper understanding of AKB-9778 as VE-PTP Inhibitor.


Asunto(s)
Compuestos de Anilina/química , Inhibidores Enzimáticos/química , Hipoglucemiantes/química , Simulación del Acoplamiento Molecular , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/química , Ácidos Sulfónicos/química , Secuencias de Aminoácidos , Compuestos de Anilina/metabolismo , Dominio Catalítico , Inhibidores Enzimáticos/metabolismo , Humanos , Enlace de Hidrógeno , Hipoglucemiantes/metabolismo , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Ácidos Sulfónicos/metabolismo , Termodinámica
17.
J Cell Biochem ; 120(4): 5949-5961, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30304563

RESUMEN

One of the most common protein tyrosine phosphatase-2 (SHP2) mutations in Noonan syndrome is the N308D mutation, and it increases the activity of the protein. However, the molecular basis of the activation of N308D mutation on SHP2 conformations is poorly understood. Here, molecular dynamic simulations were performed on SHP2 and SHP2-N308D to explore the effect of N308D mutation on SHP2 cause gain of function activity, respectively. The principal component analysis, dynamic cross-correlation map, secondary structure analysis, residue interaction networks, and solvent accessible surface area analysis suggested that the N308D mutation distorted the residues interactions network between the allosteric site (residue Gly244-Gly246) and C-SH2 domain, including the hydrogen bond formation and the binding energy. Meanwhile, the activity of catalytic site (residue Gly503-Val505) located in the Q-loop in mutant increased due to this region's high fluctuations. Therefore, the substrate had more chances to access to the catalytic activity site of the precision time protocol domain of SHP2-N308D, which was easy to be exposed. In addition, we had speculated that the Lys244 located in the allosteric site was the key residue which lead to the protein conformation changes. Consequently, overall calculations presented in this study ultimately provide a useful understanding of the increased activity of SHP2 caused by the N308D mutation.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/metabolismo , Dominio Catalítico/genética , Mutación con Ganancia de Función/genética , Mutación/genética , Conformación Proteica , Proteína Fosfatasa 2/genética , Estabilidad Proteica , Estructura Secundaria de Proteína
18.
Comput Biol Chem ; 78: 133-143, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30508783

RESUMEN

Juvenile myelomonocytic leukaemia, an aggressive myeloproliferative neoplasm, is characterized by thrombocytopenia, splenomegaly, fever and excess myelomonocytic cells. Approximately 35% of patients with JMML occur D61Y mutation in PTPN11, and it increases the activity of the protein. However, the effect of the D61Y mutation on SHP2 conformations in molecular basis is poorly understood. Therefore, the molecular dynamics simulations on SHP2-D61Y and SHP2-WT were performed to explore the effect of D61Y mutation on SHP2 and explain the reason for high activity of SHP2-D61Y mutant. The study on the RMSF, per-residue RMSD, PCA, DCCM and secondary structure found that the flexibilities of regions (residues His458-Ser460 and Gln506-Ala509) in SHP2-D61Y were higher than the corresponding regions in SHP2-WT, and the conformations of these regions almost transformed from α-helix and ß-strand to Turn, respectively. Thus, the catalytical sites in the PTP domain (residues Asn217-Thr524) were exposed to the substrate easily, which contributed to the enhancement of SHP2-D61Y activity. Moreover, the residue interaction network, H bond occupancy and binding free energy were calculated, revealing that conformational difference were caused by distinctions in residue-residue interactions between Asp/Tyr61-Gln506, Gln506-Gln510, Gln506-Phe251, Gln506-Gly60, Gln506-Tyr63, Asp/Tyr61-Cys459, Cys459-Ile463 and Cys459-Arg465. The study here may offer the valuable information to explore the reason for the increased activity of SHP2 after D61Y-mutation.


Asunto(s)
Simulación de Dinámica Molecular , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Enlace de Hidrógeno , Estructura Molecular , Análisis de Componente Principal , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Relación Estructura-Actividad , Termodinámica
19.
J Cell Biochem ; 119(12): 9941-9956, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30129165

RESUMEN

Juvenile myelomonocytic leukemia (JMML), an invasive myeloproliferative neoplasm, is a childhood disease with very high clinical lethality. Somatic mutation E76K in SHP2 is the most commonly identified mutation found in up to 35% of patients with JMML. To investigate the effect of gain-of-function mutation-E76K on SHP2 activity, molecular dynamic simulations on the wild-type SHP2 (SHP2-WT) system and the mutated E76K (SHP2-E76K) system were performed. The evaluation of stability of these two systems indicated that the simulated trajectories were stable after simulation for 3 nanoseconds. The root mean square fluctuation and the per-residue root mean square deviation illustrated that there were two regions (residues Tyr 81-Glu 83 and Glu 258-Leu 261) in the wild-type system and the mutated system, which had large differences. The principal component analysis, dynamic cross correlation maps analysis, as well as secondary structure analysis suggested that the mutated E76K impacted the movement of these two regions in SHP2 protein. Furthermore, residue interaction network analysis, hydrogen bond occupancy, and binding free energies analysis were used to explain how the two regions were specifically affected by the mutant. The results indicated that the primary variances between SHP2-WT and SHP2-E76K were the different interactions between Glu/Lys 76 and Arg 265, Tyr 80 and Leu 77, Leu 77 and Tyr 81, Thr 73 and Glu 258, Ala 75 and Cys 259, Phe 71 and Tyr 81, Ala 75 and Glu 258, and Tyr 73 and Glu/Lys 76. Consequently, these findings here might provide insights into the increased activity in SHP2-E76K.


Asunto(s)
Mutación con Ganancia de Función , Leucemia Mielomonocítica Juvenil/genética , Simulación de Dinámica Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Humanos , Enlace de Hidrógeno , Mutación Missense , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo
20.
Comput Biol Chem ; 73: 179-188, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29494926

RESUMEN

SHP2 is a potential target for the development of novel therapies for SHP2-dependent cancers. In our research, with the aid of the 'Receptor-Ligand Pharmacophore' technique, a 3D-QSAR method was carried out to explore structure activity relationship of SHP2 allosteric inhibitors. Structure-based drug design was employed to optimize SHP099, an efficacious, potent, and selective SHP2 allosteric inhibitor. A novel class of selective SHP2 allosteric inhibitors was discovered by using the powerful 'SBP', 'ADMET' and 'CDOCKER' techniques. By means of molecular dynamics simulations, it was observed that these novel inhibitors not only had the same function as SHP099 did in inhibiting SHP2, but also had more favorable conformation for binding to the receptor. Thus, this report may provide a new method in discovering novel and selective SHP2 allosteric inhibitors.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Simulación de Dinámica Molecular , Piperidinas/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Pirimidinas/farmacología , Regulación Alostérica/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Ligandos , Piperidinas/síntesis química , Piperidinas/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad Cuantitativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...