Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1287171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525154

RESUMEN

Tropical forests harbor the richest biodiversity among terrestrial ecosystems, but few studies have addressed the underlying processes of species diversification in these ecosystems. We use the pantropical flowering plant family Annonaceae as a study system to investigate how climate and biogeographic events contribute to diversification. A super-matrix phylogeny comprising 835 taxa (34% of Annonaceae species) based on eight chloroplast regions was used in this study. We show that global temperature may better explain the recent rapid diversification in Annonaceae than time and constant models. Accelerated accumulation of niche divergence (around 15 Ma) lags behind the increase of diversification rate (around 25 Ma), reflecting a heterogeneous transition to recent diversity increases. Biogeographic events are related to only two of the five diversification rate shifts detected. Shifts in niche evolution nevertheless appear to be associated with increasingly seasonal environments. Our results do not support the direct correlation of any particular climatic niche shifts or historical biogeographical event with shifts in diversification rate. Instead, we suggest that Annonaceae diversification can lead to later niche divergence as a result of increasing interspecific competition arising from species accumulation. Shifts in niche evolution appear to be associated with increasingly seasonal environments. Our results highlight the complexity of diversification in taxa with long evolutionary histories.

2.
Zhongguo Fei Ai Za Zhi ; 27(1): 13-24, 2024 Jan 20.
Artículo en Chino | MEDLINE | ID: mdl-38296622

RESUMEN

BACKGROUND: Low-dose spiral computed tomography (LDCT) has been recommended for lung cancer screening in high-risk populations. However, evidence from Chinese populations was limited due to the different criteria for high-risk populations and the short-term follow-up period. This study aimed to evaluate the effectiveness in Chinese adults based on the Lung Cancer Screening Program in Minhang District of Shanghai initiated in 2013. METHODS: A total of 26,124 subjects aged 40 years or above were enrolled in the Lung Cancer Screening Program during the period of 2013 and 2017. Results of LDCT examination, and screen-detected cancer cases in all participants were obtained from the Reporting System of the Lung Cancer Screening Program. The newly-diagnosed cases and their vital status up to December 31, 2020 were identified through a record linkage with the Shanghai Cancer Registry and the Shanghai Vital Statistics. Standardized incidence ratio (SIR) and 95%CI were calculated using the local population at ages of 40 or above as the reference. Proportions of early-stage cancer (stage 0-I), pathological types, and 5-year observed survival rates of lung cancer cases were estimated and compared between the cases derived from the screened and non-screened populations. Cox regression models were applied to evaluate the hazard ratio (HR) and 95%CI of LDCT screening with all-cause death of the lung cancer cases. RESULTS: The crude and age-standardized incidence of lung cancer in screened population were 373.3 (95%CI: 343.1-406.1) and 70.3 per 100,000 person-years, respectively, with an SIR of 1.8 (95%CI: 1.6-1.9), which was observed to decrease with following-up time. The early-stage cancer accounted for 49.4% of all lung cancer cases derived from the screened population, significantly higher than 38.4% in cases from the non-screened population during the same period (P<0.05). The proportion of lung adenocarcinoma (40.7% vs 35.9%) and 5-year survival rate (53.7% vs 41.5%) were also significantly higher in the cases from the screened population (all P<0.05). LDCT screening was associated with 30% (HR=0.7, 95%CI: 0.6-0.8) reduced all-cause deaths of the cases. CONCLUSIONS: The participants of the screening program are at high-risk of lung cancer. LDCT favors the early-detection of lung cancer and improves 5-year survival of the screened cases, indicating a great potential of LDCT in reducing the disease burden of lung cancer in Chinese populations.


Asunto(s)
Neoplasias Pulmonares , Adulto , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/epidemiología , Tomografía Computarizada por Rayos X , Detección Precoz del Cáncer/métodos , China/epidemiología , Tomografía Computarizada Espiral/métodos , Tamizaje Masivo
3.
Plant J ; 117(4): 1052-1068, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37934782

RESUMEN

Drought has a severe impact on the quality and yield of cotton. Deciphering the key genes related to drought tolerance is important for understanding the regulation mechanism of drought stress and breeding drought-tolerant cotton cultivars. Several studies have demonstrated that NAC transcription factors are crucial in the regulation of drought stress, however, the related functional mechanisms are still largely unexplored. Here, we identified that NAC transcription factor GhNAC4 positively regulated drought stress tolerance in cotton. The expression of GhNAC4 was significantly induced by abiotic stress and plant hormones. Silencing of GhNAC4 distinctly impaired the resistance to drought stress and overexpressing GhNAC4 in cotton significantly enhanced the stress tolerance. RNA-seq analysis revealed that overexpression of GhNAC4 enriched the expression of genes associated with the biosynthesis of secondary cell walls and ribosomal proteins. We confirmed that GhNAC4 positively activated the expressions of GhNST1, a master regulator reported previously in secondary cell wall formation, and two ribosomal protein-encoding genes GhRPL12 and GhRPL18p, by directly binding to their promoter regions. Overexpression of GhNAC4 promoted the expression of downstream genes associated with the secondary wall biosynthesis, resulting in enhancing secondary wall deposition in the roots, and silencing of GhRPL12 and GhRPL18p significantly impaired the resistance to drought stress. Taken together, our study reveals a novel pathway mediated by GhNAC4 that promotes secondary cell wall biosynthesis to strengthen secondary wall development and regulates the expression of ribosomal protein-encoding genes to maintain translation stability, which ultimately enhances drought tolerance in cotton.


Asunto(s)
Resistencia a la Sequía , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Ribosómicas/metabolismo , Plantas Modificadas Genéticamente/genética , Proteostasis , Fitomejoramiento , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Sequías , Gossypium/genética , Gossypium/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Physiol ; 193(3): 1816-1833, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37527491

RESUMEN

Cell elongation is a fundamental process for plant growth and development. Studies have shown lipid metabolism plays important role in cell elongation; however, the related functional mechanisms remain largely unknown. Here, we report that cotton (Gossypium hirsutum) LIPID TRANSFER PROTEIN4 (GhLTP4) promotes fiber cell elongation via elevating ceramides (Cers) content and activating auxin-responsive pathways. GhLTP4 was preferentially expressed in elongating fibers. Over-expression and down-regulation of GhLTP4 led to longer and shorter fiber cells, respectively. Cers were greatly enriched in GhLTP4-overexpressing lines and decreased dramatically in GhLTP4 down-regulating lines. Moreover, auxin content and transcript levels of indole-3-acetic acid (IAA)-responsive genes were significantly increased in GhLTP4-overexpressing cotton fibers. Exogenous application of Cers promoted fiber elongation, while NPA (N-1-naphthalic acid, a polar auxin transport inhibitor) counteracted the promoting effect, suggesting that IAA functions downstream of Cers in regulating fiber elongation. Furthermore, we identified a basic helix-loop-helix transcription factor, GhbHLH105, that binds to the E-box element in the GhLTP4 promoter region and promotes the expression of GhLTP4. Suppression of GhbHLH105 in cotton reduced the transcripts level of GhLTP4, resulting in smaller cotton bolls and decreased fiber length. These results provide insights into the complex interactions between lipids and auxin-signaling pathways to promote plant cell elongation.


Asunto(s)
Fibra de Algodón , Gossypium , Gossypium/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Lípidos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
PeerJ ; 11: e15527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397021

RESUMEN

The mahogany family, Meliaceae, contains 58 genera with only one mangrove genus: Xylocarpus. Two of the three species of the genus Xylocarpus are true mangroves (X. granatum and X. moluccensis), and one is a non-mangrove (X. rumphii). In order to resolve the phylogenetic relationship between the mangrove and non-mangrove species, we sequenced chloroplast genomes of these Xylocarpus species along with two non-mangrove species of the Meliaceae family (Carapa guianensis and Swietenia macrophylla) and compared the genome features and variations across the five species. The five Meliaceae species shared 130 genes (85 protein-coding genes, 37 tRNA, and eight rRNA) with identical direction and order, with a few variations in genes and intergenic spacers. The repetitive sequences identified in the rpl22 gene region only occurred in Xylocarpus, while the repetitive sequences in accD were found in X. moluccensis and X. rumphii. The TrnH-GUG and rpl32 gene regions and four non-coding gene regions showed high variabilities between X. granatum and the two non-mangrove species (S. macrophylla and C. guianensis). In addition, among the Xylocarpus species, only two genes (accD and clpP) showed positive selection. Carapa guianensis and S. macrophylla owned unique RNA editing sites. The above genes played an important role in acclimation to different stress factors like heat, low temperature, high UV light, and high salinity. Phylogenetic analysis with 22 species in the order Sapindales supported previous studies, which revealed that the non-mangrove species X. rumphii is closer to X. moluccensis than X. granatum. Overall, our results provided important insights into the variation of genetic structure and adaptation mechanism at interspecific (three Xylocarpus species) and intergeneric (mangrove and non-mangrove genera) levels.


Asunto(s)
Genoma del Cloroplasto , Magnoliopsida , Meliaceae , Meliaceae/química , Filogenia , Genoma del Cloroplasto/genética , Secuencias Repetitivas de Ácidos Nucleicos
6.
Molecules ; 28(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513406

RESUMEN

Silica aerogels are considered as the distinguished materials of the future due to their extremely low thermal conductivity, low density, and high surface area. They are widely used in construction engineering, aeronautical domains, environmental protection, heat storage, etc. However, their fragile mechanical properties are the bottleneck restricting the engineering application of silica aerogels. This review briefly introduces the synthesis of silica aerogels, including the processes of sol-gel chemistry, aging, and drying. The effects of different silicon sources on the mechanical properties of silica aerogels are summarized. Moreover, the reaction mechanism of the three stages is also described. Then, five types of polymers that are commonly used to enhance the mechanical properties of silica aerogels are listed, and the current research progress is introduced. Finally, the outlook and prospects of the silica aerogels are proposed, and this paper further summarizes the methods of different polymers to enhance silica aerogels.

7.
Plant Physiol ; 194(1): 106-123, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37427813

RESUMEN

ß-1,3-glucanase functions in plant physiological and developmental processes. However, how ß-1,3-glucanase participates in cell wall development remains largely unknown. Here, we answered this question by examining the role of GhGLU18, a ß-1,3-glucanase, in cotton (Gossypium hirsutum) fibers, in which the content of ß-1,3-glucan changes dynamically from 10% of the cell wall mass at the onset of secondary wall deposition to <1% at maturation. GhGLU18 was specifically expressed in cotton fiber with higher expression in late fiber elongation and secondary cell wall (SCW) synthesis stages. GhGLU18 largely localized to the cell wall and was able to hydrolyze ß-1,3-glucan in vitro. Overexpression of GhGLU18 promoted polysaccharide accumulation, cell wall reconstruction, and cellulose synthesis, which led to increased fiber length and strength with thicker cell walls and shorter pitch of the fiber helix. However, GhGLU18-suppressed cotton resulted in opposite phenotypes. Additionally, GhGLU18 was directly activated by GhFSN1 (fiber SCW-related NAC1), a NAC transcription factor reported previously as the master regulator in SCW formation during fiber development. Our results demonstrate that cell wall-localized GhGLU18 promotes fiber elongation and SCW thickening by degrading callose and enhancing polysaccharide metabolism and cell wall synthesis.


Asunto(s)
Gossypium , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Fibra de Algodón , Factores de Transcripción/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Opt Lett ; 48(10): 2676-2679, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186738

RESUMEN

Mode-locked lasers with ultra-narrow spectral widths and durations of hundreds of picoseconds can be versatile light sources for a variety of newly emergent applications. However, less attention seems to be given to mode-locked lasers that generate narrow spectral bandwidths. We demonstrate a passively mode-locked erbium-doped fiber laser (EDFL) system that relies on a standard fiber Bragg grating (FBG) and the nonlinear polarization rotation (NPR) effect. This laser achieves the longest reported pulse width (to the best of our knowledge) of 143 ps based on NPR and an ultra-narrow spectral bandwidth of 0.017 nm (2.13 GHz) under Fourier transform-limited conditions. The average output power is 2.8 mW, and the single-pulse energy is 0.19 nJ at a pump power of 360 mW.

9.
Molecules ; 28(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37110556

RESUMEN

To alleviate the fire hazard of epoxy resin (EP), layered ammonium vanadium oxalate-phosphate (AVOPh) with the structural formula of (NH4)2[VO(HPO4)]2(C2O4)·5H2O is synthesized using the hydrothermal method and mixed into an EP matrix to prepare EP/AVOPh composites. The thermogravimetric analysis (TGA) results show that AVOPh exhibits a similar thermal decomposition temperature to EP, which is suitable for flame retardancy for EP. The incorporation of AVOPh nanosheets greatly improves the thermal stability and residual yield of EP/AVOPh composites at high temperatures. The residue of pure EP is 15.3% at 700 °C. In comparison, the residue of EP/AVOPh composites is increased to 23.0% with 8 wt% AVOPh loading. Simultaneously, EP/6 wt% AVOPh composites reach UL-94 V1 rating (t1 + t2 =16 s) and LOI value of 32.8%. The improved flame retardancy of EP/ AVOPh composites is also proven by the cone calorimeter test (CCT). The results of CCT of EP/8 wt% AVOPh composites show that the peak heat release rate (PHHR), total smoke production (TSP), peak of CO production (PCOP), and peak of CO2 production (PCO2P) decrease by 32.7%, 20.4%, 37.1%, and 33.3% compared with those of EP, respectively. This can be attributed to the lamellar barrier, gas phase quenching effect of phosphorus-containing volatiles, the catalytic charring effect of transition metal vanadium, and the synergistic decomposition of oxalic acid structure and charring effect of phosphorus phase, which can insulate heat and inhibit smoke release. Based on the experimental data, AVOPh is expected to serve as a new high-efficiency flame retardant for EP.

10.
Plant J ; 115(2): 452-469, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37026387

RESUMEN

Plasma membrane represents a critical battleground between plants and attacking microbes. Necrosis-and-ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), cytolytic toxins produced by some bacterial, fungal and oomycete species, are able to target on lipid membranes by binding eudicot plant-specific sphingolipids (glycosylinositol phosphorylceramide) and form transient small pores, causing membrane leakage and subsequent cell death. NLP-producing phytopathogens are a big threat to agriculture worldwide. However, whether there are R proteins/enzymes that counteract the toxicity of NLPs in plants remains largely unknown. Here we show that cotton produces a peroxisome-localized enzyme lysophospholipase, GhLPL2. Upon Verticillium dahliae attack, GhLPL2 accumulates on the membrane and binds to V. dahliae secreted NLP, VdNLP1, to block its contribution to virulence. A higher level of lysophospholipase in cells is required to neutralize VdNLP1 toxicity and induce immunity-related genes expression, meanwhile maintaining normal growth of cotton plants, revealing the role of GhLPL2 protein in balancing resistance to V. dahliae and growth. Intriguingly, GhLPL2 silencing cotton plants also display high resistance to V. dahliae, but show severe dwarfing phenotype and developmental defects, suggesting GhLPL2 is an essential gene in cotton. GhLPL2 silencing results in lysophosphatidylinositol over-accumulation and decreased glycometabolism, leading to a lack of carbon sources required for plants and pathogens to survive. Furthermore, lysophospholipases from several other crops also interact with VdNLP1, implying that blocking NLP virulence by lysophospholipase may be a common strategy in plants. Our work demonstrates that overexpressing lysophospholipase encoding genes have great potential for breeding crops with high resistance against NLP-producing microbial pathogens.


Asunto(s)
Lisofosfolipasa , Verticillium , Lisofosfolipasa/genética , Gossypium/genética , Peroxisomas , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas
11.
Ecotoxicol Environ Saf ; 253: 114680, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857914

RESUMEN

Fenitrothion (FNT), an organophosphorus insecticide, is widely detected in the living environment. The reproductive and endocrine toxicity of FNT to biological communities has been ever reported, but potential mechanism and reproductive toxicity dose effect remain unclear. In our study, we constructed Caenorhabditis elegans model to analyze the reproductive toxicity mechanism of FNT based on metabolomics and evaluated its reproductive toxicity dose effect using benchmark dose (BMD)method. Our results showed that FNT exposure significantly reduced brood size, number of germ cells, and delayed gonadal development in nematodes. Non-targeted metabolomics revealed that FNT exposure caused significant metabolic disturbances in nematodes, leading to a significant reduction in the synthesis of cortisol and melatonin, and the latter played a mediating role in the effects of FNT on number of germ cells. We further found that the levels of these two hormones were significantly negative correlated with the expression of the androgen receptor nhr-69 and affected the meiosis of germ cells by regulating the nhr-69/ fbf-1/2 /gld-3 /fog-1/3 pathway. Meanwhile, the study found the BMDL10s for N2 and him-5 mutant were 0.411 µg/L by number of germ cells and 0.396 µg/L by number of germ cells in the meiotic zone, respectively, providing a more protective reference dose for ecological risk assessment of FNT. This study suggested that FNT can affect androgen receptor expression by inhibiting cortisol and melatonin secretion, which further mediate the meiotic pathway to affect sperm formation and exert reproductive toxicity, and provides a basis for setting reproductive toxicity limits for FNT.


Asunto(s)
Proteínas de Caenorhabditis elegans , Insecticidas , Melatonina , Animales , Masculino , Fenitrotión/toxicidad , Insecticidas/toxicidad , Caenorhabditis elegans , Receptores Androgénicos , Melatonina/farmacología , Hidrocortisona , Compuestos Organofosforados , Semen , Meiosis , Proteínas de Caenorhabditis elegans/metabolismo
12.
Asian J Androl ; 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36891938

RESUMEN

Approximately 31% of patients with 22q11.2 deletion syndrome (22q11.2DS) have genitourinary system disorders and 6% of them have undescended testes. Haploinsufficiency of genes on chromosome 22q11.2 might contribute to the risk of 22q11.2DS. In this study, we used mice with single-allele deletion in mitochondrial ribosomal protein L40 (Mrpl40 +/- ) as models to investigate the function of Mrpl40 in testes and spermatozoa development. The penetrance of cryptorchidism in Mrpl40 +/- mice was found to be higher than that in wild-type (WT) counterparts. Although the weight of testes was not significantly different between the WT and Mrpl40 +/- mice, the structure of seminiferous tubules and mitochondrial morphology was altered in the Mrpl40 +/- mice. Moreover, the concentration and motility of spermatozoa were significantly decreased in the Mrpl40 +/- mice. In addition, data-independent acquisition mass spectrometry indicated that the expression of genes associated with male infertility was altered in Mrpl40 +/- testes. Our study demonstrated the important role of Mrpl40 in testicular structure and spermatozoa motility and count. These findings suggest that Mrpl40 is potentially a novel therapeutic target for cryptorchidism and decreased motility and count of spermatozoa.

13.
Foods ; 12(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900595

RESUMEN

Alcohol liver disease (ALD) is one of the leading outcomes of acute and chronic liver injury. Accumulative evidence has confirmed that oxidative stress is involved in the development of ALD. In this study, we used chick embryos to establish ALD model to study the hepatoprotective effects of tamarind shell exttract (TSE). Chick embryos received 25% ethanol (75 µL) and TSE (250, 500, 750 µg/egg/75 µL) from embryonic development day (EDD) 5.5. Both ethanol and TSE were administrated every two days until EDD15. Ethanol-exposed zebrafish and HepG2 cell model were also employed. The results suggested that TSE effectively reversed the pathological changes, liver dysfunction and ethanol-metabolic enzyme disorder in ethanol-treated chick embryo liver, zebrafish and HepG2 cells. TSE suppressed the excessive reactive oxygen species (ROS) in zebrafish and HepG2 cells, as well as rebuilt the irrupted mitochondrial membrane potential. Meanwhile, the declined antioxidative activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), together with the content of total glutathione (T-GSH) were recovered by TSE. Moreover, TSE upregulated nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxyense-1 (HO-1) expression in protein and mRNA level. All the phenomena suggested that TSE attenuated ALD through activating NRF2 to repress the oxidative stress induced by ethanol.

14.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838870

RESUMEN

Tamarind shell is rich in flavonoids and exhibits good biological activities. In this study, we aimed to analyze the chemical composition of tamarind shell extract (TSE), and to investigate antioxidant capacity of TSE in vitro and in vivo. The tamarind shells were extracted with 95% ethanol refluxing extraction, and chemical constituents were determined by ultra-performance chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). The free radical scavenging activity of TSE in vitro was evaluated using the oxygen radical absorbance capacity (ORAC) method. The antioxidative effects of TSE were further assessed in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-stimulated ADTC5 cells and tert-butyl hydroperoxide (t-BHP)-exposed zebrafish. A total of eight flavonoids were detected in TSE, including (+)-catechin, taxifolin, myricetin, eriodictyol, luteolin, morin, apigenin, and naringenin, with the contents of 5.287, 8.419, 4.042, 6.583, 3.421, 4.651, 0.2027, and 0.6234 mg/g, respectively. The ORAC assay revealed TSE and these flavonoids had strong free radical scavenging activity in vitro. In addition, TSE significantly decreased the ROS and MDA levels but restored the SOD activity in AAPH-treated ATDC5 cells and t-BHP-exposed zebrafish. The flavonoids also showed excellent antioxidative activities against oxidative damage in ATDC5 cells and zebrafish. Overall, the study suggests the free radical scavenging capacity and antioxidant potential of TSE and its primary flavonoids in vitro and in vivo and will provide a theoretical basis for the development and utilization of tamarind shell.


Asunto(s)
Antioxidantes , Tamarindus , Animales , Antioxidantes/química , Pez Cebra , Cromatografía Liquida , Espectrometría de Masas en Tándem , Estrés Oxidativo , Flavonoides/química , Extractos Vegetales/química , Radicales Libres/farmacología
15.
Mitochondrial DNA B Resour ; 8(1): 1-3, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36620313

RESUMEN

Trailliaedoxa gracilis (Rubiaceae) is a Chinese endemic monotypic genus distributed in southwestern China. This study reported the complete chloroplast genome of T. gracilis assembled from Illumina sequencing reads. The chloroplast genome size is 152,407 bp, containing a single large copy (LSC) region of 82,957 bp, a short single copy (SSC) region of 17,936 bp, and a pair of inverted repeats (IRs) of 25,757 bp. A total of 127 genes were found, including 82 protein-coding genes, 37 tRNA genes, and eight rRNA genes. A phylogenetic analysis using the maximum likelihood algorithm revealed that T. gracilis belonged to the subfamily Ixoroideae and had the closest relationship with Scyphiphora hydrophyllacea.

16.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677680

RESUMEN

To improve the compatibility between flame retardant and epoxy resin (EP) matrix, amino phenyl copper phosphate-9, 10-dihydro-9-oxygen-10-phospha-phenanthrene-10-oxide (CuPPA-DOPO) is synthesized through surface grafting, which is blended with EP matrix to prepare EP/CuPPA-DOPO composites. The amorphous structure of CuPPA-DOPO is characterized by X-ray diffraction and Fourier-transform infrared spectroscopy. Scanning electron microscope (SEM) images indicate that the agglomeration of hybrids is improved, resisting the intense intermolecular attractions on account of the acting force between CuPPA and DOPO. The results of thermal analysis show that CuPPA-DOPO can promote the premature decomposition of EP and increase the residual amount of EP composites. It is worth mentioning that EP/6 wt% CuPPA-DOPO composites reach UL-94 V-1 level and limiting oxygen index (LOI) of 32.6%. Meanwhile, their peak heat release rate (PHRR), peak smoke production release (PSPR) and CO2 production (CO2P) are decreased by 52.5%, 26.1% and 41.4%, respectively, compared with those of EP. The inhibition effect of CuPPA-DOPO on the combustion of EP may be due to the release of phosphorus and ammonia free radicals, as well as the catalytic charring ability of metal oxides and phosphorus phases.

17.
Ecotoxicol Environ Saf ; 249: 114348, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508798

RESUMEN

Atrazine (ATR), a widely used triazine herbicide, is an environmental endocrine disruptor that can cause health problems. However, whether there are multi/trans-generational reproductive impacts of ATR have not been studied. Therefore, in this study, Caenorhabditis elegans was used as a preferable model organism to identify the multi/trans-generational reproductive toxicity of ATR. Only parental C.elegans (P0) were exposed to different concentrations (0.0004-40 mg/L) for 48 h and the subsequent offspring (F1-F5) were grown under ATR-free conditions and ATR conditions.The results showed that ATR exposure during P0 decreased fecundity, including a reduction in fertilized eggs, oocytes, and ovulation rate, delayed gonadal development, and decreased the relative area of gonad arm and germ cell number. Furthermore, continuous ATR exposure (P0-F5) causes a significant increase in reproductive toxicity in subsequent generations, although no significant toxicity occurred in the P0 generation after exposure to environmental-related concentrations, suggesting that ATR exposure might have cumulative effects. Likewise, parental exposure to ATR caused transgenerational toxicity impairments. Interestingly, only reproductive toxicity, not development toxicity, was transmitted to several generations (F1-F4), and the F2 generation showed the most notable changes. QRT-PCR results showed that genes expression related to DNA methylation 6 mA (damt-1, nmad-1) and histone H3 methylation (mes-4, met-2, set-25, set-2, and utx-1) can also be passed on to offspring. The function of H3K4 and H3K9 methylation were explored by using loss-of-function mutants for set-2, set-25, and met-2. Transmissible reproductive toxicity was absent in met-2(n4256), set-2(ok952), and set-25(n5021) mutants, which suggests that the histone methyltransferases H3K4 and H3K9 activity are indispensable for the transgenerational effect of ATR. Finally, the downstream genes of DNA methylation and histone H3 methylation were determined. ATR upregulated the expression of ZC317.7, hsp-6, and hsp-60. Mitochondrial stress in parental generation dependent transcription 6 mA modifiers may establish these epigenetic marks in progeny.


Asunto(s)
Atrazina , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Metilación de ADN , Herbicidas , Reproducción , Animales , Femenino , Atrazina/toxicidad , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Metilación de ADN/efectos de los fármacos , Herbicidas/toxicidad , Histona Demetilasas/metabolismo , Histonas/genética , Reproducción/efectos de los fármacos , Reproducción/genética
18.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36433055

RESUMEN

In order to improve the fire retardancy of epoxy resin (EP), lamellar cobalt potassium pyrophosphate (LCPP) nanocrystal whiskers with a length of 100-300 nm were designed and synthesized by a liquid technique. LCPP with high thermal stability was blended into EP to prepare the EP/LCPP composites. The results show that the EP/LCPP composites have higher thermal stability and produce more residues compared to pure EP. The combustion results display that the LOI value of the EP/10wt%LCPP composites was significantly improved to 35.9%, and the EP/6wt%LCPP composite can reach a UL-94 V-1 rating. Additionally, the peak heat release rate and peak smoke production rate of the EP/10wt%LCPP composites dramatically decreased by 43.8% and 48.5%, respectively. The improved flame retardancy and smoke suppression are mainly attributed to the inherent physical barrier of LCPP and the excellent catalytic carbonization ability of LCPP.

19.
Front Endocrinol (Lausanne) ; 13: 993193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339401

RESUMEN

Aims: Previous studies demonstrate that the antioxidant functions of high-density lipoprotein (HDL) are impaired in diabetic patients. The composition of HDL plays an important role in maintaining the normal functionality of HDL. In this study, we compared the levels of oxidized fatty acids in HDL from diabetic subjects and non-diabetic healthy controls, aiming to investigate the role of oxidized fatty acids in the antioxidant property of HDL. Methods: HDL was isolated from healthy subjects (n=6) and patients with diabetes (n=6, hemoglobin A1c ≥ 9%, fasting glucose ≥ 7 mmol/L) using a dextran sulfate precipitation method. Cholesterol efflux capacity mediated by HDL was measured on THP-1 derived macrophages. The antioxidant capacity of HDL was evaluated with dichlorofluorescein-based cellular assay in human aortic endothelial cells. Oxidized fatty acids in HDL were determined by liquid chromatography-tandem mass spectrometry. The correlations between the levels of oxidized fatty acids in HDL and the endothelial oxidant index in cells treated with HDLs were analyzed through Pearson's correlation analyses, and the effects of oxidized fatty acids on the antioxidant function of HDL were verified in vitro. Results: The cholesterol efflux capacity of HDL and the circulating HDL-cholesterol were similar in diabetic patients and healthy controls, whereas the antioxidant capacity of HDL was significantly decreased in diabetic patients. There were higher levels of oxidized fatty acids in HDL isolated from diabetic patients, which were strongly positively correlated with the oxidant index of cells treated with HDLs. The addition of a mixture of oxidized fatty acids significantly disturbed the antioxidant activity of HDL from healthy controls, while the apolipoprotein A-I mimetic peptide D-4F could restore the antioxidant function of HDL from diabetic patients. Conclusion: HDL from diabetic patients displayed substantially impaired antioxidant activity compared to HDL from healthy subjects, which is highly correlated with the increased oxidized fatty acids levels in HDL.


Asunto(s)
Diabetes Mellitus , Lipoproteínas HDL , Humanos , Antioxidantes , Ácidos Grasos , Células Endoteliales , HDL-Colesterol , Oxidantes
20.
Life Sci Alliance ; 5(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36271510

RESUMEN

Plant cell expands via a tip growth or diffuse growth mode. In plants, RabA is the largest group of Rab GTPases that regulate vesicle trafficking. The functions of RabA protein in modulating polarized expansion in tip growth cells have been demonstrated. However, whether and how RabA protein functions in diffuse growth plant cells have never been explored. Here, we addressed this question by examining the role of GhRabA4c in cotton fibers. GhRabA4c was preferentially expressed in elongating fibers with its protein localized to endoplasmic reticulum and Golgi apparatus. Over- and down-expression of GhRabA4c in cotton lead to longer and shorter fibers, respectively. GhRabA4c interacted with GhACT4 to promote the assembly of actin filament to facilitate vesicle transport for cell wall synthesis. Consistently, GhRabA4c-overexpressed fibers exhibited increased content of wall components and the transcript levels of the genes responsible for the synthesis of cell wall materials. We further identified two MYB proteins that directly regulate the transcription of GhRabA4c Collectively, our data showed that GhRabA4c promotes diffused cell expansion by supporting vesicle trafficking and cell wall synthesis.


Asunto(s)
Citoesqueleto de Actina , Fibra de Algodón , Citoesqueleto de Actina/metabolismo , Transporte Biológico , Aparato de Golgi/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...