Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nature ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778102

RESUMEN

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.

2.
Adv Sci (Weinh) ; : e2400444, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552156

RESUMEN

Aortic root aneurysm is a potentially life-threatening condition that may lead to aortic rupture and is often associated with genetic syndromes, such as Marfan syndrome (MFS). Although studies with MFS animal models have provided valuable insights into the pathogenesis of aortic root aneurysms, this understanding of the transcriptomic and epigenomic landscape in human aortic root tissue remains incomplete. This knowledge gap has impeded the development of effective targeted therapies. Here, this study performs the first integrative analysis of single-nucleus multiomic (gene expression and chromatin accessibility) and spatial transcriptomic sequencing data of human aortic root tissue under healthy and MFS conditions. Cell-type-specific transcriptomic and cis-regulatory profiles in the human aortic root are identified. Regulatory and spatial dynamics during phenotypic modulation of vascular smooth muscle cells (VSMCs), the cardinal cell type, are delineated. Moreover, candidate key regulators driving the phenotypic modulation of VSMC, such as FOXN3, TEAD1, BACH2, and BACH1, are identified. In vitro experiments demonstrate that FOXN3 functions as a novel key regulator for maintaining the contractile phenotype of human aortic VSMCs through targeting ACTA2. These findings provide novel insights into the regulatory and spatial dynamics during phenotypic modulation in the aneurysmal aortic root of humans.

3.
J Org Chem ; 89(1): 521-526, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38088918

RESUMEN

The direct carboxylation of the benzylic C-H bonds under mild conditions is of great importance and is quite challenging. Herein, we report an approach for the carboxylation of remote benzylic C(sp3)-H bonds by integrating the redox-neutral visible-light photoredox catalysis and the nitrogen-centered 1,5-hydrogen atom transfer. The chemical transformation progresses via consecutive single electron transfer, 1,5-hydrogen atom transfer, formation of benzylic carbanion, and nucleophilic attack on the CO2 steps, thereby enabling access to the desired carboxylation products with moderate to high yields. We also endeavor to recover the CO2 groups generated in situ intramolecularly to achieve carboxylation under a nitrogen atmosphere, resulting in moderate yields of corresponding carboxylation.

4.
bioRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38116032

RESUMEN

Investigators conducting behavioral experiments often need precise control over the timing of the delivery of stimuli to subjects and to collect the precise times of the subsequent behavioral responses. Furthermore, investigators want fine-tuned control over how various multi-modal cues are presented. behaviorMate takes an "Intranet of Things" approach, using a networked system of hardware and software components for achieving these goals. The system outputs a file with integrated timestamp-event pairs that investigators can then format and process using their own analysis pipelines. We present an overview of the electronic components and GUI application that make up behaviorMate as well as mechanical designs for compatible experimental rigs to provide the reader with the ability to set up their own system. A wide variety of paradigms are supported, including goal-oriented learning, random foraging, and context switching. We demonstrate behaviorMate's utility and reliability with a range of use cases from several published studies and benchmark tests. Finally, we present experimental validation demonstrating different modalities of hippocampal place field studies. Both treadmill with burlap belt and virtual reality with running wheel paradigms were performed to confirm the efficacy and flexibility of the approach. Previous solutions rely on proprietary systems that may have large upfront costs or present frameworks that require customized software to be developed. behaviorMate uses open-source software and a flexible configuration system to mitigate both concerns. behaviorMate has a proven record for head-fixed imaging experiments and could be easily adopted for task control in a variety of experimental situations.

6.
Commun Chem ; 6(1): 156, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488210

RESUMEN

The borylation of unreactive carbon-hydrogen bonds is a valuable method for transforming feedstock chemicals into versatile building blocks. Here, we describe a transition metal-free method for the photoredox-catalyzed borylation of unactivated C(sp3)-H bond, initiated by 1,5-hydrogen atom transfer (HAT). The remote borylation was directed by 1,5-HAT of the amidyl radical, which was generated by photocatalytic reduction of hydroxamic acid derivatives. The method accommodates substrates with primary, secondary and tertiary C(sp3)-H bonds, yielding moderate to good product yields (up to 92%) with tolerance for various functional groups. Mechanistic studies, including radical clock experiments and DFT calculations, provided detailed insight into the 1,5-HAT borylation process.

7.
J Chromatogr A ; 1704: 464089, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37307636

RESUMEN

Traditional offline detection of volatile organic compounds (VOCs) requires complex and time-consuming pre-treatments including gas sampling in containers, pre-concentrations, and thermal desorption, which hinders its application in rapid VOCs monitoring. Developing a cost-effective instrument is of great importance for online measurement of VOCs. Recently, photoionization detectors (PID) are received great attention due to their fast response time and high sensitivity. This study a portable gas chromatography coupled to PID (pGC-PID) was developed and optimized experimental parameters for the application in online monitoring of VOCs at an industrial site. The sampling time, oven temperature and carrier gas flow rate were optimized as 80 s, 50 °C and 60 ml·min-1, respectively. The sampling method is direct injection. Poly tetra fluoroethylene (PTFE) filter membranes were selected to remove particulate matter from interfering with PID. The reproducibility and peak separation were good with relative standard deviations (RSD) ≤ 7%. Good linearities of 27 VOCs standard curves were achieved with R2 ≥ 0.99, and the detection limits were ≤10 ppb with the lowest being 2 ppb for 1,1,2-Trichloroethane. Finally, the pGC-PID is successfully applied in online VOCs monitoring at an industrial site. A total of 17 VOCs species was detected and their diurnal variations were well obtained, indicating pGC-PID is well suited for online analysis in field campaign.


Asunto(s)
Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Reproducibilidad de los Resultados , Cromatografía de Gases/métodos , Temperatura , Monitoreo del Ambiente/métodos
8.
Mediators Inflamm ; 2023: 7057236, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181806

RESUMEN

Hepatocellular carcinoma (HCC) is a malignancy with one of the worst prognoses. Long noncoding RNAs (lncRNAs) may be important in cancer development and may serve as new biomarkers for the diagnosis and treatment of various tumors, according to mounting research. The purpose of this study was to investigate the expression of INKA2-AS1 and clinical importance in HCC patients. The TCGA database was used to obtain the human tumor samples, while the TCGA and GTEx databases were used to gather the human normal samples. We screened differentially expressed genes (DEGs) between HCC and nontumor tissues. Investigations were made into the statistical significance and clinical significance of INKA2-AS1 expression. A single-sample gene set enrichment analysis (ssGSEA) was used to examine potential relationships between immune cell infiltration and INKA2-AS1 expression. In this investigation, we found that HCC specimens had considerably greater levels of INKA2-AS1 expression than nontumor specimens. When utilizing the TCGA datasets and the GTEx database, high INKA2-AS1 expression showed an AUC value for HCC of 0.817 (95% confidence interval: 0.779 to 0.855). Pan-cancer assays revealed that numerous tumor types had dysregulated levels of INKA2-AS1. Gender, histologic grade, and pathologic stage were all substantially correlated with high INKA2-AS1 expression. A survival study indicated that HCC patients with high INKA2-AS1 expression have shorter OS, DSS, and PFI than those with low INKA2-AS1 expression. Multivariate analysis indicated that INKA2-AS1 expression was an independent prognostic factor for OS of patients with HCC. According to immune analysis, the expression of INKA2-AS1 was favorably correlated with T helper cells, Th2 cells, macrophages, TFH, and NK CD56bright cells and negatively correlated with Th17 cells, pDC, cytotoxic cells, DC, Treg, Tgd, and Tcm. The results of this study collectively suggest that INKA2-AS1 has the potential to be a novel biomarker for predicting the prognosis of HCC patients as well as a significant immune response regulator in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Pronóstico , MicroARNs/metabolismo , Biomarcadores , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica , Proliferación Celular
9.
Cell Discov ; 9(1): 6, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36646705

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder characterized by cardiomyocyte hypertrophy and cardiac fibrosis. Pathological cardiac remodeling in the myocardium of HCM patients may progress to heart failure. An in-depth elucidation of the lineage-specific changes in pathological cardiac remodeling of HCM is pivotal for the development of therapies to mitigate the progression. Here, we performed single-nucleus RNA-seq of the cardiac tissues from HCM patients or healthy donors and conducted spatial transcriptomic assays on tissue sections from patients. Unbiased clustering of 55,122 nuclei from HCM and healthy conditions revealed 9 cell lineages and 28 clusters. Lineage-specific changes in gene expression, subpopulation composition, and intercellular communication in HCM were discovered through comparative analyses. According to the results of pseudotime ordering, differential expression analysis, and differential regulatory network analysis, potential key genes during the transition towards a failing state of cardiomyocytes such as FGF12, IL31RA, and CREB5 were identified. Transcriptomic dynamics underlying cardiac fibroblast activation were also uncovered, and potential key genes involved in cardiac fibrosis were obtained such as AEBP1, RUNX1, MEOX1, LEF1, and NRXN3. Using the spatial transcriptomic data, spatial activity patterns of the candidate genes, pathways, and subpopulations were confirmed on patient tissue sections. Moreover, we showed experimental evidence that in vitro knockdown of AEBP1 could promote the activation of human cardiac fibroblasts, and overexpression of AEBP1 could attenuate the TGFß-induced activation. Our study provided a comprehensive analysis of the lineage-specific regulatory changes in HCM, which laid the foundation for targeted drug development in HCM.

10.
Adv Clin Exp Med ; 32(5): 575-582, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36530029

RESUMEN

BACKGROUND: Liver cancer, the vast majority of cases being hepatocellular carcinoma (HCC), is now the most malignant tumor in the world. Recurrence and metastasis remain the major obstacles on the way to the successful treatment of HCC. In recent years, the vital function of microRNAs (miRNAs) in human health and disease have been demonstrated. Large amounts of evidence demonstrate that miRNAs play an important role in the occurrence and progression of HCC. OBJECTIVES: To find new targets for improving the early diagnosis, treatment and clinical prognosis of liver cancer. MATERIAL AND METHODS: We used quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to analyze the expression of miR-29a-5p. A cell counting kit-8 (CCK-8) assay was used to measure the proliferation of liver cancer cells. Wound healing and transwell assays were used to detect migration and invasion in vitro. Western blot was used to detect the expression of the related protein. RESULTS: The miR-29a-5p was identified as a tumor-related miRNA. It is upregulated in HCC. The overexpression of miR-29a-5p contributes to the proliferation, invasion and metastasis of HCC cells. Furthermore, the downregulation of miR-29a-5p inhibited the growth, migration and invasion of HCC cells in vitro. Subsequently, we used bioinformatics methods to predict that AT-rich interaction domain 2 (ARID2) is the downstream target gene of miR-29a-5p. The downregulation of ARID2 could reverse the tumor suppressive effect caused by the knockdown of miR-29a-5p. Similarly, the epithelial-mesenchymal transition (EMT)-related protein epithelial marker E-cadherin expression increased and the mesenchymal marker Vimentin decreased when we downregulated the expression of miR-29a-5p. Interestingly, the knockdown of ARID2 could reverse this phenomenon. CONCLUSIONS: Our study demonstrated that miRNA-29a-5p was overexpressed in HCC cells. It promotes the progression of HCC by targeting ARID2 in an EMT manner.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Factores de Transcripción/genética
11.
Pediatr Neurol ; 140: 3-8, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577181

RESUMEN

BACKGROUND: We designed this study to investigate the effects of the coronavirus disease 2019 (COVID-19) vaccine on epileptic seizures, as well as its adverse effects, in children with epilepsy (<18 years). METHODS: This anonymous questionnaire study involved a multicenter prospective survey of outpatients and inpatients with epilepsy (<18 years) registered in epilepsy clinics in eight hospitals in six cities of Shandong Province. RESULTS: A total of 224 children with epilepsy were included in the study. Fifty of them experienced general adverse events after vaccination. The most common local adverse events were pain or tenderness at the injection site. The most common systemic adverse effects were muscle soreness and headache. No severe adverse events were reported. There were no significant differences in the number of antiseizure medications (P = 0.459), gender (P = 0.336), etiology (P = 0.449), age (P = 0.499), duration of disease (P = 0.546), or seizure type (P = 0.475) between the patients with and without general adverse events. We found that the risk of seizure after vaccination was decreased in children who were seizure free for more than six months before vaccination. There was no significant difference in the number of seizures during the first month before vaccination, the first month after the first dose, and the first month after the second dose (P = 0.091). CONCLUSION: The benefits of vaccination against COVID-19 outweighed the risks of seizures/relapses and severe adverse events after vaccination for children with epilepsy.


Asunto(s)
COVID-19 , Epilepsia , Humanos , Niño , Anticonvulsivantes/uso terapéutico , Vacunas contra la COVID-19 , Estudios Prospectivos , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico
12.
Genomics Proteomics Bioinformatics ; 21(1): 216-227, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35961607

RESUMEN

Congenital heart disease (CHD) is one of themost common causes of major birth defects, with a prevalence of 1%. Although an increasing number of studies have reported the etiology of CHD, the findings scattered throughout the literature are difficult to retrieve and utilize in research and clinical practice. We therefore developed CHDbase, an evidence-based knowledgebase of CHD-related genes and clinical manifestations manually curated from 1114 publications, linking 1124susceptibility genes and 3591 variations to more than 300 CHD types and related syndromes. Metadata such as the information of each publication and the selected population and samples, the strategy of studies, and the major findings of studies were integrated with each item of the research record. We also integrated functional annotations through parsing ∼ 50 databases/tools to facilitate the interpretation of these genes and variations in disease pathogenicity. We further prioritized the significance of these CHD-related genes with a gene interaction network approach and extracted a core CHD sub-network with 163 genes. The clear genetic landscape of CHD enables the phenotype classification based on the shared genetic origin. Overall, CHDbase provides a comprehensive and freely available resource to study CHD susceptibilities, supporting a wide range of users in the scientific and medical communities. CHDbase is accessible at http://chddb.fwgenetics.org.


Asunto(s)
Cardiopatías Congénitas , Humanos , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/epidemiología , Fenotipo , Bases del Conocimiento
13.
Front Immunol ; 13: 984789, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569941

RESUMEN

Objectives: Several COVID-19 vaccines list "uncontrolled epilepsy" as a contraindication for vaccination. This consequently restricts vaccination against COVID-19 in patients with epilepsy (PWE). However, there is no strong evidence that COVID-19 vaccination can exacerbate conditions in PWE. This study aims to determine the impact of COVID-19 vaccination on PWE. Methods: PWE were prospectively recruited from 25 epilepsy centers. We recorded the seizure frequency at three time periods (one month before the first vaccination and one month after the first and second vaccinations). A generalized linear mixed-effects model (GLMM) was used for analysis, and the adjusted incidence rate ratio (AIRR) with 95% CI was presented and interpreted accordingly. Results: Overall, 859 PWE were included in the analysis. Thirty-one (3.6%) and 35 (4.1%) patients were found to have increased seizure frequency after the two doses, respectively. Age had an interaction with time. The seizure frequency in adults decreased by 81% after the first dose (AIRR=0.19, 95% CI:0.11-0.34) and 85% after the second dose (AIRR=0.16, 95% CI:0.08-0.30). In juveniles (<18), it was 25% (AIRR=0.75, 95% CI:0.42-1.34) and 51% (AIRR=0.49, 95% CI:0.25-0.95), respectively. Interval between the last seizure before vaccination and the first dose of vaccination (ILSFV) had a significant effect on seizure frequency after vaccination. Seizure frequency in PWE with hereditary epilepsy after vaccination was significantly higher than that in PWE with unknown etiology (AIRR=1.95, 95% CI: 1.17-3.24). Two hundred and seventeen (25.3%) patients experienced non-epileptic but not serious adverse reactions. Discussion: The inactivated COVID-19 vaccine does not significantly increase seizure frequency in PWE. The limitations of vaccination in PWE should focus on aspects other than control status. Juvenile PWE should be of greater concern after vaccination because they have lower safety. Finally, PWE should not reduce the dosage of anti-seizure medication during the peri-vaccination period.


Asunto(s)
COVID-19 , Epilepsia , Adulto , Humanos , Vacunas contra la COVID-19/efectos adversos , Estudios Prospectivos , COVID-19/prevención & control , COVID-19/complicaciones , Epilepsia/tratamiento farmacológico , Vacunación/efectos adversos
14.
Stem Cell Reports ; 17(12): 2674-2689, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36400028

RESUMEN

Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension characterized by the preferential remodeling of the pulmonary venules. Hereditary PVOD is caused by biallelic variants of the EIF2AK4 gene. Three PVOD patients who carried the compound heterozygous variants of EIF2AK4 and two healthy controls were recruited and induced pluripotent stem cells (iPSCs) were generated from human peripheral blood mononuclear cells (PBMCs). The EIF2AK4 c.2965C>T variant (PVOD#1), c.3460A>T variant (PVOD#2), and c.4832_4833insAAAG variant (PVOD#3) were corrected by CRISPR-Cas9 in PVOD-iPSCs to generate isogenic controls and gene-corrected-iPSCs (GC-iPSCs). PVOD-iPSC-endothelial cells (ECs) exhibited a decrease in GCN2 protein and mRNA expression when compared with control and GC-ECs. PVOD-ECs exhibited an abnormal EC phenotype featured by excessive proliferation and angiogenesis. The abnormal phenotype of PVOD-ECs was normalized by protein kinase B inhibitors AZD5363 and MK2206. These findings help elucidate the underlying molecular mechanism of PVOD in humans and to identify promising therapeutic drugs for treating the disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad Veno-Oclusiva Pulmonar , Humanos , Enfermedad Veno-Oclusiva Pulmonar/genética , Enfermedad Veno-Oclusiva Pulmonar/terapia , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales/metabolismo , Leucocitos Mononucleares/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo
15.
Genet Med ; 24(12): 2544-2554, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36194209

RESUMEN

PURPOSE: Early detection and pathogenicity interpretation of disease-associated variants are crucial but challenging in molecular diagnosis, especially for insidious and life-threatening diseases, such as heritable thoracic aortic aneurysm and dissection (HTAAD). In this study, we developed HTAADVar, an unbiased and fully automated system for the molecular diagnosis of HTAAD. METHODS: We developed HTAADVar (http://htaadvar.fwgenetics.org) under the American College of Medical Genetics and Genomics/Association for Molecular Pathology framework, with optimizations based on disease- and gene-specific knowledge, expert panel recommendations, and variant observations. HTAADVar provides variant interpretation with a self-built database through the web server and the stand-alone programs. RESULTS: We constructed an expert-reviewed database by integrating 4373 variants in HTAAD genes, with comprehensive metadata curated from 697 publications and an in-house study of 790 patients. We further developed an interpretation system to assess variants automatically. Notably, HTAADVar showed a multifold increase in performance compared with public tools, reaching a sensitivity of 92.64% and specificity of 70.83%. The molecular diagnostic yield of HTAADVar among 790 patients (42.03%) also matched the clinical data, independently demonstrating its good performance in clinical application. CONCLUSION: HTAADVar represents the first fully automated system for accurate variant interpretation for HTAAD. The framework of HTAADVar could also be generalized for the molecular diagnosis of other genetic diseases.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Humanos , Aneurisma de la Aorta Torácica/diagnóstico , Aneurisma de la Aorta Torácica/genética , Disección Aórtica/diagnóstico , Disección Aórtica/genética , Genómica , Patología Molecular , Pruebas Genéticas , Variación Genética/genética
16.
Front Surg ; 9: 948355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898584

RESUMEN

Background: Although many studies reported the effectiveness of transarterial chemoembolization (TACE) combined with radiofrequency ablation (RFA) or surgical resection (SR) in the treatment of hepatocellular carcinoma (HCC), the efficacy of these two strategies remains controversial. Therefore, this meta-analysis aimed to evaluate and compare the efficacy of sequential use of TACE plus RFA (TACE + RFA) and SR alone in treating HCC. Methods: Relevant studies with unmatched and propensity score-matched patients were identified by comprehensive search of MEDLINE, PubMed, EMBASE, Web of Science, and Cochrane electronic databases. Meta-analysis was conducted using Review Manager (RevMan) software version 5.4.1. Finally, 12 eligible studies were included in this study, including 11 case-control studies and 1 randomized controlled trial. The primary outcome of interest for this study was to compare the 1-, 3-, and 5-year overall survival (OS) and disease-free survival (DFS), major complications, 5-year OS in different tumor diameters between the two treatment strategies, and hospital stay time. Results: HCC patients who received TACE + RFA had a lower incidence of complication rates and shorter hospital stay time than those who received SR alone. Among these studies using propensity score-matched cohorts, SR had better 3- and 5-year OS than TACE + RFA, whereas there were no significant differences between TACE + RFA and SR regarding the 1-, 3-, and 5-year DFS. When the tumor diameter is longer than 3 cm, the 5-year OS rate is better when SR is selected. Conclusion: There was no significant difference in the short-term survival outcomes between TACE + RFA and SR in HCC patients. Moreover, SR is superior to TACE + RFA in terms of long-term beneficial effects but may result in a higher risk of major complications and a longer hospital stay time.

17.
J Am Chem Soc ; 144(25): 11296-11305, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35713308

RESUMEN

Quantum dots (QDs) embedded in inorganic matrices have been extensively studied for their potential applications in lighting, displays, and solar cells. While a significant amount of research studies focused on their experimental fabrication, the origin of their relatively low photoluminescence quantum yield has not been investigated yet, although it severely hinders practical applications. In this study, we use time-dependent density functional theory (TDDFT) to pinpoint the nature of excited states of CdSe QDs embedded in various inorganic matrices. The formation of undercoordinated Se atoms and nonbridging oxygen atoms at the QD/glass interface is responsible for the localization of a hole wave function, leading to the formation of low-energy excited states with weak oscillator strength. These states provide pathways for nonradiative processes and compete with radiative emission. The photoluminescence performance is predicted for CdSe QDs in different matrices and validated by experiments. The results of this study have significant implications for understanding the underlying photophysics of CdSe QDs embedded in inorganic matrices that would facilitate the fabrication of highly luminescent glasses.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Luminiscencia
18.
New Phytol ; 235(4): 1665-1678, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35527515

RESUMEN

Genetic mutants defective in stimulus-induced Ca2+ increases have been gradually isolated, allowing the identification of cell-surface sensors/receptors, such as the osmosensor OSCA1. However, determining the Ca2+ -signaling specificity to various stimuli in these mutants remains a challenge. For instance, less is known about the exact selectivity between osmotic and ionic stresses in the osca1 mutant. Here, we have developed a method to distinguish the osmotic and ionic effects by analyzing Ca2+ increases, and demonstrated that osca1 is impaired primarily in Ca2+ increases induced by the osmotic but not ionic stress. We recorded Ca2+ increases induced by sorbitol (osmotic effect, OE) and NaCl/CaCl2 (OE + ionic effect, IE) in Arabidopsis wild-type and osca1 seedlings. We assumed the NaCl/CaCl2 total effect (TE) = OE + IE, then developed procedures for Ca2+ imaging, image analysis and mathematic fitting/modeling, and found osca1 defects mainly in OE. The osmotic specificity of osca1 suggests that osmotic and ionic perceptions are independent. The precise estimation of these two stress effects is applicable not only to new Ca2+ -signaling mutants with distinct stimulus specificity but also the complex Ca2+ signaling crosstalk among multiple concurrent stresses that occur naturally, and will enable us to specifically fine tune multiple signal pathways to improve crop yields.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Cloruro de Calcio/farmacología , Presión Osmótica , Percepción , Cloruro de Sodio/farmacología
19.
Cell Discov ; 8(1): 11, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35132073

RESUMEN

Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening condition characterized by medial layer degeneration of the thoracic aorta. A thorough understanding of the regulator changes during pathogenesis is essential for medical therapy development. To delineate the cellular and molecular changes during the development of TAAD, we performed single-cell RNA sequencing of thoracic aortic cells from ß-aminopropionitrile-induced TAAD mouse models at three time points that spanned from the early to the advanced stages of the disease. Comparative analyses were performed to delineate the temporal dynamics of changes in cellular composition, lineage-specific regulation, and cell-cell communications. Excessive activation of stress-responsive and Toll-like receptor signaling pathways contributed to the smooth muscle cell senescence at the early stage. Three subpopulations of aortic macrophages were identified, i.e., Lyve1+ resident-like, Cd74high antigen-presenting, and Il1rn+/Trem1+ pro-inflammatory macrophages. In both mice and humans, the pro-inflammatory macrophage subpopulation was found to represent the predominant source of most detrimental molecules. Suppression of macrophage accumulation in the aorta with Ki20227 could significantly decrease the incidence of TAAD and aortic rupture in mice. Targeting the Il1rn+/Trem1+ macrophage subpopulation via blockade of Trem1 using mLR12 could significantly decrease the aortic rupture rate in mice. We present the first comprehensive analysis of the cellular and molecular changes during the development of TAAD at single-cell resolution. Our results highlight the importance of anti-inflammation therapy in TAAD, and pinpoint the macrophage subpopulation as the predominant source of detrimental molecules for TAAD. Targeting the IL1RN+/TREM1+ macrophage subpopulation via blockade of TREM1 may represent a promising medical treatment.

20.
Int J Environ Health Res ; 32(9): 2052-2064, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34102927

RESUMEN

Exposure to airborne particulate matter (PM2.5) is associated with cardiovascular diseases. In order to investigate the molecular mechanisms of air pollution-induced CVDs toxicity, human umbilical vein endothelial cells (HUVECs) were exposed to PM2.5 collected from January, 2016 winter in Beijing, China. We performed RNA sequencing to elucidate key molecular mechanism of PM 2.5-mediated toxicity in HUVECs. A total of 1753 genes, 864 up-regulated and 889 down-regulated, were observed to be differentially expressed genes (DEGs). Among these, genes involved in metabolic response, oxidative stress, inflammatory response, and vascular dysfunction were significantly differentially expressed (log2 FC > 4). The results were validated by quantitative real-time PCR (qPCR) and Western blot for CYP1B1, HMOX1, IL8, and GJA4. Pathway analysis revealed that DEGs were involved in the biological processes related to metabolism, inflammation, and host defense against environmental insults. This research is providing a further understanding of the mechanisms underlying PM2.5-induced cardiovascular diseases (CVDs).


Asunto(s)
Contaminantes Atmosféricos , Enfermedades Cardiovasculares , Contaminantes Atmosféricos/toxicidad , Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Material Particulado/toxicidad , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...