Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Small Methods ; : e2400084, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738733

RESUMEN

Doping plays a crucial role in modulating and enhancing the performance of organic semiconductor (OSC) devices. In this study, the critical role of dopants is underscored in shaping the morphology and structure of OSC films, which in turn profoundly influences their properties. Two dopants, trityl tetrakis(pentafluorophenyl) (TrTPFB) and N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate (DMA-TPFB), are examined for their doping effects on poly(3-hexylthiophene) (P3HT) and PBBT-2T host OSCs. It is found that although TrTPFB exhibits higher doping efficiency, OSCs doped with DMA-TPFB achieve comparable or even enhanced electrical conductivity. Indeed, the electrical conductivity of DMA-TPFB-doped P3HT reaches over 67 S cm-1, which is a record-high value for mixed-solution-doped P3HT. This can be attributed to DMA-TPFB inducing a higher degree of crystallinity and reduced structural disorder. Moreover, the beneficial impact of DMA-TPFB on the OSC films' morphology and structure results in superior thermoelectric performance in the doped OSCs. These findings highlight the significance of dopant-induced morphological and structural considerations in enhancing the film characteristics of OSCs, opening up a new avenue for optimization of dopant performance.

2.
Adv Mater ; : e2314054, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573654

RESUMEN

A cost-effective, scalable ball milling process is employed to synthesize the InGeSiP3 compound with a cubic ZnS structure, aiming to address the sluggish reaction kinetics of Si-based anodes for Lithium-ion batteries. Experimental measurements and first-principles calculations confirm that the synthesized InGeSiP3 exhibits significantly higher electronic conductivity, larger Li-ion diffusivity, and greater tolerance to volume change than its parent phases InGe (or Si)P2 or In (or Ge, or Si)P. These improvements stem from its elevated configurational entropy. Multiple characterizations validate that InGeSiP3 undergoes a reversible Li-storage mechanism that involves intercalation, followed by conversion and alloy reactions, resulting in a reversible capacity of 1733 mA h g-1 with an initial Coulombic efficiency of 90%. Moreover, the InGeSiP3-based electrodes exhibit exceptional cycling stability, retaining an 1121 mA h g-1 capacity with a retention rate of ≈87% after 1500 cycles at 2000 mA g-1 and remarkable high-rate capability, achieving 882 mA h g-1 at 10 000 mA g-1. Inspired by the distinctive characteristic of high entropy, the synthesis is extended to high entropy GaCu (or Zn)InGeSiP5, CuZnInGeSiP5, GaCuZnInGeSiP6, InGeSiP2S (or Se), and InGeSiPSSe. This endeavor overcomes the immiscibility of different metals and non-metals, paving the way for the electrochemical energy storage application of high-entropy silicon-phosphides.

3.
J Org Chem ; 89(7): 4947-4957, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38498700

RESUMEN

A photoredox/copper-catalyzed cascade radical cyclization/phosphorothiolation reaction of N-allylbromoacetamides and P(O)SH compounds has been established. A broad range of novel nonfluorine- or difluoro-substituted 2-pyrrolidinones bearing the C(sp3)-SP(O)(OR)2 moiety can be conveniently constructed in moderate to good yields under mild conditions. Importantly, most of the tested phosphorothiolated 2-pyrrolidinones showed potent inhibitory effects toward both AChE and BChE.

4.
ACS Nano ; 18(3): 1778-1819, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38179983

RESUMEN

In recent years, there has been growing interest in functional devices based on two-dimensional (2D) materials, which possess exotic physical properties. With an ultrathin thickness, the optoelectrical and electrical properties of 2D materials can be effectively tuned by an external field, which has stimulated considerable scientific activities. Ferroelectric fields with a nonvolatile and electrically switchable feature have exhibited enormous potential in controlling the electronic and optoelectronic properties of 2D materials, leading to an extremely fertile area of research. Here, we review the 2D materials and relevant devices integrated with ferroelectricity. This review starts to introduce the background about the concerned themes, namely 2D materials and ferroelectrics, and then presents the fundamental mechanisms, tuning strategies, as well as recent progress of the ferroelectric effect on the optical and electrical properties of 2D materials. Subsequently, the latest developments of 2D material-based electronic and optoelectronic devices integrated with ferroelectricity are summarized. Finally, the future outlook and challenges of this exciting field are suggested.

5.
Small ; 20(1): e2304626, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37641178

RESUMEN

Electronics have greatly promoted the development of modern society and the exploration of new semiconducting materials with low cost and high mobility continues to attract interest in the advance of next-generation electronic devices. Among emerging semiconductors, the metal-halide perovskite, especially the nontoxic tin (Sn)-based candidates, has recently made breakthroughs in the field of diverse electronic devices due to its excellent charge transport properties and cost-effective large-area deposition capability at low temperatures. To enable a more comprehensive understanding of this emerging research field and promote the development of new-generation perovskite electronics, this review aims to provide an in-depth understanding with the discussion of unique physical properties of Sn-based perovskites and the summarization of recent research progress of Sn-based perovskite field-effect transistors (FETs) and diverse electronic devices. The unique character of negligible ion migration is also discussed, which is fundamentally different from the lead-based counterparts and provides a great prerequisite for device application. The following section highlights the potential broad applications of Sn-perovskite FETs as a competitive and feasible technology. Finally, an outlook and remaining challenges are given to advance the progression of Sn-based perovskite FETs, especially on the origin and solution of stability problems toward high-performance Sn-based perovskite electronics.

6.
Sci Adv ; 9(49): eadk1597, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064557

RESUMEN

Silicon CMOS-based computing-in-memory encounters design and power challenges, especially in logic-in-memory scenarios requiring nonvolatility and reconfigurability. Here, we report a universal design for nonvolatile reconfigurable devices featuring a 2D/3D heterointegrated configuration. By leveraging the photo-controlled charge trapping/detrapping process and the partially top-gated energy band landscape, the van der Waals heterostacking achieves polarity storage and logic reconfigurable characteristics, respectively. Precise polarity tunability, logic nonvolatility, robustness against high temperature (at 85°C), and near-ideal subthreshold swing (80 mV dec-1) can be done. A comprehensive investigation of dynamic charge fluctuations provides a holistic understanding of the origins of nonvolatile reconfigurability (a trap level of 1013 cm-2 eV-1). Furthermore, we cascade such nonvolatile reconfigurable units into a monolithic circuit layer to demonstrate logic-in-memory computing possibilities, such as high-gain (65 at Vdd = 0.5 V) logic gates. This work provides an innovative 3D heterointegration prototype for future computing-in-memory hardware.

7.
J Pain ; : 104422, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37951284

RESUMEN

Both autonomic nervous system dysfunction and immune system activation are characteristic of chronic pain after limb injuries. Cholinergic agonists reduce immune system activation in many settings. We hypothesized, therefore, that alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist administration would reduce nociceptive and immune changes after tibia fracture and cast immobilization in mice. Fracture mice were treated with either vehicle, a low (.2 mg/kg) dose, or a high (1 mg/kg) dose of the selective α7nAChR agonist PNU-282987 for 4 weeks. We assessed hindpaw allodynia and weight bearing as behavioral outcomes. The assessment of adaptive immune responses included regional lymph node hypertrophy, germinal center formation, α7nAChR expression, and IgM deposition. Assessment of innate immune system activation focused on IL-1ß and IL-6 generation in fractured hindlimb skin. We observed that mechanical allodynia and unweighting were alleviated by PNU-282987 treatment. Drug treatment also reduced popliteal lymph node hypertrophy and germinal center formation. Immunohistochemical studies localized α7nAChR to germinal center B lymphocytes, and this expression increased after fracture. Analysis of fracture limb hindpaw skin demonstrated increased inflammatory mediator (IL-1ß and IL-6) levels and IgM deposition, which were abrogated by PNU-282987. Serum analyses demonstrated fracture-induced IgM reactivity against keratin 16, histone 3.2, GFAP, and NMDAR-2B. Administration of PNU-282987 reduced the enhancement of IgM reactivity. Collectively, these data suggest that the α7nAChR is involved in regulating posttraumatic innate and adaptive immune responses and the associated nociceptive sensitization. PERSPECTIVE: These studies evaluate the effects of a selective α7nAChR agonist in a tibial fracture/cast immobilization model of limb pain. Administration of the drug reduced nociceptive and functional changes 4 weeks after injury. These novel findings suggest that well-tolerated α7nAChR agonists may be viable analgesics for chronic pain after limb injuries.

8.
Front Oncol ; 13: 1206991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37909015

RESUMEN

Multiple gastrointestinal stromal tumors (GISTs) combined with cutaneous multiple neurofibromas are clinically rare. This paper presents a case of multiple gastrointestinal stromal tumors in the jejunum of a 68-year-old mother, along with her daughter who also had coexisting cutaneous multiple neurofibromas. The mother had been experiencing repeated melena for over 2 years and had previously been diagnosed with multiple small intestinal masses at other hospitals. Additionally, her 42-year-old daughter was admitted to our department due to recurrent abdominal pain caused by cholecystolithiasis. The mother and daughter both exhibited multiple nodular masses of varying sizes on their skin, including the truncus, limbs, and face, which were diagnosed as neurofibromas. The mother underwent a partial excision of the jejunum and a lateral jejunojejunal anastomosis side-to-side, as well as excision of skin lesions in our department. The final diagnosis of wild-type GISTs associated with neurofibromatosis type 1 (NF1) was confirmed through postoperative pathology, immunohistochemistry, and genetic testing results. During preoperative gastrointestinal endoscopy and intraoperative laparoscopic exploration of the gastrointestinal tract, no obvious tumors were found in her daughter. A combination of patient observations and a review of relevant literature in the field suggests that when patients present with gastrointestinal symptoms and multiple irregular painless swellings in the skin, it is important to consider the possibility of an association with NF1 and GIST. Additionally, obtaining a detailed family history can save time and improve the diagnosis of patients with both NF1 and GIST. We recommend that even if there are no gastrointestinal manifestations of GISTs in the offspring of newly mutated NF1 patients, regular review of gastroenteroscopy, imaging examination, and long-term follow-up after middle age are still crucial for the early diagnosis and treatment of NF1-related GISTs.

9.
Sci Technol Adv Mater ; 24(1): 2252725, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745781

RESUMEN

Phase-change memory (PCM), recently developed as the storage-class memory in a computer system, is a new non-volatile memory technology. In addition, the applications of PCM in a non-von Neumann computing, such as neuromorphic computing and in-memory computing, are being investigated. Although PCM-based devices have been extensively studied, several concerns regarding the electrical, thermal, and structural dynamics of phase-change devices remain. In this article, aiming at PCM devices, a comprehensive review of PCM materials is provided, including the primary PCM device mechanics that underpin read and write operations, physics-based modeling initiatives and experimental characterization of the many features examined in nanoscale PCM devices. Finally, this review will propose a prognosis on a few unsolved challenges and highlight research areas of further investigation.

10.
Nano Lett ; 23(10): 4595-4601, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37154868

RESUMEN

Sliding ferroelectricity associated with interlayer translation is an excellent candidate for ferroelectric device miniaturization. However, the weak polarization gives rise to the poor performance of sliding ferroelectric transistors with a low on/off ratio and a narrow memory window, which restricts its practical application. To address the issue, we propose a facile strategy by regulating the Schottky barrier in sliding ferroelectric semiconductor transistors based on γ-InSe, in which a high performance with a large on/off ratio (106) and a wide memory window (4.5 V) was ultimately acquired. Additionally, the memory window of the device can be further modulated by electrostatic doping or light excitation. These results open up new ways for designing novel ferroelectric devices based on emerging sliding ferroelectricity.

11.
Nanomicro Lett ; 15(1): 63, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899146

RESUMEN

Si is considered as the promising anode materials for lithium-ion batteries (LIBs) owing to their high capacities of 4200 mAh g-1 and natural abundancy. However, severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications. To resolve the afore-mentioned problems, we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP2 compound, where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method. As confirmed by experimental and theoretical analyses, the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity, respectively, while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases. The resulting GaSiP2 electrodes delivered the high specific capacity of 1615 mAh g-1 and high initial Coulombic efficiency of 91%, while the graphite-modified GaSiP2 (GaSiP2@C) achieved 83% of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g-1. Furthermore, the LiNi0.8Co0.1Mn0.1O2//GaSiP2@C full cells achieved the high specific capacity of 1049 mAh g-1 after 100 cycles, paving a way for the rational design of high-performance LIB anode materials.

12.
Small ; 19(18): e2205395, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36748849

RESUMEN

Stretchable synaptic transistors, a core technology in neuromorphic electronics, have functions and structures similar to biological synapses and can concurrently transmit signals and learn. Stretchable synaptic transistors are usually soft and stretchy and can accommodate various mechanical deformations, which presents significant prospects in soft machines, electronic skin, human-brain interfaces, and wearable electronics. Considerable efforts have been devoted to developing stretchable synaptic transistors to implement electronic device neuromorphic functions, and remarkable advances have been achieved. Here, this review introduces the basic concept of artificial synaptic transistors and summarizes the recent progress in device structures, functional-layer materials, and fabrication processes. Classical stretchable synaptic transistors, including electric double-layer synaptic transistors, electrochemical synaptic transistors, and optoelectronic synaptic transistors, as well as the applications of stretchable synaptic transistors in light-sensory systems, tactile-sensory systems, and multisensory artificial-nerves systems, are discussed. Finally, the current challenges and potential directions of stretchable synaptic transistors are analyzed. This review presents a detailed introduction to the recent progress in stretchable synaptic transistors from basic concept to applications, providing a reference for the development of stretchable synaptic transistors in the future.

13.
Adv Sci (Weinh) ; 10(10): e2300133, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36703612

RESUMEN

Transparent field-effect transistors (FETs) are attacking intensive interest for constructing fancy "invisible" electronic products. Presently, the main technology for realizing transparent FETs is based on metal oxide semiconductors, which have wide-bandgap but generally demand sputtering technique or high-temperature (>350 °C) solution process for fabrication. Herein, a general device fabrication strategy for metal halide perovskite (MHP) FETs is shown, by which transparent perovskite FETs are successfully obtained using low-temperature (<150 °C) solution process. This strategy involves the employment of ferroelectric copolymer poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) as the dielectric, which conquers the challenging issue of gate-electric-field screening effect in MHP FETs. Additionally, an ultra-thin SnO2 is inserted between the source/drain electrodes and MHPs to facilitate electron injection. Consequently, n-type semi-transparent MAPbBr3 FETs and fully transparent MAPbCl3 FETs which can operate well at room temperature with mobility over 10-3  cm2  V-1  s-1 and on/off ratio >103 are achieved for the first time. The low-temperature solution processability of these FETs makes them particularly attractive for applications in low-cost, large-area transparent electronics.

14.
Pain ; 164(2): 421-434, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35976729

RESUMEN

ABSTRACT: Previously, we observed that B cells and autoantibodies mediated chronic nociceptive sensitization in the mouse tibia fracture model of complex regional pain syndrome and that complex regional pain syndrome patient antibodies were pronociceptive in fracture mice lacking mature B cells and antibodies (muMT). The current study used a lumbar spinal disk puncture (DP) model of low back pain in wild-type (WT) and muMT mice to evaluate pronociceptive adaptive immune responses. Spinal disks and cords were collected 3 weeks after DP for polymerase chain reaction and immunohistochemistry analyses. Wild-type DP mice developed 24 weeks of hindpaw mechanical allodynia and hyperalgesia, grip weakness, and a conditioned place preference response indicative of spontaneous pain, but pain responses were attenuated or absent in muMT DP mice. Spinal cord expression of inflammatory cytokines, immune cell markers, and complement components were increased in WT DP mice and in muMT DP mice. Dorsal horn immunostaining in WT DP mice demonstrated glial activation and increased complement 5a receptor expressionin spinal neurons. Serum collected from WT DP mice and injected into muMT DP mice caused nociceptive sensitization, as did intrathecal injection of IgM collected from WT DP mice, and IgM immune complexes were observed in lumbar spinal disks and cord of WT DP mice. Serum from WT tibia fracture mice was not pronociceptive in muMT DP mice and vice versa, evidence that each type of tissue trauma chronically generates its own unique antibodies and targeted antigens. These data further support the pronociceptive autoimmunity hypothesis for the transition from tissue injury to chronic musculoskeletal pain state.


Asunto(s)
Síndromes de Dolor Regional Complejo , Dolor de la Región Lumbar , Fracturas de la Tibia , Ratones , Animales , Autoanticuerpos/metabolismo , Nocicepción/fisiología , Punción Espinal/efectos adversos , Hiperalgesia/metabolismo , Médula Espinal/metabolismo , Síndromes de Dolor Regional Complejo/metabolismo , Modelos Animales de Enfermedad , Fracturas de la Tibia/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Dolor de la Región Lumbar/complicaciones , Inmunoglobulina M/metabolismo
15.
Nat Commun ; 13(1): 7019, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36384983

RESUMEN

Selective attention is an efficient processing strategy to allocate computational resources for pivotal optical information. However, the hardware implementation of selective visual attention in conventional intelligent system is usually bulky and complex along with high computational cost. Here, programmable ferroelectric bionic vision hardware to emulate the selective attention is proposed. The tunneling effect of photogenerated carriers are controlled by dynamic variation of energy barrier, enabling the modulation of memory strength from 9.1% to 47.1% without peripheral storage unit. The molecular polarization of ferroelectric P(VDF-TrFE) layer enables a single device not only multiple nonvolatile states but also the implementation of selective attention. With these ferroelectric devices are arrayed together, UV light information can be selectively recorded and suppressed the with high current decibel level. Furthermore, the device with positive polarization exhibits high wavelength dependence in the image attention processing, and the fabricated ferroelectric sensory network exhibits high accuracy of 95.7% in the pattern classification for multi-wavelength images. This study can enrich the neuromorphic functions of bioinspired sensing devices and pave the way for profound implications of future bioinspired optoelectronics.


Asunto(s)
Biónica , Visión Ocular , Computadores
16.
Adv Sci (Weinh) ; 9(24): e2106016, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35831244

RESUMEN

Van der Waals (vdW) heterostructures-in which layered materials are purposely selected to assemble with each other-allow unusual properties and different phenomena to be combined and multifunctional electronics to be created, opening a new chapter for the spread of internet-of-things applications. Here, an O2 -ultrasensitive MoTe2 material and an O2 -insensitive SnS2 material are integrated to form a vdW heterostructure, allowing the realization of charge-polarity control for multioperation-mode transistors through a simple and effective rapid thermal annealing strategy under dry-air and vacuum conditions. The charge-polarity control (i.e., doping and de-doping processes), which arises owing to the interaction between O2 adsorption/desorption and tellurium defects at the MoTe2 surface, means that the MoTe2 /SnS2 heterostructure transistors can reversibly change between unipolar, ambipolar, and anti-ambipolar transfer characteristics. Based on the dynamic control of the charge-polarity properties, an inverter, output polarity controllable amplifier, p-n diode, and ternary-state logics (NMIN and NMAX gates) are demonstrated, which inspire the development of reversibly multifunctional devices and indicates the potential of 2D materials.

17.
Clin Genet ; 102(4): 345-349, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35842834

RESUMEN

Limb-Girdle muscular dystrophy (LGMD) is a group of muscle disorders with highly heterogeneous genetic patterns and clinical phenotypes, and this group includes multiple subtypes. Different LGMD subtypes have similar phenotypes and clinical overlaps, these subtypes are difficult to distinguish by clinical symptoms alone and can only be accurately diagnosed by analysis in combination with definitive genetic test results. Here, we report a female presenting features of LGMD. After analysis of whole-exome sequencing data, a novel homozygous POPDC3 variant c.486-1G>A (rs113419658) located in the acceptor splice site of intron 2 was identified in the proband. The variant effect on splicing were analyzed by genetic analysis based on cDNA synthesized by the patient's RNA. cDNA analysis indicated that the novel homozygous POPDC3 splice variant disrupted original acceptor splice site, which can cause a frameshift in the mRNA of the POPDC3 gene, thereby producing a truncated POPDC3 protein and ultimately affecting its normal function. POPDC3 variant was recently associated with recessive limb-girdle muscular dystrophy type 26 (LGMDR26). Based on the above results, we hypothesize that this variant is probably a pathogenic variant, and expand the gene variant spectrum of POPDC3.


Asunto(s)
Distrofia Muscular de Cinturas , Moléculas de Adhesión Celular/genética , ADN Complementario , Femenino , Homocigoto , Humanos , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/genética , Mutación , Sitios de Empalme de ARN/genética
18.
Sci Rep ; 12(1): 10250, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715548

RESUMEN

Saccharum officinarum Linn. (sugarcane, Family-Poaceae) is employed in Ibibio traditional medicine for the treatment of various infections and diseases such as malaria. We This study aims to assess the antiplasmodial effect of the leaf extract and fractions on human malaria parasite (Plasmodium falciparum) in vitro, and rodent malaria parasite (P. berghei) in vivo, and analyse the bioactive components of the active fraction(s). The leaf extract and fractions of S. officinarum were prepared and their growth inhibitory effects tested against the chloroquine resistant P. falciparum strain (Dd2) and P. berghei infection in mice. An acute toxicity of the extract was determined. A combination of gas chromatography and liquid chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy was applied for metabolites profiling of crude extract and active fractions. The leaf extract and fractions demonstrated moderate activity against P. falciparum with the dichloromethane fraction producing the most potent activity (EC50 = 15.4 µg/mL). The leaf extract (170-510 mg/kg, p.o., LD50 = 1732 mg/kg) and fractions demonstrated significant (p < 0.05-0.001) effect on P. berghei infection in prophylactic  tests as well as in established infection with n-butanol fractions producing the highest effect. An unusual sulphur-containing compound, dilaurylthiodipropionate, fatty acids, phenolic acids, flavonoid and flavonoid glycoside were identified in the active fractions. These results give credence to the use of sugarcane leaves as malarial remedy locally by confirming the in vitro and in vivo antiplasmodial potential of leaf extract/fractions of S. officinarum.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria , Saccharum , Animales , Antimaláricos/uso terapéutico , Flavonoides/farmacología , Antagonistas del Ácido Fólico/farmacología , Malaria/tratamiento farmacológico , Malaria/parasitología , Ratones , Extractos Vegetales/química , Hojas de la Planta , Plasmodium berghei , Plasmodium falciparum
19.
Biomed Pharmacother ; 151: 113153, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35598372

RESUMEN

Solanum anomalum is a plant used ethnomedically for the treatment of diabetes. The study was aimed to validate ethnomedical claims in rat model and identify the likely antidiabetic compounds. Leaf extract (70-210 mg/kg/day) and fractions (140 mg/kg/day) of S. anomalum were evaluated in hyperglycaemic rats induced using alloxan for effects on blood glucose, lipids and pancreas histology. Phytochemical characterisation of isolated compounds and their identification were performed using mass spectrometry and NMR spectroscopy. Bioinformatics tool was used to predict the possible protein targets of the identified bioactive compounds. The leaf extract/fractions on administration to diabetic rats caused significant lowering of fasting blood glucose of the diabetic rats during single dose study and on repeated administration of the extract. The hydroethanolic leaf extracts also enhanced glucose utilization capacity of the diabetic rats and caused significant lowering of glycosylated hemoglobin levels and elevation of insulin levels in the serum. Furthermore, triglycerides, LDL-cholesterol, and VLDL-cholesterol levels were lowered significantly, while HDL-cholesterol levels were also elevated in the treated diabetic rats. There was absence or few pathological signs in the treated hyperglycaemic rat pancreas compared to that present in the pancreas of control group. Diosgenin, 25(R)-diosgenin-3-O-α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranoside, uracil, thymine, 1-octacosanol, and octacosane were isolated and identified. Protein phosphatases along with secreted proteins are predicted to be the major targets of diosgenin and the diosgenin glycoside. These results suggest that the leaf extract/fractions of S. anomalum possess antidiabetic and antihyperlipidemic properties, offer protection to the pancreas and stimulate insulin secretion, which can be attributable to the activities of its phytochemical constituents.


Asunto(s)
Diabetes Mellitus Experimental , Diosgenina , Hiperglucemia , Solanum , Animales , Glucemia , Colesterol , Diabetes Mellitus Experimental/metabolismo , Diosgenina/uso terapéutico , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipolipemiantes/química , Hipolipemiantes/farmacología , Hipolipemiantes/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas
20.
ACS Biomater Sci Eng ; 8(5): 1749-1762, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35412810

RESUMEN

Biomaterial-associated infection is difficult to detect and brings consequences that can lead to morbidity and mortality. Bacteria can adhere to the implant surface, grow, and form biofilms. Antimicrobial peptides (AMPs) can target and kill bacterial cells using a plethora of mechanisms of action such as rupturing the cell membrane by creating pores via depolarization with their cationic and amphipathic nature. AMPs can thus be coated onto metal implants to prevent microbial cell adhesion and growth. The aim of this systematic review was to determine the potential clinical applications of AMP-modified implants through in vivo induced infection models. Following a database search recently up to 22 January 2022 using PubMed, Web of Science and Cochrane databases, and abstract/title screening using the PRISMA framework, 24 studies remained, of which 18 were used in the random effects meta-analysis of standardized mean differences (SMD) to get effect sizes. Quality of studies was assessed using SYRCLE's risk of bias tool. The data from these 18 studies showed that AMPs carry antibacterial effects, and the meta-analysis confirmed the favorited antibacterial efficacy of AMP-coated groups over controls (SMD -1.74, 95%CI [-2.26, -1.26], p < 0.00001). Subgroup analysis showed that the differences in effect size are random, and high heterogeneity values suggested the same. HHC36 and vancomycin were the most common AMPs for surface modification and Staphylococcus aureus, the most tested bacterium in vivo. Covalent binding with polymer brush coating and physical layer-by-layer incorporation of AMPs were recognized as key methods of incorporation to achieve desired densities. The use of fusion peptides seemed admirable to incorporate additional benefits such as osteointegration and wound healing and possibly targeting more microbe strains. Further investigation into the incorporation methods, AMP activity against different bacterial strains, and the number of AMPs used for metal implant surface modification is needed to progress toward potential clinical application.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Adenosina Monofosfato/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Biopelículas , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...