Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 12(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900595

RESUMEN

Alcohol liver disease (ALD) is one of the leading outcomes of acute and chronic liver injury. Accumulative evidence has confirmed that oxidative stress is involved in the development of ALD. In this study, we used chick embryos to establish ALD model to study the hepatoprotective effects of tamarind shell exttract (TSE). Chick embryos received 25% ethanol (75 µL) and TSE (250, 500, 750 µg/egg/75 µL) from embryonic development day (EDD) 5.5. Both ethanol and TSE were administrated every two days until EDD15. Ethanol-exposed zebrafish and HepG2 cell model were also employed. The results suggested that TSE effectively reversed the pathological changes, liver dysfunction and ethanol-metabolic enzyme disorder in ethanol-treated chick embryo liver, zebrafish and HepG2 cells. TSE suppressed the excessive reactive oxygen species (ROS) in zebrafish and HepG2 cells, as well as rebuilt the irrupted mitochondrial membrane potential. Meanwhile, the declined antioxidative activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), together with the content of total glutathione (T-GSH) were recovered by TSE. Moreover, TSE upregulated nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxyense-1 (HO-1) expression in protein and mRNA level. All the phenomena suggested that TSE attenuated ALD through activating NRF2 to repress the oxidative stress induced by ethanol.

2.
Food Funct ; 13(13): 6962-6974, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35678194

RESUMEN

Excessive reactive oxygen species (ROS) accumulation is involved in the pathogenesis of liver fibrosis and damage, specifically in the developing embryo that is extremely sensitive to oxidative stress. Herein, a liver injury model in chick embryo was established by using 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH), which was used to investigate the effect of cyclo(-Phe-Phe) (CPP), a natural dipeptide found in foods and beverages. The results showed that CPP significantly alleviated AAPH-induced liver pathological damage, hepatic dysfunction and inhibited the excessive production of ROS in both chick embryo liver and HepG2 cells. Additionally, CPP increased the antioxidative activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), as well as elevated the level of glutathione (GSH), suggesting that CPP combating liver injury probably depends on its antioxidant capability. Mechanistically, CPP upregulated the mRNA and protein expression of heme oxyense-1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1) in vivo and in vitro, along with promoting the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) while inhibiting its degradation through binding with Kelch-like ECH-associated protein 1 (Keap1). In conclusion, this study proposes a potential peptide drug for the treatment of hepatic damage induced by oxidative stress and also unravels its mechanism of action.


Asunto(s)
Dipéptidos , Factor 2 Relacionado con NF-E2 , Animales , Embrión de Pollo , Antioxidantes/metabolismo , Dipéptidos/farmacología , Glutatión/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hígado/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
3.
ACS Appl Mater Interfaces ; 13(9): 11134-11143, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33625840

RESUMEN

Achieving high-efficiency thick-film bulk heterojunction (BHJ) organic solar cells (OSCs) with thickness-independent power conversion efficiencies (PCEs) in a wide thickness range is still a challenge for the roll-to-roll printing techniques. The concept of diluting the transport sites within BHJ films with insulating polymers can effectively eliminate charge trapping states and optimize the charge transport. Herein, we first adopted the concept with insulating polypropylene (PP) in the efficient non-fullerene system (PM6:Y6) and demonstrated its potential to fabricate thick-film OSCs. The PP can form an insulating matrix prior to PM6 and Y6 within the BHJ film, resulting in an enhanced molecular interaction and isolated charge transport by expelling Y6 molecules. We thus observed reduced trap state density and improved charge transport properties in the PP-blended device. At around 300 nm, the PM6:Y6:PP device enjoys a high PCE of 15.5% and achieves over 100% of the efficiency of the optimal thin-film device, which is significantly improved compared to the binary PM6:Y6 counterpart. This research promotes an effective strategy with insulating polymers and provides knowledge of commercial production with response to the roll-to-roll technique demands.

4.
ACS Appl Mater Interfaces ; 9(11): 9416-9425, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28241111

RESUMEN

Enrichment and purification of bacteria from complex matrices are crucial for their detection and investigation, in which magnetic separation techniques have recently show great application advantages. However, currently used magnetic particles all have their own limitations: Magnetic microparticles exhibit poor binding capacity with targets, while magnetic nanoparticles suffer slow magnetic response and high loss rate during treatment process. Herein, we used a highly controllable layer-by-layer assembly method to fabricate quick-response magnetic nanospheres (MNs), and with Salmonella typhimurium as a model, we successfully achieve their rapid and efficient enrichment. The MNs combined the advantages of magnetic microparticles and nanoparticles. On the one hand, the MNs had a fast magnetic response, and almost 100% of the MNs could be recovered by 1 min attraction with a simple magnetic scaffold. Hence, using antibody conjugated MNs (immunomagnetic nanospheres, IMNs) to capture bacteria hardly generated loss and did not need complex separation tools or techniques. On the other hand, the IMNs showed much excellent capture capacity. With 20 min interaction, almost all of the target bacteria could be captured, and even only one bacterium existing in the samples was not missed, comparing with the immunomagnetic microparticles which could only capture less than 50% of the bacteria. Besides, the IMNs could achieve the same efficient enrichment in complex matrices, such as milk, fetal bovine serum, and urine, demonstrating their good stability, strong anti-interference ability, and low nonspecific adsorption. In addition, the isolated bacteria could be directly used for culture, polymerase chain reaction (PCR) analyses, and fluorescence immunoassay without a release process, which suggested our IMNs-based enrichment strategy could be conveniently coupled with the downstream identification and analysis techniques. Thus, the MNs provided by this work showed great superiority in bacteria enrichment, which would be a promising tool for bacteria detection and investigation.


Asunto(s)
Nanosferas , Animales , Separación Inmunomagnética , Leche , Salmonella typhimurium
5.
Anal Chem ; 88(20): 10134-10142, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27633565

RESUMEN

Number concentration of nanoparticles is a critical and challenging parameter to be identified. Recently, gravimetric strategy is a fundamental method for absolute quantification, which is widely accepted and used by researchers, yet limited by the inaccuracy in measuring related parameters (e.g, density). Hence, we introduced isopycnic gradient centrifugation to determine the nanopartices' density and improved the current gravimetric method for more accuracy. In this work, polymer nanospheres were used as a model to validate this method. Through isopycnic gradient centrifugation, nanospheres finally reached the zone of equal density as them. By measuring the density of the medium solution in this zone, the nanospheres' density was identified. Then, the density was multiplied by the volume of a single nanosphere characterized by transmission electron microscopy (TEM), and the average weight of a single nanosphere was obtained. Using total weight of the nanospheres divided by the unit weight, their number concentration was quantified. Directly using the real density of the nanoparticles achieved more accurate quantification than the current gravimetric method which used the density of the bulk material counterparts for calculation. Besides, compared with the viscosity/light scattering method and the high-sensitivity flow cytometry (HSFCM) method (another two kinds of typical methods respectively based on light measurements and single particle counting), the improved gravimetric method showed better reproducibility and more convenience. Further, we modified the nanospheres with streptavidin (SA) and antibody, and through biorecognition interaction, we determined the amount of the active affinity sites on each biofunctional nanosphere. Moreover, their bioactivity in different storage conditions was monitored, which showed good stability even in PBS at 4 °C over one year. Our work provided a promising method for more accurately determining the absolute number concentration of nanoparticles and the active affinity sites on their surfaces, which would greatly facilitate their downstream applications.

6.
Chemistry ; 9(6): 1332-47, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12645023

RESUMEN

The synthesis of a new tetralactam macrocycle and the simultaneous formation of catenanes and larger octalactam macrocycles is reported. These species bear 2,2'-biquinoline moieties suitably positioned to bind a metal center at the outer periphery of the macrocycles. (1)H NMR chemical shifts permit the unambiguous distinction of transoid and cisoid conformations of the biquinoline moiety, thereby allowing an unequivocal identification of the catenane and octalactam structures, despite the fact that both have the same elemental composition and bear identical structural subunits. With the aid of an anion template effect, rotaxanes can be prepared from the smaller tetralactam macrocycle. These reveal significantly altered requirements in terms of the stopper size as compared to previously reported tetralactam wheels. Several copper(I)-mediated dimers and a (bpy)(2)Ru(II) complex (bpy=2,2'-bipyridine) have been synthesized from the tetralactam macrocycle and the rotaxanes. The anion binding abilities of the tetralactam macrocycle and its (bpy)(2)Ru(II) complex in DMSO have been compared by (1)H NMR titration experiments, which revealed significantly enhanced binding by the metal complex. Mass spectrometry has been used to study the potential formation of larger assemblies of copper(I) and the catenane built-up from two tetralactam macrocycles. Indeed, a 2:2 complex was identified. In contrast, the octalactam macrocycle of the same elemental composition yields only 1:1 complexes, with the Cu(I) ion connecting its two biquinoline moieties in the center of a figure-eight-shaped molecule. Molecular modeling studies support the structural assignments made.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...