Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 262(Pt 1): 119826, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173819

RESUMEN

Carbon dioxide (CO2) stands as the primary driver of Earth's greenhouse effect, and it's suggested that the global contribution of CO2 emissions from lakes cannot be ignored. Despite the numerous estimations of CO2 fluxes from lakes, limited focus has been directed towards the carbon isotopes (δ13C) of dissolved CO2 in lake water. Particularly, the potential use of δ13C values in tracing the CO2 concentrations in lake water remains as an understudied area, warranting further exploration and investigation. In this study, we conducted an analysis of the concentrations and δ13C values of dissolved CO2 in 33 lakes located at the Tibetan Plateau, Chinese Loess Plateau, and Yangtze Plain (among which high-resolution spatial investigations were performed in 6 lakes through in-situ continuous monitoring). Our findings revealed spatial variations in both the CO2 concentrations and δ13C values in lakes. Additionally, notable differences are observed among lakes in different regions of China, with lakes in the Yangtze Plain exhibiting considerably higher CO2 concentrations, and the overall CO2 δ13C values in lakes on the Tibetan Plateau tend to be more positive, while those in lakes on the Chinese Loess Plateau tend to be more negative. The pH values, dissolved oxygen, and dissolved organic carbon are likely crucial factors influencing the CO2 concentrations and δ13C values in the lakes. Furthermore, lake water CO2 concentrations are negatively correlated with δ13C values of CO2 and dissolved inorganic carbon (DIC) both within a single lake with high spatial resolutions or in lake groups across different regions. These results highlight that the CO2/DIC δ13C values can be applied to trace the concentration variations of dissolved CO2 in lakes.

2.
Sci Total Environ ; 937: 173412, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38797405

RESUMEN

Lakes are important sources of methane (CH4), and understanding the influence of environmental factors on CH4 concentration in lake water is crucial for accurately assessing CH4 emission from lakes. In this study, we investigated CH4 concentration in two connected Tibetan Plateau lakes, Lake Keluke (an open freshwater lake) and Lake Tuosu (a closed saline lake), through in-situ continuous measurements taken in different months from 2021 to 2023. The results show substantial spatial and seasonal variations in CH4 concentrations in the two lakes, while the CH4 concentrations in Lake Keluke are consistently higher than those in Lake Tuosu for each month. Despite sharing similar environmental conditions due to connected (e.g. pH, water temperature, dissolved oxygen content, and total organic carbon content), the critical difference between the two lakes is their salinity. This implies that salinity is the critical factor contributing to the decrease in CH4 concentrations in Lake Tuosu, possibly due to the changes in microbial species between freshwater and brackish/saline lakes. Additionally, to further validate the effect of salinity on CH4 concentrations in lake water, we compared the CH4 concentrations of 33 lakes (including 5 saline lakes and 28 freshwater lakes) from the Tibetan Plateau, Chinese Loess Plateau, and Yangtze Plain, and found that saline lakes consistently exhibit lower CH4 concentrations (avg. 0.08 µmol/L), while freshwater lakes generally display higher CH4 concentrations (avg. 1.25 µmol/L) with considerable fluctuations. Consequently, freshwater and saline lakes exhibit distinct CH4 emissions, which could be used for more accurate estimation of global CH4 emission from lakes.

3.
Appl Opt ; 63(7): 1695-1701, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437268

RESUMEN

Although terahertz metasurface devices have been widely studied, thus far, metasurfaces can rarely manipulate both circularly and linearly polarized incident waves. In this paper, taking advantage of the phase transition characteristics of vanadium dioxide (V O 2), a multi-functional terahertz metasurface for a vortex beam, multi-channel focusing, polarization conversion, and broadband absorption is proposed. When V O 2 is in the insulating state, a vortex beam is generated at 1.2 THz when the circularly polarized wave is incident on the metasurface. Meanwhile, the multi-channel focusing is realized at 1.0 THz, and the cross-polarization conversion rate can reach more than 90% at the frequencies of 0.6 THz, 1.1 THz, and 1.6 THz when the y-polarized wave is incident vertically. When V O 2 is in the metallic state, the metasurface achieves close to 95% absorption in the range of 0.8-1.5 THz. The designed metasurface has tunability and multi-functional characteristics, which have potential applications in wireless communication.

4.
RSC Adv ; 13(28): 19030-19038, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37388152

RESUMEN

Zinc isotopic ratios serve as powerful tools for tracing biochemical cycling of metals at Earth's surface, including the distribution, transportation, and enrichment of zinc (Zn) in soil. To conduct such studies and enable inter-laboratory comparisons, high-precision Zn isotopic measurements require the use of soil reference materials (RMs). However, there have been limited reports on the high-precision Zn isotope ratios of soil RMs thus far. In this study, we have developed a two-step Zn chemical separation protocol utilizing Bio-Rad AG MP-1M resin columns. This method has demonstrated excellent reproducibility for measuring the external δ66Zn values (relative to JMC-Lyon) of standard soil reference materials over an extended time period, with a better than 0.06‰ (2SD) precision. Remarkably, this study is the first to report the Zn isotopic compositions of 20 soil reference materials from various soil types in China. With the exception of one sample obtained from a mining area, the Zn isotopic compositions of all the analyzed soil reference materials exhibit remarkable similarity, with an average δ66Zn value of 0.31 ± 0.12‰, which aligns closely with the values observed in igneous rocks. The exceptional sample, with a higher δ66Zn value of 0.61 ± 0.02‰, indicates potential contamination during mining activities.

5.
Nat Commun ; 13(1): 1329, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288572

RESUMEN

Estimates of the permafrost-climate feedback vary in magnitude and sign, partly because permafrost carbon stability in warmer-than-present conditions is not well constrained. Here we use a Plio-Pleistocene lacustrine reconstruction of mean annual air temperature (MAAT) from the Tibetan Plateau, the largest alpine permafrost region on the Earth, to constrain past and future changes in permafrost carbon storage. Clumped isotope-temperatures (Δ47-T) indicate warmer MAAT (~1.2 °C) prior to 2.7 Ma, and support a permafrost-free environment on the northern Tibetan Plateau in a warmer-than-present climate. Δ47-T indicate ~8.1 °C cooling from 2.7 Ma, coincident with Northern Hemisphere glacial intensification. Combined with climate models and global permafrost distribution, these results indicate, under conditions similar to mid-Pliocene Warm period (3.3-3.0 Ma), ~60% of alpine permafrost containing ~85 petagrams of carbon may be vulnerable to thawing compared to ~20% of circumarctic permafrost. This estimate highlights ~25% of permafrost carbon and the permafrost-climate feedback could originate in alpine areas.


Asunto(s)
Hielos Perennes , Carbono/análisis , Clima , Región Alpina Europea , Temperatura
6.
Isotopes Environ Health Stud ; 57(3): 271-280, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33730941

RESUMEN

Understanding of nitrogen stable isotope variation in maize hybrids might help obtaining information on nitrogen absorption and distribution in different maize hybrids. In this study, we examined the nitrogen isotopic composition of different parts of maize hybrids under a laboratory culture experiment. The results showed that the δ15N values of different parts of the maize hybrid and its parents were ordered as follows: δ15Nstem>δ15Nleaf>δ15Nroot. The variation pattern of δ15N between the roots and leaves(Δδ15Nroot-leaf) of the maize hybrid was the same as that of δ15N between the roots and stems (Δδ15Nroot-stem). Therefore, the order of Δδ15Nroot-leaf as well as Δδ15Nroot-stem was as follows: Δδ15Nroot-leaf of the maize hybrid>Δδ15Nroot-leaf of the female parent (T4)>Δδ15Nroot-leaf of the male parent (803) and Δδ15Nroot-stem of the maize hybrid>Δδ15Nroot-stem of the female parent (T4)>Δδ15Nroot-stem of the male parent (803). This order is consistent with heterosis, indicating that differences in δ15N reflect the phenomenon of heterosis. The present study provides data in support of using the isotope technique to determine nitrogen distributions inside a plant and guide crossbreeding.


Asunto(s)
Isótopos de Nitrógeno/análisis , Zea mays/química , Zea mays/genética , Quimera , China , Vigor Híbrido , Hojas de la Planta/química , Hojas de la Planta/genética , Raíces de Plantas/química , Raíces de Plantas/genética , Tallos de la Planta/química , Tallos de la Planta/genética
7.
Talanta ; 176: 485-491, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28917780

RESUMEN

Biodegradable organic matter (BOM) in polluted water plays a key role in various biological purification technologies. The five-day biochemical oxygen demand (BOD5) index is often used to determine the amount of BOM. However, standard BOD5 assays, centering on dissolved oxygen detection, have long testing times and often show severe deviation (error ≥ 15%). In the present study, the coulombic yield (Q) of a bio-electrochemical degradation process was determined, and a new index for BOM quantification was proposed. The Q value represents the quantity of transferred electrons from BOM to oxygen, and the corresponding index was defined as BOMQ. By revealing Q-BOM stoichiometric relationship, we were able to perform a BOMQ assay in a microbial fuel cell involved technical platform. Experimental results verified that 5-500mgL-1 of BOMQ toward artificial wastewater samples could be directly obtained without calibration in several to dozens of hours, leaving less than 5% error. Moreover, the BOMQ assay remained accurate and precise in a wide range of optimized operational conditions. A ratio of approximately 1.0 between the values of BOMQ and BOD5 toward artificial and real wastewater samples was observed. The rapidity, accuracy, and precision of the measurement results are supported by a solid theoretical foundation. Thus, BOMQ is a promising water quality index for quantifying BOM in polluted water.


Asunto(s)
Fuentes de Energía Bioeléctrica , Aguas Residuales/análisis , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno
8.
Molecules ; 21(3): 282, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26999081

RESUMEN

A simple and green approach was developed to produce a novel nanogel via self-assembly of modified soy protein and dextran, to efficiently deliver riboflavin. First, modified soy protein was prepared by heating denaturation at 60 °C for 30 min or Alcalase hydrolysis for 40 min. Second, modified soy protein was mixed with dextran and ultrasonicated for 70 min so as to assemble nanogels. The modified soy protein-dextran nanogels were characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) and ζ-potential studies to confirm the formation of NGs. Transmission electron microscopy (TEM) revealed the NGs to be spherical with core-shell structures, in the range of 32-40 nm size. The nanogels were stable against various environmental conditions. Furthermore, the particle size of the nanogels hardly changed with the incorporation of riboflavin. The encapsulation efficiency of nanogels was found to be up to 65.9% at a riboflavin concentration of 250 µg/mL. The nanogels exhibited a faster release in simulated intestine fluid (SIF) compared with simulated gastric fluid (SGF). From the results obtained it can be concluded that modified soy protein-dextran nanogels can be considered a promising carrier for drugs and other bioactive molecule delivery purposes.


Asunto(s)
Dextranos/química , Portadores de Fármacos/química , Riboflavina/administración & dosificación , Proteínas de Soja/química , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Humanos , Hidrogeles , Técnicas In Vitro , Microscopía Electrónica , Nanoestructuras/química , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Ultrasonido
9.
Chemosphere ; 92(10): 1301-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23725753

RESUMEN

This study introduced a new treatment process named "in situ ferrate(VI) oxidation (IFO)" in which odorous compounds such as CH3S(-) can be quickly degraded by in situ freshly generated ferrate(VI) through electrolysis in aqueous alkaline solution. Two kinetic models to describe the in situ ferrate(VI) generation and its reaction with CH3S(-) were established mathematically by considering three main reaction mechanisms of ferrate(VI) electrochemical generation, ferrate(VI) self-decomposition and CH3S(-) degradation in aqueous strong alkaline solution. The effects of three key factors: (i) NaOH concentration, (ii) applied current density, and (iii) initial CH3S(-) concentration on the performance of the IFO process were investigated by conducting three sets of experiments and the kinetic models were validated by fitting the experimental data. The goodness of the fittings demonstrated that the new models could well describe both the kinetics of ferrate(VI) generation reaction and CH3S(-) degradation reaction. The experimental results confirmed that the higher NaOH concentration and current density applied would be beneficial to the electrochemical generation of ferrate(VI) and also elimination of its self-decomposition, but the experiments also demonstrated an optimum NaOH concentration at 10M to achieve the best performance of CH3S(-) degradation reaction in such an IFO system.


Asunto(s)
Contaminantes Ambientales/aislamiento & purificación , Hierro/química , Odorantes , Hidróxido de Sodio/química , Compuestos de Sulfhidrilo/aislamiento & purificación , Electrólisis , Cinética , Modelos Químicos , Odorantes/análisis , Oxidación-Reducción
10.
Huan Jing Ke Xue ; 34(4): 1291-7, 2013 Apr.
Artículo en Chino | MEDLINE | ID: mdl-23798105

RESUMEN

In this study, the content and isotopic compositions of water dissolved inorganic carbon (DIC) from four typical rivers (Chanhe, Bahe, Laohe and Heihe) around Xi'an City were studied to trace the possible sources of DIC. The results of this study showed that the content of DIC in the four rivers varied from 0.34 to 5.66 mmol x L(-1) with an average value of 1.23 mmol x L(-1). In general, the content of DIC increased from the headstream to the river mouth. The delta13C(DIC) of four rivers ranged from -13.3 per thousand to -7.2 per thousand, with an average value of -10.1 per thousand. The delta13C(DIC) values of river water were all negative (average value of -12.6 per thousand) at the headstream of four rivers, but the delta13C(DIC) values of downstream water were more positive (with an average value of -9.4 per thousand). In addition, delta13C(DIC) of river water showed relatively negative values (the average value of delta13C(DIC) was -10.5 per thousand) near the estuary of the rivers. The variation of the DIC content and its carbon isotope suggested that the DIC sources of the rivers varied from the headstream to the river mouth. The negative delta13C(DIC) value indicated that the DIC may originate from the soil CO2 at the headstream of the rivers. On the other hand, the delta13C(DIC) values of river water at the middle and lower reaches of rivers were more positive, and it showed that soil CO2 produced by respiration of the C4 plants (like corn) and soil carbonates with positive delta13C values may be imported into river water. Meanwhile, the input of pollutants with low delta13C(DIC) values may result in a decrease of delta13C(DIC) values in the rivers. The study indicated that the DIC content and carbon isotope may be used to trace the sources of DIC in rivers around Xi'an City. Our study may provide some basic information for tracing the sources of DIC of rivers in the small watershed area in the Loess Plateau of China.


Asunto(s)
Isótopos de Carbono/análisis , Carbono/análisis , Monitoreo del Ambiente , Agua Dulce/química , Compuestos Inorgánicos/análisis , China , Ciudades , Ríos/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA