Asunto(s)
Quiste Mediastínico , Quiste Tirogloso , Humanos , Quiste Tirogloso/diagnóstico por imagen , Quiste Tirogloso/cirugía , Quiste Tirogloso/patología , Quiste Mediastínico/diagnóstico por imagen , Quiste Mediastínico/cirugía , Quiste Mediastínico/complicaciones , Tomografía Computarizada por Rayos X , Femenino , Masculino , Coristoma/diagnóstico por imagen , Coristoma/cirugíaRESUMEN
Abstract Objective MicroRNA-29a-3p has been reported in a variety of cancers, but its role in hypopharyngeal cancer remains unclear. This study was to determine the role of microRNA-29a-3p in the occurrence and development of hypopharyngeal cancer. Methods 40 patients with hypopharyngeal cancer who underwent surgery in the Affiliated Hospital of Jining Medical University from April 2013 to November 2017 were selected for this study. The cancer tissue samples of the patients were collected, and the patients were followed up for three years. The expression of microRNA-29a-3p in tissue samples was detected by in situ hybridization with fluorescent probe, and the relationships among microRNA-29a-3p and clinicopathological factors, postoperative recurrent-metastasis, survival time were studied. Immunohistochemical was used to detect the expression of Ki67 and E-cadherin in tissue samples. Results Combined with HE staining results showed that microRNA-29a-3p expression was relatively high in non-cancer tissue cells (red blood cells and fibroblasts in tumor interstitial vessels), but was relatively low in cancer tissue and cells. According to the follow-up data of 40 patients with hypopharyngeal cancer, tumor size, T-stage, tumor differentiation, postoperative recurrent-metastasis of hypopharyngeal cancer patients were significantly negatively correlated with microRNA-29a-3p (p< 0.05). Immunohistochemica results further confirmed that microRNA-29a-3p was negatively correlated with the expression of Ki67 and E-cadherin. The survival time of patients positively related with microRNA-29a-3p expression (p< 0.05). Moreover, ROC curve analysis showed that the area under the curve of the combined detection of miRNA-29a-3p+Ki67+E-cadherin was larger than that of the single detection of the three indexes. Conclusions The expression of microRNA-29a-3p is closely related to the occurrence, development and prognosis of hypopharyngeal cancer, and it affects the proliferation and invasion. This indicates that microRNA-29a-3p serves as a therapeutic target for the occurrence and development of hypopharyngeal cancer. The evidence of study designs of this study is IV using "Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence".
RESUMEN
OBJECTIVE: MicroRNA-29a-3p has been reported in a variety of cancers, but its role in hypopharyngeal cancer remains unclear. This study was to determine the role of microRNA-29a-3p in the occurrence and development of hypopharyngeal cancer. METHODS: 40 patients with hypopharyngeal cancer who underwent surgery in the Affiliated Hospital of Jining Medical University from April 2013 to November 2017 were selected for this study. The cancer tissue samples of the patients were collected, and the patients were followed up for three years. The expression of microRNA-29a-3p in tissue samples was detected by in situ hybridization with fluorescent probe, and the relationships among microRNA-29a-3p and clinicopathological factors, postoperative recurrent-metastasis, survival time were studied. Immunohistochemical was used to detect the expression of Ki67 and E-cadherin in tissue samples. RESULTS: Combined with HE staining results showed that microRNA-29a-3p expression was relatively high in non-cancer tissue cells (red blood cells and fibroblasts in tumor interstitial vessels), but was relatively low in cancer tissue and cells. According to the follow-up data of 40 patients with hypopharyngeal cancer, tumor size, T-stage, tumor differentiation, postoperative recurrent-metastasis of hypopharyngeal cancer patients were significantly negatively correlated with microRNA-29a-3p (pâ¯<â¯0.05). Immunohistochemica results further confirmed that microRNA-29a-3p was negatively correlated with the expression of Ki67 and E-cadherin. The survival time of patients positively related with microRNA-29a-3p expression (pâ¯<â¯0.05). Moreover, ROC curve analysis showed that the area under the curve of the combined detection of miRNA-29a-3p+Ki67+E-cadherin was larger than that of the single detection of the three indexes. CONCLUSIONS: The expression of microRNA-29a-3p is closely related to the occurrence, development and prognosis of hypopharyngeal cancer, and it affects the proliferation and invasion. This indicates that microRNA-29a-3p serves as a therapeutic target for the occurrence and development of hypopharyngeal cancer. The evidence of study designs of this study is IV using "Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence".
Asunto(s)
Neoplasias Hipofaríngeas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/cirugía , Relevancia Clínica , Antígeno Ki-67 , Cadherinas/genéticaRESUMEN
Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV, respectively) are mosquito-borne, neuroinvasive human pathogens for which no FDA-approved therapeutic exists. Besides the biothreat posed by these viruses when aerosolized, arthropod transmission presents serious health risks to humans, as demonstrated by the 2019 outbreak of EEE disease in the United States that resulted in 38 confirmed cases, 19 deaths, and neurological effects in survivors. Here, we describe the discovery of a 2-pyrrolidinoquinazolinone scaffold, efficiently synthesized in two to five steps, whose structural optimization resulted in profound antiviral activity. The lead quinazolinone, BDGR-49, potently reduced cellular VEEV and EEEV titers by >7 log at 1 µM and exhibited suitable intravenous and oral pharmacokinetic profiles in BALB/c mice to achieve excellent brain exposure. Outstanding in vivo efficacy was observed in several lethal, subcutaneous infection mouse models using an 8-day dosing regimen. Prophylactically administered BDGR-49 at 25 mg kg-1 per day fully protected against a 10× LD50 VEEV Trinidad donkey (TrD) challenge in BALB/c mice. Similarly, we observed 70% protection when 10× LD50 EEEV FL93-939-infected C57BL/6 mice were treated prophylactically with BDGR-49 at 50 mg kg-1 per day. Last, we observed 100% therapeutic efficacy when mice, challenged with 10× LD50 VEEV TrD, were dosed at 48 hours after infection with BDGR-49 at 25 mg kg-1 per day. Mouse brain viral titers at 96 hours after infection were reduced to values near the limit of detection. Collectively, these results underscore the substantial development potential of a well-tolerated, brain-penetrant lead compound that shows promise in preventing and treating encephalitic alphavirus disease.
Asunto(s)
Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Oriental , Humanos , Caballos , Animales , Ratones , Estados Unidos , Antivirales/farmacología , Antivirales/uso terapéutico , Ratones Endogámicos C57BL , EncéfaloRESUMEN
Abstract Voriconazole increases tacrolimus blood concentration significantly when coadministrated. The recommendation of reducing tacrolimus to 1/3 in voriconazole package insert seems not to be satisfactory in clinical practice. In vitro studies demonstrated that the magnitude of inhibition depends on the concentration of voriconazole, while voriconazole exposure is determined by the genotype status of CYP2C19. CYP2C19 gene polymorphism challenges the management of drug-drug interactions(DDIs) between voriconazole and tacrolimus. This work aimed to predict the impact of CYP2C19 polymorphism on the DDIs by using physiologically based pharmacokinetics (PBPK) models. The precision of the developed voriconazole and tacrolimus models was reasonable by evaluating the pharmacokinetic parameters fold error, such as AUC0-24, Cmax and tmax. Voriconazole increased tacrolimus concentration immediately in all population. The simulated duration of DDIs disappearance after voriconazole withdrawal were 146h, 90h and 66h in poor metabolizers (PMs), intermediate metabolizers (IMs) and extensive metabolizers(EMs), respectively. The developed and optimized PBPK models in this study can be applied to assit the dose adjustment for tacrolimus with and without voriconazole.
Asunto(s)
Tacrolimus/agonistas , Factor de Impacto , Voriconazol/agonistas , Citocromo P-450 CYP2C19/análisis , Técnicas In Vitro/métodos , Preparaciones Farmacéuticas/administración & dosificación , Adaptación Psicológica/clasificaciónRESUMEN
PURPOSE: Traumatic brain injury (TBI) is a major cause of death and disability. Cerebrolysin (CBL) has been reported to be anti-inflammatory by reducing reactive oxygen species (ROS) production. However, the neuroprotection of CBL in TBI and the potential mechanism are unclear. We aimed to investigate the neuroprotection and mechanisms of CBL in TBI. METHODS: The TBI model was established in strict accordance with the Feeney weight-drop model of focal injury. The neurological score, brain water content, neuroinflammatory cytokine levels, and neuronal damage were evaluated. The involvement of the early brain injury modulatory pathway was also investigated. RESULTS: Following TBI, the results showed that CBL administration increased neurological scores and decreased brain edema by alleviating bloodbrain barrier (BBB) permeability, upregulating tight junction protein (ZO1) levels, and decreasing the levels of the inflammatory cytokines tumor necrosis factorα (TNFα), interleukin1ß (IL1ß), IL6, and NFκB. The TUNEL assay showed that CBL decreased hippocampal neuronal apoptosis after TBI and decreased the protein expression levels of caspase3 and Bax, increasing the levels of Bcl2. The levels of Tolllike receptor 2 (TLR2) and TLR4 were significantly decreased after CBL treatment. In TBI patients, CBL can also decrease TNFα, IL1ß, IL6, and NFκB levels. This result indicates that CBLmediated inhibition of neuroinflammation and apoptosis ameliorated neuronal death after TBI. The neuroprotective capacity of CBL is partly dependent on the TLR signaling pathway. CONCLUSIONS: Taken together, the results of this study indicate that CBL can improve neurological outcomes and reduce neuronal death against neuroinflammation and apoptosis via the TLR signaling pathway in mice.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Fármacos Neuroprotectores , Aminoácidos , Animales , Apoptosis , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Purpose: Traumatic brain injury (TBI) is a major cause of death and disability. Cerebrolysin (CBL) has been reported to be anti-inflammatory by reducing reactive oxygen species (ROS) production. However, the neuroprotection of CBL in TBI and the potential mechanism are unclear. We aimed to investigate the neuroprotection and mechanisms of CBL in TBI. Methods: The TBI model was established in strict accordance with the Feeney weight-drop model of focal injury. The neurological score, brain water content, neuroinflammatory cytokine levels, and neuronal damage were evaluated. The involvement of the early brain injury modulatory pathway was also investigated. Results: Following TBI, the results showed that CBL administration increased neurological scores and decreased brain edema by alleviating bloodbrain barrier (BBB) permeability, upregulating tight junction protein (ZO1) levels, and decreasing the levels of the inflammatory cytokines tumor necrosis factorα (TNFα), interleukin1ß (IL1ß), IL6, and NFκB. The TUNEL assay showed that CBL decreased hippocampal neuronal apoptosis after TBI and decreased the protein expression levels of caspase3 and Bax, increasing the levels of Bcl2. The levels of Tolllike receptor 2 (TLR2) and TLR4 were significantly decreased after CBL treatment. In TBI patients, CBL can also decrease TNFα, IL1ß, IL6, and NFκB levels. This result indicates that CBLmediated inhibition of neuroinflammation and apoptosis ameliorated neuronal death after TBI. The neuroprotective capacity of CBL is partly dependent on the TLR signaling pathway. Conclusions: Taken together, the results of this study indicate that CBL can improve neurological outcomes and reduce neuronal death against neuroinflammation and apoptosis via the TLR signaling pathway in mice.
Asunto(s)
Animales , Ratones , Péptidos/administración & dosificación , Especies Reactivas de Oxígeno/análisis , Apoptosis , Lesiones Traumáticas del Encéfalo/terapia , Enfermedades Neuroinflamatorias/veterinariaRESUMEN
SPLs are plant-specific transcription factors that play important regulatory roles in plant growth and development. Systematic analysis of the SPL family has been performed in numerous plants, such as Arabidopsis, rice, and Populus. However, no comparative analysis has been performed across different species to examine evolutionary features. In this study, we present a comparative analysis of SPLs in different species. The results showed that 84 SPLs of the four species can be divided into six groups according to phylogeny. We found that most of the SPL-containing regions in maize showed extensive conservation with duplicated regions of rice and sorghum. A gene duplication analysis in maize indicated that ZmSPLs showed a significant excess of segmental duplication. The Ka/Ks analysis indicated that 9 out of 18 duplicated pairs in maize experienced positive selection, while SPL gene pairs of rice and sorghum mainly evolved under purifying selection, suggesting novel evolutionary features for ZmSPLs. The 31 ZmSPLs were further analyzed by describing their gene structure, phylogenetic relationships, chromosomal location, and expression, Among the ZmSPLs, 13 were predicated to be targeted by miR156s and involved in drought stress response. These results provide the foundation for future functional analyses of ZmSPLs.
RESUMEN
Background: The alga Laminaria japonica is the most economically important brown seaweed cultured in China, which is used as food and aquatic animal feedstuff. However, the use of L. japonica as a feedstuff in Apostichopus japonicasfarming is not ideal because A. japonicas does not produce enough enzyme activity for degrading the large amount of algin present in L. japonica. In this study, semi solid fermentation of the L. japonica feedstuff employing a Bacillus strain as the microbe was used to as a mean to degrade the algin content in L. japonica feedstuff. Results: The Bacillus strain, Bacillus amyloliquefaciens WB1, was isolated by virtue of its ability to utilize sodium alginate as the sole carbon source. Eight factors affecting growth and algin-degrading capacity of WB1 were investigated. The results of Plackett-Burman design indicated that fermentation time, beef extract, and solvent to solid ratio were the significant parameters. Furthermore, the mutual interaction between the solvent to solid ratio and beef extract concentration was more significant than the other pairs of parameters on algin degradation. Optimal values obtained from Central-Composite Design were 113.94 h for fermentation time, 0.3% (w/v) beef extract and 44.87 (v/w) ratio of solvent to feedstuff. Under optimal conditions, 56.88% of the algin was degraded when a 50-fold scale-up fermentation was carried out, using a 5-L fermenter. Conclusions: This study provides an alternative and economical way to reduce the algin content in L. japonicathrough degradation by WB1, making it a promising potential source of feed for cultured L japonica.
Asunto(s)
Stichopus , Bacillus amyloliquefaciens/metabolismo , Laminaria , Alimentación Animal , Pepinos de Mar , Microscopía Electrónica de Rastreo , Fermentación , Bacillus amyloliquefaciens/químicaRESUMEN
Lignin is a major cell wall component of vascular plants that provides mechanical strength and hydrophobicity to vascular vessels. However, the presence of lignin limits the effective use of crop straw in many agroindustrial processes. Here, we generated transgenic maize plants in which the expression of a lignin biosynthetic gene encoding CCoAOMT, a key enzyme involved in the lignin biosynthesis pathway was downregulated by RNA interference (RNAi). RNAi of CCoAOMT led to significantly downregulated expression of this gene in transgenic maize compared with WT plants. These transgenic plants exhibited a 22.4% decrease in Klason lignin content and a 23.3% increase in cellulose content compared with WT plants, which may reflect compensatory regulation of lignin and cellulose deposition. We also measured the lignin monomer composition of the RNAi plants by GC-MS and determined that transgenic plants had a 57.08% higher S/G ratio than WT plants. In addition, histological staining of lignin with Wiesner reagent produced slightly more coloration in the xylem and sclerenchyma than WT plants. These results provide a foundation for breeding maize with low-lignin content and reveal novel insights about lignin regulation via genetic manipulation of CCoAOMT expression.
RESUMEN
Fructus Schisandrae sinensis Baill, a traditional Chinese medicine, used as tonic and sedative, has been shown at the beginning of 70's to lower the elevated serum glutamic-pyruvic transaminase (SGPT) levels of patients suffering from chronic viral hepatitis. Durign past 20 years, a series of neolignans have been isolated and identified as effective principles. Pharmacological studies revealed that they increased liver protein and glicogen synthesis, antagonized liver injuries from CCl4 and thioacetamide. The mechanism of SGPT lowering was considered as a hepato-protective and membrane stabilize action, although inhibition of the activity of liver GPT may also be existed. It was found that some principles of Schisandrae have an inducing effect on hepatic microsomal drug-metabolizing enzynme system P-450, thus explained their anti-toxic, anti-carcinogenic and anti-mutagenic effects. A synthetic derivative compound of Schisandrin called DDB has most of the above mentioned actions now used widely in Chine as a hepato-protective drug with high effectiveness in normalizing liver functions and very low side effects. From Schisandrin to synthesized DDB, pointed out a successful way in the development of new drugs from natural products.
Asunto(s)
Humanos , Schisandra/química , Medicamentos Hepatoprotectores , Hepatitis Viral Humana/terapia , Medicina Tradicional China/métodos , Alanina Transaminasa/aislamiento & purificaciónRESUMEN
Traditional Chinese medicine always pays close attention to the strengthening of the patient"s general resitence against illness, ther are many Chinese herbs used for thousands of years are considered as tonics. Animal experiments and modern clinica; trails have shown that quite a number herbs are immunologically active, and most of the tonics are excellent immunomodulating agents, such as polysaccharides or saponins isolated from Astragalus mongholicus, Acanthopanax senticosus and Panax notoginseng, which stimulated mactophages, promoted antibody formation, actived complement and increased T lymphocyte proliferation. Moreover, some of them were proved to be anti-irradiative and protected animals from liver intoxications. On the other hand, some anti-inflammative or anti-pyretic hervs such as Tripterygium wilfordii, Aconitum and Artemiasiae species were proved to have immunosuppressive principles, some of them were now used clinically for the treatment of rheumatoid arthritis, chronic nephritis, systemic lupus erythematosis and various skin disorders. Pharmacological studies revealed that they have depressant effect on most of the humoral-immunity but not on the cell-mediated immunity. Some of them stimulated adrenal cortex functions and prolonged the survival time of transplanted allograft tissues.