Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; : e0035424, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940509

RESUMEN

Bacterial conjugation systems pose a major threat to human health through their widespread dissemination of mobile genetic elements (MGEs) carrying cargoes of antibiotic resistance genes. Using the Cre Recombinase Assay for Translocation (CRAfT), we recently reported that the IncFV pED208 conjugation system also translocates at least 16 plasmid-encoded proteins to recipient bacteria. Here, we deployed a high-throughput CRAfT screen to identify the repertoire of chromosomally encoded protein substrates of the pED208 system. We identified 32 substrates encoded by the Escherichia coli W3110 genome with functions associated with (i) DNA/nucleotide metabolism, (ii) stress tolerance/physiology, (iii) transcriptional regulation, or (iv) toxin inhibition. The respective gene deletions did not impact pED208 transfer proficiencies, nor did Group 1 (DNA/nucleotide metabolism) mutations detectably alter the SOS response elicited in new transconjugants upon acquisition of pED208. However, MC4100(pED208) donor cells intrinsically exhibit significantly higher SOS activation than plasmid-free MC4100 cells, and this plasmid carriage-induced stress response is further elevated in donor cells deleted of several Group 1 genes. Among 10 characterized substrates, we gained evidence of C-terminal or internal translocation signals that could function independently or synergistically for optimal protein transfer. Remarkably, nearly all tested proteins were also translocated through the IncN pKM101 and IncP RP4 conjugation systems. This repertoire of E. coli protein substrates, here termed the F plasmid "conjutome," is thus characterized by functions of potential benefit to new transconjugants, diverse TSs, and the capacity for promiscuous transfer through heterologous conjugation systems. IMPORTANCE: Conjugation systems comprise a major subfamily of the type IV secretion systems (T4SSs) and are the progenitors of a second large T4SS subfamily dedicated to translocation of protein effectors. This study examined the capacity of conjugation machines to function as protein translocators. Using a high-throughput reporter screen, we determined that 32 chromosomally encoded proteins are delivered through an F plasmid conjugation system. The translocated proteins potentially enhance the establishment of the co-transferred F plasmid or mitigate mating-induced stresses. Translocation signals located C-terminally or internally conferred substrate recognition by the F system and, remarkably, many substrates also were translocated through heterologous conjugation systems. Our findings highlight the plasticity of conjugation systems in their capacities to co-translocate DNA and many protein substrates.

2.
PLoS Genet ; 20(3): e1011088, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437248

RESUMEN

Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.


Asunto(s)
Factor F , Sistemas de Secreción Tipo IV , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/metabolismo , Proteínas Fimbrias/genética , Plásmidos/genética , ADN Bacteriano , Proteínas Bacterianas/metabolismo
3.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106057

RESUMEN

Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate - TraD and TraD - T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.

4.
mBio ; 14(5): e0214323, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37772866

RESUMEN

IMPORTANCE: The rapid emergence of drug-resistant bacteria and current low rate of antibiotic discovery emphasize the urgent need for alternative antibacterial strategies. We engineered Escherichia coli to conjugatively transfer plasmids to specific E. coli and Pseudomonas aeruginosa recipient cells through the surface display of cognate nanobody/antigen (Nb/Ag) pairs. We further engineered mobilizable plasmids to carry CRISPR/Cas9 systems (pCrispr) for the selective killing of recipient cells harboring CRISPR/Cas9 target sequences. In the assembled programmed delivery system (PDS), Nb-displaying E. coli donors with different conjugation systems and mobilizable pCrispr plasmids suppressed the growth of Ag-displaying recipient cells to significantly greater extents than unpaired recipients. We also showed that anucleate minicells armed with conjugation machines and pCrispr plasmids were highly effective in killing E. coli recipients. Together, our findings suggest that bacteria or minicells armed with PDSs may prove highly effective as an adjunct or alternative to antibiotics for antimicrobial intervention.


Asunto(s)
Escherichia coli , Sistemas de Secreción Tipo IV , Ligandos , Plásmidos/genética , Antibacterianos/farmacología , Sistemas CRISPR-Cas
5.
bioRxiv ; 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37609324

RESUMEN

Bacterial type IV secretion systems (T4SSs) are highly versatile macromolecular translocators and offer great potential for deployment as delivery systems for therapeutic intervention. One major T4SS subfamily, the conjugation machines, are well-adapted for delivery of DNA cargoes of interest to other bacteria or eukaryotic cells, but generally exhibit modest transfer frequencies and lack specificity for target cells. Here, we tested the efficacy of a surface-displayed nanobody/antigen (Nb/Ag) pairing system to enhance the conjugative transfer of IncN (pKM101), IncF (F/pOX38), or IncP (RP4) plasmids, or of mobilizable plasmids including those encoding CRISPR/Cas9 systems (pCrispr), to targeted recipient cells. Escherichia coli donors displaying Nb's transferred plasmids to E. coli and Pseudomonas aeruginosa recipients displaying the cognate Ag's at significantly higher frequencies than to recipients lacking Ag's. Nb/Ag pairing functionally substituted for the surface adhesin activities of F-encoded TraN and pKM101-encoded Pep, although not conjugative pili or VirB5-like adhesins. Nb/Ag pairing further elevated the killing effects accompanying delivery of pCrispr plasmids to E. coli and P. aeruginosa transconjugants bearing CRISPR/Cas9 target sequences. Finally, we determined that anucleate E. coli minicells, which are clinically safer delivery vectors than intact cells, transferred self-transmissible and mobilizable plasmids to E. coli and P. aeruginosa cells. Minicell-mediated mobilization of pCrispr plasmids to E. coli recipients elicited significant killing of transconjugants, although Nb/Ag pairing did not enhance conjugation frequencies or killing. Together, our findings establish the potential for deployment of bacteria or minicells as Programmed Delivery Systems (PDSs) for suppression of targeted bacterial species in infection settings. IMPORTANCE: The rapid emergence of drug-resistant bacteria and current low rate of antibiotic discovery emphasize an urgent need for alternative antibacterial strategies. We engineered Escherichia coli to conjugatively transfer plasmids to specific E. coli and Pseudomonas aeruginosa recipient cells through surface display of cognate nanobody/antigen (Nb/Ag) pairs. We further engineered mobilizable plasmids to carry CRISPR/Cas9 systems (pCrispr) for selective killing of recipient cells harboring CRISPR/Cas9 target sequences. In the assembled Programmed Delivery System (PDS), Nb-displaying E. coli donors with different conjugation systems and mobilizable pCrispr plasmids suppressed growth of Ag-displaying recipient cells to significantly greater extents than unpaired recipients. We also showed that anucleate minicells armed with conjugation machines and pCrispr plasmids were highly effective in killing of E. coli recipients. Together, our findings suggest that bacteria or minicells armed with PDSs may prove highly effective as an adjunct or alternative to antibiotics for antimicrobial intervention.

6.
Mol Microbiol ; 114(2): 214-229, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32239779

RESUMEN

A large subfamily of the type IV secretion systems (T4SSs), termed the conjugation systems, transmit mobile genetic elements (MGEs) among many bacterial species. In the initiating steps of conjugative transfer, DNA transfer and replication (Dtr) proteins assemble at the origin-of-transfer (oriT) sequence as the relaxosome, which nicks the DNA strand destined for transfer and couples the nicked substrate with the VirD4-like substrate receptor. Here, we defined contributions of the Dtr protein TraK, a predicted member of the Ribbon-Helix-Helix (RHH) family of DNA-binding proteins, to transfer of DNA and protein substrates through the pKM101-encoded T4SS. Using a combination of cross-linking/affinity pull-downs and two-hybrid assays, we determined that TraK self-associates as a probable tetramer and also forms heteromeric contacts with pKM101-encoded TraI relaxase, VirD4-like TraJ receptor, and VirB11-like and VirB4-like ATPases, TraG and TraB, respectively. TraK also promotes stable TraJ-TraB complex formation and stimulates binding of TraI with TraB. Finally, TraK is required for or strongly stimulates the transfer of cognate (pKM101, TraI relaxase) and noncognate (RSF1010, MobA relaxase) substrates. We propose that TraK functions not only to nucleate pKM101 relaxosome assembly, but also to activate the TrapKM101 T4SS via interactions with the ATPase energy center positioned at the channel entrance.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Nucleoproteínas/metabolismo , Proteínas Periplasmáticas/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/fisiología , Proteínas Bacterianas/metabolismo , Conjugación Genética/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Nucleoproteínas/fisiología , Proteínas Periplasmáticas/fisiología , Plásmidos/genética
7.
Front Microbiol ; 10: 958, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134011

RESUMEN

The conjugative plasmid pCF10 from Enterococcus faecalis encodes a Type 4 Secretion System required for plasmid transfer. The accessory factor PcfF and relaxase PcfG initiate pCF10 transfer by forming the catalytically active relaxosome at the plasmid's origin-of-transfer (oriT) sequence. Here, we report the crystal structure of the homo-dimeric PcfF, composed of an N-terminal DNA binding Ribbon-Helix-Helix (RHH) domain and a C-terminal stalk domain. We identified key residues in the RHH domain that are responsible for binding pCF10's oriT sequence in vitro, and further showed that PcfF bends the DNA upon oriT binding. By mutational analysis and pull-down experiments, we identified residues in the stalk domain that contribute to interaction with PcfG. PcfF variant proteins defective in oriT or PcfG binding attenuated plasmid transfer in vivo, but also suggested that intrinsic or extrinsic factors might modulate relaxosome assembly. We propose that PcfF initiates relaxosome assembly by binding oriT and inducing DNA bending, which serves to recruit PcfG as well as extrinsic factors necessary for optimal plasmid processing and engagement with the pCF10 transfer machine.

8.
Microbiol Spectr ; 7(2)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30953428

RESUMEN

The bacterial type IV secretion systems (T4SSs) are a functionally diverse superfamily of secretion systems found in many species of bacteria. Collectively, the T4SSs translocate DNA and monomeric and multimeric protein substrates to bacterial and eukaryotic cell types. T4SSs are composed of two large subfamilies, the conjugation machines and the effector translocators that transmit their cargoes through establishment of direct donor-target cell contacts, and a third small subfamily capable of importing or exporting substrates from or to the milieu. This review summarizes recent mechanistic and structural findings that are shedding new light on how T4SSs have evolved such functional diversity. Translocation signals are now known to be located C terminally or embedded internally in structural folds; these signals in combination with substrate-associated adaptor proteins mediate the docking of specific substrate repertoires to cognate VirD4-like receptors. For the Legionella pneumophila Dot/Icm system, recent work has elucidated the structural basis for adaptor-dependent substrate loading onto the VirD4-like DotL receptor. Advances in definition of T4SS machine structures now allow for detailed comparisons of nanomachines closely related to the Agrobacterium tumefaciens VirB/VirD4 T4SS with those more distantly related, e.g., the Dot/Icm and Helicobacter pylori Cag T4SSs. Finally, it is increasingly evident that T4SSs have evolved a variety of mechanisms dependent on elaboration of conjugative pili, membrane tubes, or surface adhesins to establish productive contacts with target cells. T4SSs thus have evolved extreme functional diversity through a plethora of adaptations impacting substrate selection, machine architecture, and target cell binding.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/fisiología , Agrobacterium tumefaciens/metabolismo , Biodiversidad , ADN Bacteriano , Helicobacter pylori/metabolismo , Legionella pneumophila/metabolismo , Transporte de Proteínas , Especificidad por Sustrato
9.
Mol Microbiol ; 111(1): 96-117, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30264928

RESUMEN

Mobile genetic elements (MGEs) encode type IV secretion systems (T4SSs) known as conjugation machines for their transmission between bacterial cells. Conjugation machines are composed of an envelope-spanning translocation channel, and those functioning in Gram-negative species additionally elaborate an extracellular pilus to initiate donor-recipient cell contacts. We report that pKM101, a self-transmissible MGE functioning in the Enterobacteriaceae, has evolved a second target cell attachment mechanism. Two pKM101-encoded proteins, the pilus-tip adhesin TraC and a protein termed Pep, are exported to the cell surface where they interact and also form higher order complexes appearing as distinct foci or patches around the cell envelope. Surface-displayed TraC and Pep are required for an efficient conjugative transfer, 'extracellular complementation' potentially involving intercellular protein transfer, and activation of a Pseudomonas aeruginosa type VI secretion system. Both proteins are also required for bacteriophage PRD1 infection. TraC and Pep are exported across the outer membrane by a mechanism potentially involving the ß-barrel assembly machinery. The pKM101 T4SS, thus, deploys alternative routing pathways for the delivery of TraC to the pilus tip or both TraC and Pep to the cell surface. We propose that T4SS-encoded, pilus-independent attachment mechanisms maximize the probability of MGE propagation and might be widespread among this translocation superfamily.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Conjugación Genética , Escherichia coli/genética , Proteínas Fimbrias/metabolismo , Transferencia de Gen Horizontal , Plásmidos , Bacteriófago PRD1/fisiología , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Acoplamiento Viral
10.
Curr Top Microbiol Immunol ; 418: 233-260, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29808338

RESUMEN

The Agrobacterium tumefaciens VirB/VirD4 translocation machine is a member of a superfamily of translocators designated as type IV secretion systems (T4SSs) that function in many species of gram-negative and gram-positive bacteria. T4SSs evolved from ancestral conjugation systems for specialized purposes relating to bacterial colonization or infection. A. tumefaciens employs the VirB/VirD4 T4SS to deliver oncogenic DNA (T-DNA) and effector proteins to plant cells, causing the tumorous disease called crown gall. This T4SS elaborates both a cell-envelope-spanning channel and an extracellular pilus for establishing target cell contacts. Recent mechanistic and structural studies of the VirB/VirD4 T4SS and related conjugation systems in Escherichia coli have defined T4SS architectures, bases for substrate recruitment, the translocation route for DNA substrates, and steps in the pilus biogenesis pathway. In this review, we provide a brief history of A. tumefaciens VirB/VirD4 T4SS from its discovery in the 1980s to its current status as a paradigm for the T4SS superfamily. We discuss key advancements in defining VirB/VirD4 T4SS function and structure, and we highlight the power of in vivo mutational analyses and chimeric systems for identifying mechanistic themes and specialized adaptations of this fascinating nanomachine.


Asunto(s)
Agrobacterium tumefaciens/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutagénesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/genética , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/patogenicidad , Proteínas Bacterianas/química , Proteínas Recombinantes de Fusión/metabolismo , Sistemas de Secreción Tipo IV/metabolismo
11.
Arch Microbiol ; 198(1): 53-69, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26400107

RESUMEN

The obligate intracellular bacterium, Wolbachia pipientis (Rickettsiales), is a widespread, vertically transmitted endosymbiont of filarial nematodes and arthropods. In insects, Wolbachia modifies reproduction, and in mosquitoes, infection interferes with replication of arboviruses, bacteria and plasmodia. Development of Wolbachia as a tool to control pest insects will be facilitated by an understanding of molecular events that underlie genetic exchange between Wolbachia strains. Here, we used nucleotide sequence, transcriptional and proteomic analyses to evaluate expression levels and establish the mosaic nature of genes flanking the T4SS virB8-D4 operon from wStr, a supergroup B-strain from a planthopper (Hemiptera) that maintains a robust, persistent infection in an Aedes albopictus mosquito cell line. Based on protein abundance, ribA, which contains promoter elements at the 5'-end of the operon, is weakly expressed. The 3'-end of the operon encodes an intact wspB, which encodes an outer membrane protein and is co-transcribed with the vir genes. WspB and vir proteins are expressed at similar, above average abundance levels. In wStr, both ribA and wspB are mosaics of conserved sequence motifs from Wolbachia supergroup A- and B-strains, and wspB is nearly identical to its homolog from wCobU4-2, an A-strain from weevils (Coleoptera). We describe conserved repeated sequence elements that map within or near pseudogene lesions and transitions between A- and B-strain motifs. These studies contribute to ongoing efforts to explore interactions between Wolbachia and its host cell in an in vitro system.


Asunto(s)
Genes Bacterianos/genética , Wolbachia/genética , Animales , Secuencia de Bases , Operón/genética , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...