Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cell Rep ; 42(10): 113202, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37777961

RESUMEN

CDKL5 deficiency disorder (CDD) is a severe epileptic encephalopathy resulting from pathological mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. Despite significant progress in understanding the neuronal function of CDKL5, the molecular mechanisms underlying CDD-associated epileptogenesis are unknown. Here, we report that acute ablation of CDKL5 from adult forebrain glutamatergic neurons leads to elevated neural network activity in the dentate gyrus and the occurrence of early-onset spontaneous seizures via tropomyosin-related kinase B (TrkB) signaling. We observe increased expression of brain-derived neurotrophic factor (BDNF) and enhanced activation of its receptor TrkB in the hippocampus of Cdkl5-deficient mice prior to the onset of behavioral seizures. Moreover, reducing TrkB signaling in these mice rescues the altered synaptic activity and suppresses recurrent seizures. These results suggest that TrkB signaling mediates epileptogenesis in a mouse model of CDD and that targeting this pathway might be effective for treating epilepsy in patients affected by CDKL5 mutations.


Asunto(s)
Síndromes Epilépticos , Espasmos Infantiles , Humanos , Adulto , Animales , Ratones , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Síndromes Epilépticos/genética , Síndromes Epilépticos/metabolismo , Convulsiones/metabolismo , Neuronas/metabolismo , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
2.
Epilepsia ; 62(2): 517-528, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33400301

RESUMEN

OBJECTIVE: Mutations of the cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders characterized by intractable epilepsy, intellectual disability, and autism. Multiple mouse models generated for mechanistic studies have exhibited phenotypes similar to some human pathological features, but none of the models has developed one of the major symptoms affecting CDKL5 deficiency disorder (CDD) patients: intractable recurrent seizures. As disrupted neuronal excitation/inhibition balance is closely associated with the activity of glutamatergic and γ-aminobutyric acidergic (GABAergic) neurons, our aim was to study the effect of the loss of CDKL5 in different types of neurons on epilepsy. METHODS: Using the Cre-LoxP system, we generated conditional knockout (cKO) mouse lines allowing CDKL5 deficiency in glutamatergic or GABAergic neurons. We employed noninvasive video recording and in vivo electrophysiological approaches to study seizure activity in these Cdkl5 cKO mice. Furthermore, we conducted Timm staining to confirm a morphological alteration, mossy fiber sprouting, which occurs with limbic epilepsy in both human and mouse brains. Finally, we performed whole-cell patch clamp in dentate granule cells to investigate cell-intrinsic properties and synaptic excitatory activity. RESULTS: We demonstrate that Emx1- or CamK2α-derived Cdkl5 cKO mice manifest high-frequency spontaneous seizure activities recapitulating the epilepsy of CDD patients, which ultimately led to sudden death in mice. However, Cdkl5 deficiency in GABAergic neurons does not generate such seizures. The seizures were accompanied by typical epileptic features including higher amplitude spikes for epileptiform discharges and abnormal hippocampal mossy fiber sprouting. We also found an increase in spontaneous and miniature excitatory postsynaptic current frequencies but no change in amplitudes in the dentate granule cells of Emx1-cKO mice, indicating enhanced excitatory synaptic activity. SIGNIFICANCE: Our study demonstrates that Cdkl5 cKO mice, serving as an animal model to study recurrent spontaneous seizures, have potential value for the pathological study of CDD-related seizures and for therapeutic innovation.


Asunto(s)
Síndromes Epilépticos/genética , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Convulsiones/genética , Espasmos Infantiles/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Giro Dentado/citología , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/fisiopatología , Potenciales Postsinápticos Excitadores/fisiología , Neuronas GABAérgicas/patología , Proteínas de Homeodominio , Ratones , Ratones Noqueados , Fibras Musgosas del Hipocampo/patología , Neuronas/metabolismo , Neuronas/patología , Técnicas de Placa-Clamp , Prosencéfalo , Convulsiones/metabolismo , Convulsiones/fisiopatología , Espasmos Infantiles/metabolismo , Espasmos Infantiles/fisiopatología , Factores de Transcripción
3.
Proc Natl Acad Sci U S A ; 116(25): 12500-12505, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31160454

RESUMEN

Deficiency in the E3 ubiquitin ligase UBE3A leads to the neurodevelopmental disorder Angelman syndrome (AS), while additional dosage of UBE3A is linked to autism spectrum disorder. The mechanisms underlying the downstream effects of UBE3A gain or loss of function in these neurodevelopmental disorders are still not well understood, and effective treatments are lacking. Here, using stable-isotope labeling of amino acids in mammals and ubiquitination assays, we identify PTPA, an activator of protein phosphatase 2A (PP2A), as a bona fide ubiquitin ligase substrate of UBE3A. Maternal loss of Ube3a (Ube3am-/p+) increased PTPA level, promoted PP2A holoenzyme assembly, and elevated PP2A activity, while maternal 15q11-13 duplication containing Ube3a down-regulated PTPA level and lowered PP2A activity. Reducing PTPA level in vivo restored the defects in dendritic spine maturation in Ube3am-/p+ mice. Moreover, pharmacological inhibition of PP2A activity with the small molecule LB-100 alleviated both reduction in excitatory synaptic transmission and motor impairment in Ube3am-/p+ mice. Together, our results implicate a critical role of UBE3A-PTPA-PP2A signaling in the pathogenesis of UBE3A-related disorders and suggest that PP2A-based drugs could be potential therapeutic candidates for treatment of UBE3A-related disorders.


Asunto(s)
Espinas Dendríticas/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteína Fosfatasa 2/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Trastorno del Espectro Autista/metabolismo , Encéfalo/enzimología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Ratones , Ratones Transgénicos , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteolisis , Transmisión Sináptica , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
4.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-688045

RESUMEN

<p><b>OBJECTIVE</b>The aim of this study is to build a digital dental model with cone beam computed tomography (CBCT), to fabricate a virtual model via 3D printing, and to determine the accuracy of 3D printing dental model by comparing the result with a traditional dental cast.</p><p><b>METHODS</b>CBCT of orthodontic patients was obtained to build a digital dental model by using Mimics 10.01 and Geomagic studio software. The 3D virtual models were fabricated via fused deposition modeling technique (FDM). The 3D virtual models were compared with the traditional cast models by using a Vernier caliper. The measurements used for comparison included the width of each tooth, the length and width of the maxillary and mandibular arches, and the length of the posterior dental crest.</p><p><b>RESULTS</b>3D printing models had higher accuracy compared with the traditional cast models. The results of the paired t-test of all data showed that no statistically significant difference was observed between the two groups (P>0.05).</p><p><b>CONCLUSIONS</b>Dental digital models built with CBCT realize the digital storage of patients' dental condition. The virtual dental model fabricated via 3D printing avoids traditional impression and simplifies the clinical examination process. The 3D printing dental models produced via FDM show a high degree of accuracy. Thus, these models are appropriate for clinical practice.</p>

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...