Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 478: 135538, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173383

RESUMEN

Selective oxidizing agent carbonate radical (CO3•-) is an important secondary radical in radical-based advanced oxidation technology for wastewater treatment. However, the role of CO3•- in removing ionizable organic micropollutants (OMs) under environmentally relevant conditions remains unclear. Herein we investigated CO3•- effect on degradation kinetics of fluoxetine in UV/peroxymonosulfate (PMS) system based on a built radical model considering CO3•- reactivity differences with its different dissociation forms. Results revealed that the model, which incorporated CO3•- selective reactivity (with determined second-order rate constants, ksrc,CO3·-, of 7.33 ×106 and 2.56 ×108 M-1s-1 for cationic and neutral fluoxetine, respectively) provided significantly more accurate predictions of fluoxetine degradation rates (k). A good linear correlation was observed between ksrc,CO3·- from experiments and literatures for 24 ionizable OMs and their molecular orbital energy gaps and oxidation potentials, suggesting the possible electron transfer reaction mechanism. Cl- slightly reduced the degradation rates of fluoxetine owing to rapid transformation of Cl• with HCO3- into CO3•-, which partially compensated for the quenching effects of Cl- on HO• and SO4•-. Dissolved organic matter significantly quenched reactive radicals. The constructed kinetic model successfully predicted fluoxetine degradation rates in real waters, with CO3•- being the dominant contributor (∼90 %) to this degradation process.

2.
Int Braz J Urol ; 502024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133792

RESUMEN

INTRODUCTION: We aim to compare the safety and effectiveness of the KangDuo (KD)-Surgical Robot-01 (KD-SR-01) system and the da Vinci (DV) system for robot-assisted radical nephroureterectomy (RARNU). MATERIALS AND METHODS: This multicenter prospective randomized controlled trial was conducted between March 2022 and September 2023. Group 1 included 29 patients undergoing KD-RARNU. Group 2 included 29 patients undergoing DV-RARNU. Patient demographic and clinical characteristics, perioperative data, and follow-up outcomes were collected prospectively and compared between the two groups. RESULTS: There were no significant differences in patient baseline demographic and preoperative characteristics between the two groups. The success rates in both groups were 100% without conversion to open or laparoscopic surgery or positive surgical margins. No significant difference was observed in docking time [242 (120-951) s vs 253 (62-498) s, P = 0.780], console time [137 (55-290) min vs 105 (62-220) min, P = 0.114], operative time [207 (121-460) min vs 185 (96-305) min, P = 0.091], EBL [50 (10-600) mL vs 50 (10-700) mL, P = 0.507], National Aeronautics and Space Administration Task Load Index scores, and postoperative serum creatinine levels between the two groups. None of the patients showed evidence of distant metastasis, local recurrence, or equipment-related adverse events during the four-week follow-up. One (3.4%) patient in Group 2 experienced postoperative enterovaginal and enterovesical fistulas (Clavien-Dindo grade III). CONCLUSIONS: The KD-SR-01 system is safe and effective for RARNU compared to the DV Si or Xi system. Further randomized controlled studies with larger sample sizes and longer durations are required.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39095269

RESUMEN

OBJECTIVE: To evaluate the efficacy and safety of neoadjuvant immunotherapy for patients with microsatellite instability-high (MSI-H) or DNA polymerase ε (POLE)-mutated locally advanced colorectal cancer (LACRC) with bulky tumors.  PATIENTS: We retrospectively reviewed 22 consecutive patients with MSI-H or POLE-mutated LACRC with bulky tumors (>8 cm in diameter) who received preoperative programmed death-1 blockade, with or without CapOx chemotherapy.  MAIN OUTCOME MEASURES: Pathological complete response (pCR), clinical complete response (cCR), toxicity, R0 resection rate, and complications were evaluated. Survival outcomes were analyzed using the Kaplan-Meier method. Multiplex immunofluorescence analysis were performed before and after treatment.  RESULTS: The incidence of immune-related adverse events (irAEs) was 36.4% (8/22). Five of 22 patients presented with surgical emergencies, most commonly perforation or obstruction. The 22 patients underwent a median 4 (1-8) cycles. Two patients were evaluated as cCR and underwent a watch and wait strategy. The R0 resection rate was 100.0% (20/20) and pCR rate was 70.0% (14/20). Twelve of 14 cT4b patients (85.7%) avoided multivisceral resection, and 10 of them achieved pCR or cCR. In the two patients with POLE mutations, one each achieved pCR and cCR. No Grade III/IV postoperative complications occurred. The median follow-up was 16.0 months. Two-year event-free and overall survival for the whole cohort was both 100%.  CONCLUSIONS: Preoperative immunotherapy is the optimal option for MSI-H or POLE-mutated LACRC with bulky tumors, especially cT4b. Preoperative immunotherapy in patients with T4b CRC can reduce multivisceral resection and achieve high CR rate.

4.
Front Cell Neurosci ; 18: 1365448, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022312

RESUMEN

General anesthesia, as a commonly used medical intervention, has been widely applied during surgical procedures to ensure rapid loss of consciousness and pain relief for patients. However, recent research suggests that general anesthesia may be associated with the occurrence of perioperative neurocognitive disorder (PND). PND is characterized by a decline in cognitive function after surgery, including impairments in attention, memory, learning, and executive functions. With the increasing trend of population aging, the burden of PND on patients and society's health and economy is becoming more evident. Currently, the clinical consensus tends to believe that peripheral inflammation is involved in the pathogenesis of PND, providing strong support for further investigating the mechanisms and prevention of PND.

5.
Int Orthod ; 22(3): 100896, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981305

RESUMEN

A satisfactory treatment of an 18-year-old lady was reported with right combination-type condylar hyperplasia (CH) in active phase. The chin severely deviated to the left, with the right gonial angle locating at a lower level. Intraorally, the lower centre line shifted to the left, the scale of which reached the width of one lower incisor. The right molar relation was mesial. Right maxillary second molar over-erupted without contact to lower teeth. There had been 2.5-mm anterior open bite (AOB) before surgery (T1) due to the tongue-spitting habit. After judging the benefits and disadvantages of all treatment alternatives, the decision was made to perform a right condylectomy and post-surgery orthodontics. Before orthodontics (T2) when the chin was positioned centred, an asymmetrical open bite occurred, caused by pre-contact between the right maxillary and mandibular second molars. Meanwhile, the AOB at T2 became 11.5mm. Orthodontic-related treatment included four premolars extraction and intrusion of bilateral maxillary molars using four miniscrews. Finally, this treatment achieved a clinically centred chin with two gonial angles at the same level. Post-condylectomy, the large AOB was resolved, together with a bilateral neutral molar relationship and alignment of the incisor midlines. Besides, the resected right condyle was covered by a continuous cortex bone and returned to the glenoid fossa. In sum, a high-challenging combined-type CH case was accomplished with impressive improvement in facial and occlusal symmetry, thanks to condylectomy and post-surgery miniscrew-assisted orthodontics.


Asunto(s)
Cefalometría , Hiperplasia , Cóndilo Mandibular , Mordida Abierta , Humanos , Femenino , Adolescente , Mordida Abierta/terapia , Mordida Abierta/cirugía , Cóndilo Mandibular/cirugía , Cóndilo Mandibular/patología , Ortodoncia Correctiva/métodos , Asimetría Facial/cirugía , Asimetría Facial/etiología , Planificación de Atención al Paciente , Procedimientos Quirúrgicos Ortognáticos/métodos
6.
Discov Oncol ; 15(1): 307, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048891

RESUMEN

BACKGROUND: Prostate cancer (PCa) is highly prevalent among males worldwide. The investigation of exosomes in PCa has emerged as a dynamic and important research area. To visually depict the prominent research areas and evolutionary patterns of exosomes in PCa, we performed a comprehensive analysis via bibliometric methods. METHODS: Studies were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewers, and the R package "bibliometrix" were employed to analyze the relationships and collaborations among countries/regions, organizations, authors, journals, references, and keywords. RESULTS: Over the past 20 years (2003-2022), 995 literatures on exosomes in PCa have been collected. The findings indicate a consistent upward trend in annual publications with the United States being the leading contributor. Cancers is widely recognized as the most prominent journal in this area. In total, 5936 authors have contributed to these publications, with Alicia Llorente being the most prolific. The primary keywords associated with research hotspots include "liquid biopsy", "identification", "growth", "microRNAs", and "tumor-derived exosomes". CONCLUSION: Our analysis reveals that investigating the intrinsic mechanisms of exosomes in PCa pathogenesis and exploring the potential of exosomes as biomarkers of PCa constitute the principal focal points in this domain of research.

7.
mBio ; 15(8): e0153324, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38953358

RESUMEN

Emerging evidence indicates that gut dysbiosis is involved in the pathogenesis of visceral hypersensitivity (VH). However, how gut microbiota contributes to the development of VH is unknown. Here, we sought to examine the signal transduction pathways from gut to dorsal root ganglion (DRG) responsible for this. Therefore, abdominal withdrawal reflex (AWR) scores, fecal output, fecal water content, and total gastrointestinal transit time (TGITT) were assessed in Con rats, VH rats, rats treated with NaB, and VH rats treated with VSL#3. Fecal microbiota and its metabolite (short-chain fatty acids, SCFAs), mast cell degranulation in colon, lincRNA-01028, miR-143, and protease kinase C (PKC) and TRPV1 expression in DRGs were further detected. VH rats showed an increased fecal water content, a shortened TGITT, an increased abundance of Clostridium sensu stricto 1 and increased butyrate in fecal samples, an increased mast cell degranulation, an increased expression of lincRNA-01028, PKC, and TRPV1, and a decreased expression of miR-143 in DRGs compared with control rats, which could be restored by the application of probiotic VSL#3. The above-mentioned detection in rats treated with butyrate was similar to that of VH rats. We further confirm whether butyrate sensitized DRG neurons by a lincRNA-01028, miR-143, and PKC-dependent mechanism via mast cell in vitro. In co-cultures, MCs treated with butyrate elicited a higher TRPV1 current, a higher expression of lincRNA-01028, PKC, and a lower expression of miR-143 in DRG neurons, which could be inhibited by a lincRNA-01028 inhibitor. These findings indicate that butyrate promotes visceral hypersensitivity via mast cell-derived DRG neuron lincRNA-01028-PKC-TRPV1 pathway.IMPORTANCEIrritable bowel syndrome (IBS), characterized by visceral hypersensitivity, is a common gastrointestinal dysfunction syndrome. Although the gut microbiota plays a role in the pathogenesis and treatment of irritable bowel syndrome (IBS), the possible underlying mechanisms are unclear. Therefore, it is of critical importance to determine the signal transduction pathways from gut to DRG responsible for this in vitro and in vivo assay. This study demonstrated that butyrate sensitized TRPV1 in DRG neurons via mast cells in vivo and in vitro by a lincRNA-01028, miR-143, and PKC-dependent mechanism. VH rats similarly showed an increased abundance of Clostridium sensu stricto 1, an increased fecal butyrate, an increased mast cell degranulation, and increased expression of TRPV1 compared with control rats, which could be restored by the application of VSL#3. In conclusion, butyrate produced by the altered intestinal microbiota is associated with increased VH.


Asunto(s)
Butiratos , Modelos Animales de Enfermedad , Ganglios Espinales , Síndrome del Colon Irritable , Mastocitos , Proteína Quinasa C , Ratas Sprague-Dawley , Canales Catiónicos TRPV , Animales , Ganglios Espinales/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Ratas , Mastocitos/metabolismo , Mastocitos/efectos de los fármacos , Masculino , Butiratos/metabolismo , Butiratos/farmacología , Proteína Quinasa C/metabolismo , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Transducción de Señal , Neuronas/metabolismo , Neuronas/efectos de los fármacos
8.
Cancer Cell ; 42(7): 1268-1285.e7, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981439

RESUMEN

Expanding the efficacy of immune checkpoint blockade (ICB) in colorectal cancer (CRC) presses for a comprehensive understanding of treatment responsiveness. Here, we analyze multiple sequential single-cell samples from 22 patients undergoing PD-1 blockade to map the evolution of local and systemic immunity of CRC patients. In tumors, we identify coordinated cellular programs exhibiting distinct response associations. Specifically, exhausted T (Tex) or tumor-reactive-like CD8+ T (Ttr-like) cells are closely related to treatment efficacy, and Tex cells show correlated proportion changes with multiple other tumor-enriched cell types following PD-1 blockade. In addition, we reveal the less-exhausted phenotype of blood-associated Ttr-like cells in tumors and find that their higher abundance suggests better treatment outcomes. Finally, a higher major histocompatibility complex (MHC) II-related signature in circulating CD8+ T cells at baseline is linked to superior responses. Our study provides insights into the spatiotemporal cellular dynamics following neoadjuvant PD-1 blockade in CRC.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Inmunoterapia , Análisis de la Célula Individual , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Análisis de la Célula Individual/métodos , Linfocitos T CD8-positivos/inmunología , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos Infiltrantes de Tumor/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Masculino , Femenino
9.
Environ Technol ; : 1-13, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002157

RESUMEN

ABSTRACTMetal-organic frameworks (MOFs) with photocatalytic activity have garnered significant attentions in environmental remediation. Herein, copper-doped zeolitic imidazolate framework-7 (Cu-doped ZIF-7) was synthesized rapidly and easily using a microwave-assisted technique. Various analytical and spectroscopic methods were employed to access the framework, morphology, light absorption, photo-electrochemical and photocatalytic performance of the synthesized materials. Compared to ZIF-7, Cu/ZIF-7 (molar ratio of Cu2+ to Zn2+ is 1:1) demonstrates superior visible light absorption ability, narrower band gap, enhanced charge separation capability, and reduced electron-hole recombination performance. Under visible light irradiation, Cu/ZIF-7 serves as a Fenton-like catalyst and demonstrates exceptional activity for contaminant degradation, while virgin ZIF-7 remains inactive. With the addition of 9.8 mmol H2O2 and exposure to visible light for 30 min, 10 mg of Cu/ZIF-7 can completely decompose RhB solution (10 mg/L, 50 mL). The synergistic effect of the Cu/ZIF-7/H2O2/visible light system is attributed to visible light photocatalysis and Fenton-like reactions. Cu/ZIF-7 demonstrates excellent catalytic performance stability, with only a slight decrease in degradation efficiency from an initial 97.0% to 95.4% over four cycles. Additionally, spin-trapping ESR measurements and active species trapping experiments revealed that h+ and ·OH occupied a significant position for Rhodamine B (RhB) degradation. Degradation intermediate products of Rhodamine B have been identified using UPLC-MS, and the degradation pathways have been proposed and discussed. This work offers a facile and efficient technique for developing MOF-based visible light photocatalysts for water purification.

10.
Opt Express ; 32(10): 16777-16789, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858875

RESUMEN

Applications of the type-I fiber Bragg gratings (FBGs) written through the coating (TTC) in strain sensing and tunable distributed Bragg reflector (DBR) fiber lasers were demonstrated. We reported the principle of selecting the distance between the fiber and the phase mask when writing type-I TTC FBGs. Type-I TTC FBGs written in commercially available acrylate-coated fibers with various geometries and their strain responses were demonstrated. Results showed that the strain sensitivity of FBGs increases as the core-diameter decreases, probably due to the waveguide effect. In addition, a continuously tunable DBR fiber laser based on TTC FBGs was achieved with a wavelength tuning range of 19.934 nm around 1080 nm, by applying a strain of 0-21265.8 µÉ› to the laser resonant cavity. The wavelength tuning range was limited by the splice point between the gain fiber and the passive fiber for transmitting pump and signal lasers. When the pump power was 100 mW, the relative intensity noises were -97.334 dB/Hz at the relaxation oscillation peak of 880 kHz and -128 dB/Hz at frequencies greater than 3 MHz. The results open a potential scheme to design and implement continuously tunable fiber lasers and fiber laser sensors for strain sensing with a higher resolution.

11.
Environ Sci Technol ; 58(24): 10652-10663, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38829825

RESUMEN

Secondary organic aerosol (SOA) formation from gasoline vehicles spanning a wide range of emission types was investigated using an oxidation flow reactor (OFR) by conducting chassis dynamometer tests. Aided by advanced mass spectrometric techniques, SOA precursors, including volatile organic compounds (VOCs) and intermediate/semivolatile organic compounds (I/SVOCs), were comprehensively characterized. The reconstructed SOA produced from the speciated VOCs and I/SVOCs can explain 69% of the SOA measured downstream of an OFR upon 0.5-3 days' OH exposure. While VOCs can only explain 10% of total SOA production, the contribution from I/SVOCs is 59%, with oxygenated I/SVOCs (O-I/SVOCs) taking up 20% of that contribution. O-I/SVOCs (e.g., benzylic or aliphatic aldehydes and ketones), as an obscured source, account for 16% of total nonmethane organic gas (NMOG) emission. More importantly, with the improvement in emission standards, the NMOG is effectively mitigated by 35% from China 4 to China 6, which is predominantly attributed to the decrease of VOCs. Real-time measurements of different NMOG components as well as SOA production further reveal that the current emission control measures, such as advances in engine and three-way catalytic converter (TWC) techniques, are effective in reducing the "light" SOA precursors (i.e., single-ring aromatics) but not for the I/SVOC emissions. Our results also highlight greater effects of O-I/SVOCs to SOA formation than previously observed and the urgent need for further investigation into their origins, i.e., incomplete combustion, lubricating oil, etc., which requires improvements in real-time molecular-level characterization of I/SVOC molecules and in turn will benefit the future design of control measures.


Asunto(s)
Aerosoles , Gasolina , Emisiones de Vehículos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/química , Compuestos Orgánicos/química
12.
Nat Plants ; 10(6): 954-970, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38831046

RESUMEN

Hybrid rice has achieved high grain yield and greatly contributes to food security, but the manual-labour-intensive hybrid seed production process limits fully mechanized hybrid rice breeding. For next-generation hybrid seed production, the use of small-grain male sterile lines to mechanically separate small hybrid seeds from mixed harvest is promising. However, it is difficult to find ideal grain-size genes for breeding ideal small-grain male sterile lines without penalties in the number of hybrid seeds and hybrid rice yield. Here we report that the use of small-grain alleles of the ideal grain-size gene GSE3 in male sterile lines enables fully mechanized hybrid seed production and dramatically increases hybrid seed number in three-line and two-line hybrid rice systems. The GSE3 gene encodes a histone acetyltransferase that binds histones and influences histone acetylation levels. GSE3 is recruited by the transcription factor GS2 to the promoters of their co-regulated grain-size genes and influences the histone acetylation status of their co-regulated genes. Field trials demonstrate that genome editing of GSE3 can be used to immediately improve current elite male sterile lines of hybrid rice for fully mechanized hybrid rice breeding, providing a new perspective for mechanized hybrid breeding in other crops.


Asunto(s)
Histonas , Oryza , Fitomejoramiento , Oryza/genética , Oryza/metabolismo , Histonas/metabolismo , Histonas/genética , Acetilación , Fitomejoramiento/métodos , Semillas/genética , Semillas/metabolismo , Grano Comestible/genética , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hibridación Genética
13.
Front Microbiol ; 15: 1374618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774509

RESUMEN

Ammonia oxidation is the rate-limiting step in nitrification and the key step in the nitrogen (N) cycle. Most soil nutrients and biological indicators are extremely sensitive to irrigation systems, from the perspective of improving soil fertility and soil ecological environment, the evaluation of different irrigation systems and suitability of selection, promote crop production and soil quality, study the influence of the soil microenvironment contribute to accurate evaluation of irrigation farmland soil health. Based on the amoA gene, the abundance and community diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) and their responses to soil physicochemical factors and enzyme activities were studied in semi-arid areas of Northeast China. The study consisted of three irrigation systems: flood irrigation (FP), shallow buried drip irrigation (DI), and mulched drip irrigation (MF). The results showed that DI and MF significantly increased the contents of alkaline hydrolyzed nitrogen (AN), nitrate nitrogen (NO3--N), soil moisture, and the activities of ammonia monooxygenase (AMO) and hydroxylamine oxidase (HAO). Compared with FP, DI significantly increased the abundance of soil AOA and AOB, while MF significantly increased the abundance of soil AOB. Irrigation systems significantly affected the community composition of ammonia-oxidizing microorganisms (AOM). Also, AN and soil moisture had the greatest influence on the community composition of AOA and AOB, respectively. The AOB community had better stability and stress resistance. Moreover, the symbiotic network of AOB in the three irrigation systems was more complex than that of AOA. Compared with FP, the AOA community under treatment DI had higher complexity and stability, maintaining the versatility and sustainability of the ecosystem, while the AOB community under treatment MF had higher transfer efficiency in terms of matter and energy. In conclusion, DI and MF were more conducive to the propagation of soil AOM in the semi-arid area of Northeast China, which can provide a scientific basis for rational irrigation and N regulation from the perspective of microbiology.

14.
ACS Appl Mater Interfaces ; 16(22): 28991-29002, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38769310

RESUMEN

Triphenylphosphine functionalized carbon dots (TPP-CDs) showcase robust mitochondria targeting capacity owing to their positive electrical properties. However, TPP-CDs typically involve complicated synthesis steps and time-consuming postmodification procedures. Especially, the one-step target-oriented synthesis of TPP-CDs and the regulation of TPP linkage modes remain challenges. Herein, we propose a free-radical-initiated random copolymerization in combination with hydrothermal carbonation to regulate the TPP backbone linkage for target-oriented synthesis of triphenylphosphine copolymerization carbon dots (TPPcopoly-CDs). The linkage mechanism of random copolymerization reactions is directional, straightforward, and controllable. The TPP content and IC50 of hydroxyl radicals scavenging ability of TPPcopoly-CDs are 53 wt % and 0.52 mg/mL, respectively. TPP serves as a charge control agent to elevate the negatively charged CDs by 20 mV. TPPcopoly-CDs with negative charge can target mitochondria, and in the corresponding mechanism the TPP moiety plays a crucial role in targeting mitochondria. This discovery provides a new perspective on the controlled synthesis, TPP linkage modes, and mitochondrial targeting design of TPP-CDs.


Asunto(s)
Carbono , Mitocondrias , Compuestos Organofosforados , Puntos Cuánticos , Compuestos Organofosforados/química , Carbono/química , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Puntos Cuánticos/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/farmacología , Células HeLa
15.
Brain Sci ; 14(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38790494

RESUMEN

Electroencephalography (EEG)-based emotion recognition is increasingly pivotal in the realm of affective brain-computer interfaces. In this paper, we propose TSANN-TG (temporal-spatial attention neural network with a task-specific graph), a novel neural network architecture tailored for enhancing feature extraction and effectively integrating temporal-spatial features. TSANN-TG comprises three primary components: a node-feature-encoding-and-adjacency-matrices-construction block, a graph-aggregation block, and a graph-feature-fusion-and-classification block. Leveraging the distinct temporal scales of features from EEG signals, TSANN-TG incorporates attention mechanisms for efficient feature extraction. By constructing task-specific adjacency matrices, the graph convolutional network with an attention mechanism captures the dynamic changes in dependency information between EEG channels. Additionally, TSANN-TG emphasizes feature integration at multiple levels, leading to improved performance in emotion-recognition tasks. Our proposed TSANN-TG is applied to both our FTEHD dataset and the publicly available DEAP dataset. Comparative experiments and ablation studies highlight the excellent recognition results achieved. Compared to the baseline algorithms, TSANN-TG demonstrates significant enhancements in accuracy and F1 score on the two benchmark datasets for four types of cognitive tasks. These results underscore the significant potential of the TSANN-TG method to advance EEG-based emotion recognition.

16.
Sci Rep ; 14(1): 11534, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773254

RESUMEN

Green finance (GF) is recognized as a key driver of sustainable development. While existing studies have extensively discussed the relationship between GF and the Sustainable Development Goals (SDGs), few have explored the coupling coordination relationship between GF and SDGs. In this paper, we use data from thirty Chinese provinces (municipalities and autonomous regions) from 2008-2021 to examine the degree of coupling coordination development (CCD) between GF and the SDGs systems using the CCD model. We find that most SDGs and their sub-goals exhibit a significant upward trend, except for SDG8, 14-16. GF presents a fluctuating upward trend, with a significant decline in 2010 and 2019. The CCDs between GF and SDGs and their sub-goals generally show an M-shaped upward trend in most regions, with most of them experiencing a synchronous decline in 2011-2012 and 2019. In the analysis of regional heterogeneity, the eastern region performs better in SDG8-9, the central region performs better in SDG3, 14-15, while the western region performs better in SDG7. This paper provides empirical evidence for a further in-depth understanding of the relationship between GF and SDGs, which can contribute to advancing GF development and the SDG process.

17.
Biomaterials ; 309: 122622, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38797119

RESUMEN

Nondestructive penetration of the blood-brain barrier (BBB) to specifically prevent iron deposition and the generation of reactive oxygen species (ROS) shows great potential for treating Parkinson's disease (PD). However, effective agents with distinct mechanisms of action remain scarce. Herein, a N-doping carbon dot (CD) emitting red light was prepared, which can sacrifice ROS and produce nitric oxide (NO) owing to its surface N-involved groups conjugated to the sp2-hybrided π-system. Meanwhile, CD can chelate iron ions, thus depressing the catalytic Fe cycle and *OH detaching to inhibit the Fenton reaction. By modifying lactoferrin (Lf) via polyethylene glycol (PEG), the resulting CD-PEG-Lf (CPL) can nondestructively cross the BBB, targeting the dopaminergic neurons via both NO-mediated reversible BBB opening and Lf receptor-mediated transportation. Accordingly, it can serve as an antioxidant, reducing oxidative stress via its unique iron chelation, free radical sacrificing, and synergy with iron reflux prevention originating from Lf. Thus, it can significantly reduce brain inflammation and improve the behavioral performance of PD mice. Additionally, CPL can image the PD via its red fluorescence. Finally, this platform can be metabolized out of the brain through cerebrospinal fluid circulation without causing obvious side effects, promising a robust treatment for PD.


Asunto(s)
Antioxidantes , Barrera Hematoencefálica , Carbono , Hierro , Óxido Nítrico , Enfermedad de Parkinson , Animales , Óxido Nítrico/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Carbono/química , Hierro/metabolismo , Hierro/química , Antioxidantes/química , Antioxidantes/metabolismo , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Masculino , Lactoferrina/química , Lactoferrina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Polietilenglicoles/química , Puntos Cuánticos/química , Estrés Oxidativo/efectos de los fármacos , Nanopartículas/química , Iones , Humanos , Ratones Endogámicos C57BL
18.
J Hazard Mater ; 472: 134490, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38696963

RESUMEN

Air pollution by sulfur dioxide (SO2) remains a pressing concern for both the environment and human health. Desulfurization enhanced by persulfate based advanced oxidation processes (PS-AOPs) has been proven to be a feasible method. However, the inherent contradiction between the rapid diffusion mass transfer of SO2 in the "gas-liquid-gas" phase and the limited lifespan of reactive oxygen species (ROS) can not be ignored. Excessive investment in PS is required to sustainably generate ROS to achieve continuous desulfurization performance, which may lead to excessive PS consumption. To address this issue, whether PS can achieve the oxidation absorption of SO2 via a non-reactive oxygen species pathway was investigated. Experimental and computational results demonstrated that peroxymonosulfate (PMS) instead of peroxydisulfate (PDS) had a great SO2 removal performance, the utilization of PS could be effectively achieved by maintaining a 1:1 molar ratio of PMS and removed SO2. The presence of HOO bonds in the PMS introduced a partial positive charge to the oxygen atom, making the PMS polar and more susceptible to be attacked by the nucleophile HSO3-. So SO2 underwent a series of processes including dissolution, dissociation, one-oxygen atom transfer, and ionization before ultimately being converted into SO42- ions, effectively achieving its removal from flue gas. This study may presents a novel approach for achieving high-efficiency flue gas desulfurization.

19.
J Hazard Mater ; 473: 134615, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761768

RESUMEN

Naturally strong ultraviolet irradiation at high altitudes causes photobleaching of plateau lake DOM (P-DOM) and affects its photochemical activity. However, the photoreactivity of P-DOM has remained unclear under natural photobleaching condition. Here, six P-DOM samples isolated from plateau lakes in Yunnan Province, China as well as two reference DOM as comparisons were used to explore the photogeneration of reactive species (RS) and their effects on 17ß-estradiol photodegradation. Compared with SRHA/SRFA, P-DOM has lower aromaticity, average molecular weight, and electron-donating capacity. The quantum yields of triplet state P-DOM (3P-DOM*), 1O2, and ∙OH produced in P-DOM solutions were greatly higher than those of reference DOM. The RS quantum yields had positive linear correlations with E2/E3 and SR, whereas were negatively linear correlated with SUVA25. Radical quenching experiments showed that 3P-DOM* was the prominent RS for 17ß-estradiol photodegradation, and its contribution exceeded 70% for each of P-DOM. 3P-DOM*-mediated photodegradation was mainly attributed to the electron-transfer reactions with an average second-order rate constant of 4.62 × 109 M-1s-1, indicating the strong photoreactivity towards 17ß-estradiol. These findings demonstrate that P-DOM is an efficient photosensitizer for RS production, among which 3P-DOM* may play an important role in enhanced photodegradation for organic micropollutants in plateau lake enriched with DOM.

20.
Med Phys ; 51(8): 5270-5282, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38820428

RESUMEN

BACKGROUND: Chronic cerebral hypoperfusion (CCH) is a frequently encountered clinical condition that poses a diagnostic challenge due to its nonspecific symptoms. PURPOSE: To enhance the diagnosis of CCH and non-CCH through Magnetic Resonance Imaging (MRI), offering support in clinical decision-making and recommendations to ultimately elevate diagnostic accuracy and optimize patient treatment outcomes. METHODS: In the retrospective research, we collected 204 routine brain magnetic resonance imaging (MRI) from March 1 to September 10 2022, as training and testing cohorts. And a validation cohort with 108 samples was collected from November 14 2022 to August 4 2023. MRI sequences were processed to obtain T1-weighted (T1WI) and T2-weighted (T2WI) sequence images for each patient. We propose CCH-Network (CCHNet), an end-to-end deep learning model, integrating convolution and Transformer modules to capture local and global structural information. Our novel adversarial training method improves feature knowledge capture, enhancing both generalization ability and efficiency in predicting CCH risk. We assessed the classification performance of the proposed model CCHNet by comparing it with existing state-of-the-art deep learning algorithms, including ResNet34, DenseNet121, VGG16, Convnext, ViT, Coat, and TransFG. To better validate model performance, we compared the results of the proposed model with eight neurologists to evaluate their consistency. RESULTS: CCHNet achieved an AUC of 91.6% (95% CI: 86.8-99.1), with an accuracy (ACC) of 85.0% (95% CI: 75.6-95.2). It demonstrated a sensitivity (SE) of 80.0% (95% CI: 71.6-95.6) and a specificity (SP) of 90.0% (95% CI: 82.3-97.8) in the testing cohort. In the validation cohort, the model demonstrated an AUC of 86.0% (95% CI: 80.3-93.0), an ACC of 84.2% (95% CI: 70.2-93.6), a SE of 83.3% (95% CI: 68.3-95.5), and a SP of 84.7% (95% CI: 70.3-96.8). CONCLUSIONS: The model improved the diagnostic performance of MRI with high SE and SP, providing a promising method for the diagnosis of CCH.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Humanos , Enfermedad Crónica , Procesamiento de Imagen Asistido por Computador/métodos , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Masculino , Femenino , Adulto , Trastornos Cerebrovasculares/diagnóstico por imagen , Circulación Cerebrovascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA