Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immun Inflamm Dis ; 12(3): e1226, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38533910

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) has garnered significant attention in the past decade as a prevalent chronic liver condition. Despite a growing body of evidence implicating mitochondria in NAFLD development, comprehensive bibliometric analyses within this research domain are scarce. This study aims to provide a thorough overview of the knowledge framework and key research areas related to mitochondria in the context of NAFLD, utilizing bibliometric techniques. METHODS: A comprehensive search of publications on mitochondria in NAFLD from 2000 to 2023 was conducted using the Web of Science Core Collection database. VOSviewers, CiteSpace, and the R package "bibliometrix" were employed for a precise assessment of the literature. RESULTS: Examining 2530 articles from 77 countries, primarily led by the United States and China, revealed a consistent increase in publications on mitochondria's role in NAFLD. Leading research institutions include the University of Coimbra, the University of Missouri, the Chinese Academy of Sciences, Fudan University, and Shanghai Jiao Tong University. Notably, the International Journal of Molecular Sciences emerged as the most popular journal, and Hepatology was the most frequently cited. With contributions from 14,543 authors, Michael Roden published the highest number of papers, and A. J. Samyal was the most frequently cocited author. Key focus areas include investigating mitochondrial mechanisms impacting NAFLD and developing therapeutic strategies targeting mitochondria. Emerging research hotspots are associated with keywords such as "inflammation," "mitochondrial dysfunction," "autophagy," "obesity," and "insulin resistance." CONCLUSION: This study, the first comprehensive bibliometric analysis, synthesizes research trends and advancements in the role of mitochondria in NAFLD. Insights derived from this analysis illuminate current frontiers and emerging areas of interest, providing a valuable reference for scholars dedicated to mitochondrial studies.


Asunto(s)
Mitocondrias , Enfermedad del Hígado Graso no Alcohólico , Humanos , Bibliometría , China
2.
Lipids Health Dis ; 22(1): 198, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37978497

RESUMEN

BACKGROUND: Roughly 10 -15% of global populace suffer from Chronic Kidney Disease(CKD). A major secondary disease that can progress to end-stage renal disease (ESRD) is obesity-associated kidney disease (ORG). Although clinical management strategies are currently available, morbidity and mortality rates are increasing. Thus, new solutions are needed. Intestinal permeability, systemic inflammation, and aberrant intestinal metabolites have all been linked to ORG. PURPOSE: ACT001 has anti-inflammatory, redox-regulatory and antitumour activities. The current study was designed to examine how ACT001 affects ORG and analyze the fundamental processes. METHODS: A high-fat diet (HFD) was used to generate ORG in female C57BL/6 J mice. ORG mice were divided into three groups at random: HFD, HFD + ACT001, HFD + polyphosphocholine (PPC). To assess renal and colonic damage, periodic acid-Schiff (PAS) and hematoxylin-eosin (HE) staining were used. Following that, renal inflammation, oxidative stress, lipid deposition, colonic inflammation, and intestinal permeability were evaluated by protein blotting, polymerase chain reaction (PCR), immunohistochemistry, and immunofluorescence staining. Lastly, the SCFAs content was assessed by gas chromatographymass spectrometry. RESULTS: Mice in the HFD group displayed more severe albuminuria, glomerular hypertrophy, renal oxidative damage, inflammation, and lipid accumulation than mice with the normal diet (ND) group, as well as lower levels of intestinal SCFA valproic acid, colonic inflammation, and tight junction protein downregulation. ACT001 treatment restores the content of valproic acid in intestinal SCFAs, promotes the binding of SCFAs to renal GPR43, activates the AMPK signalling pathway. Therefore, it promotes the Nrf2-Keap1 signalling pathway and inhibits the NF-κB signalling pathway. SCFAs, additionally, augment colonic GPR43 concentrations, diminishing NLRP3 inflammasome expression and restoring ZO-1 and occludin protein levels. CONCLUSION: This study is the first to look at ACT001's potential as a treatment for obesity-related kidney disease. Regulating GPR43 and AMPK signalling pathways, By controlling the GPR43 and AMPK signalling pathways, ACT001 improves colitis and the intestinal mucosal barrier, decreases renal lipid deposition, and suppresses inflammation and oxidative stress in the kidneys. According to this study, ACT001 could be a viable ORG therapy option.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Enfermedades Renales , Femenino , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácido Valproico , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Riñón/metabolismo , Inflamación/patología , Enfermedades Renales/complicaciones , Enfermedades Renales/patología , Obesidad/metabolismo
3.
Nutrients ; 15(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37892424

RESUMEN

Eriodictyol occurs naturally in a variety of fruits and vegetables, and has drawn significant attention for its potential health benefits. This study aims to look into the effects of eriodictyol on acute liver injury (ALI) induced by LPS/D-GalN and elucidate its potential molecular biological mechanisms. A total of 47 targets were predicted for the treatment of ALI with eriodictyol, and the PI3K/AKT signaling pathway played a key role in the anti-ALI processing of this drug. The in vivo experiment showed that eriodictyol can effectively reduce liver function-related biochemical indicators such as ALT, AST, and AKP. Eriodictyol can also up-regulate the levels of SOD and GSH, and inhibit the release of IL-1ß, IL-6, and TNF-α. Additionally, TUNEL staining, immunohistochemistry, and RT-PCR experiments showed that eriodictyol activated the PI3K/AKT pathway and decreased the expression of Bax, caspase3, and caspase8 while increasing the expression of Bcl-2 m-RNA. Finally, molecular docking experiments and molecular dynamics simulations confirmed the stable binding between eriodictyol and PI3K, AKT molecules. This study showed that eriodictyol can activate the PI3K/AKT signaling pathway to alleviate ALI-related oxidative stress and apoptosis.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Transducción de Señal , Hígado/metabolismo , Estrés Oxidativo , Apoptosis
4.
Plant Phenomics ; 5: 0064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469555

RESUMEN

The green fraction (GF), which is the fraction of green vegetation in a given viewing direction, is closely related to the light interception ability of the crop canopy. Monitoring the dynamics of GF is therefore of great interest for breeders to identify genotypes with high radiation use efficiency. The accuracy of GF estimation depends heavily on the quality of the segmentation dataset and the accuracy of the image segmentation method. To enhance segmentation accuracy while reducing annotation costs, we developed a self-supervised strategy for deep learning semantic segmentation of rice and wheat field images with very contrasting field backgrounds. First, the Digital Plant Phenotyping Platform was used to generate large, perfectly labeled simulated field images for wheat and rice crops, considering diverse canopy structures and a wide range of environmental conditions (sim dataset). We then used the domain adaptation model cycle-consistent generative adversarial network (CycleGAN) to bridge the reality gap between the simulated and real images (real dataset), producing simulation-to-reality images (sim2real dataset). Finally, 3 different semantic segmentation models (U-Net, DeepLabV3+, and SegFormer) were trained using 3 datasets (real, sim, and sim2real datasets). The performance of the 9 training strategies was assessed using real images captured from various sites. The results showed that SegFormer trained using the sim2real dataset achieved the best segmentation performance for both rice and wheat crops (rice: Accuracy = 0.940, F1-score = 0.937; wheat: Accuracy = 0.952, F1-score = 0.935). Likewise, favorable GF estimation results were obtained using the above strategy (rice: R2 = 0.967, RMSE = 0.048; wheat: R2 = 0.984, RMSE = 0.028). Compared with SegFormer trained using a real dataset, the optimal strategy demonstrated greater superiority for wheat images than for rice images. This discrepancy can be partially attributed to the differences in the backgrounds of the rice and wheat fields. The uncertainty analysis indicated that our strategy could be disrupted by the inhomogeneity of pixel brightness and the presence of senescent elements in the images. In summary, our self-supervised strategy addresses the issues of high cost and uncertain annotation accuracy during dataset creation, ultimately enhancing GF estimation accuracy for rice and wheat field images. The best weights we trained in wheat and rice are available: https://github.com/PheniX-Lab/sim2real-seg.

5.
Int J Biol Macromol ; 245: 125569, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37369257

RESUMEN

Dihydromyricetin (DMY) is a natural dihydroflavonol compound known for its diverse pharmacological benefits. However, its limited stability and bioavailability posed significant challenges for further applications. To address these issues, in this study, an ion crosslinking method was utilized to prepare chitosan nanoparticles that were loaded with DMY. The synthesized chitosan nanoparticles (CS-DMY-NPs) were spherical in shape with particle size and ζ potential of 198.7 nm and 45.05 mV, respectively. Furthermore, in vitro release experiments demonstrated that CS-DMY-NPs had sustained release and protective effects in simulated gastric and intestinal fluids. CS-DMY-NPs exhibited better antioxidant activity by ABTS and DPPH radical scavenging activity than free DMY. In vivo study showed that CS-DMY-NPs alleviated cisplatin-induced kidney damage by inhibiting oxidative stress and proinflammatory cytokines, and had better activity compared to DMY (free). Immunofluorescence data showed that CS-DMY-NPs activated the Nrf2 signaling pathways in a dose-dependent manner to combat cisplatin-induced kidney damage. Our results demonstrate that CS-TPP has good compatibility with DMY, and CS-DMY-NPs exhibited better protective effects against cisplatin-induced acute kidney injury (AKI) than free DMY.


Asunto(s)
Lesión Renal Aguda , Quitosano , Nanopartículas , Humanos , Quitosano/química , Cisplatino/efectos adversos , Nanopartículas/química , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Tamaño de la Partícula
6.
Aging (Albany NY) ; 15(12): 5887-5916, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37379130

RESUMEN

Swertia cincta Burkill is widely distributed along the southwestern region of China. It is known as "Dida" in Tibetan and "Qingyedan" in Chinese medicine. It was used in folk medicine to treat hepatitis and other liver diseases. To understand how Swertia cincta Burkill extract (ESC) protects against acute liver failure (ALF), firstly, the active ingredients of ESC were identified using liquid chromatography-mass spectrometry (LC-MS), and further screening. Next, network pharmacology analyses were performed to identify the core targets of ESC against ALF and further determine the potential mechanisms. Finally, in vivo experiments as well as in vitro experiments were conducted for further validation. The results revealed that 72 potential targets of ESC were identified using target prediction. The core targets were ALB, ERBB2, AKT1, MMP9, EGFR, PTPRC, MTOR, ESR1, VEGFA, and HIF1A. Next, KEGG pathway analysis showed that EGFR and PI3K-AKT signaling pathways could have been involved in ESC against ALF. ESC exhibits hepatic protective functions via anti-inflammatory, antioxidant, and anti-apoptotic effects. Therefore, the EGFR-ERK, PI3K-AKT, and NRF2/HO-1 signaling pathways could participate in the therapeutic effects of ESC on ALF.


Asunto(s)
Fallo Hepático Agudo , Swertia , Humanos , Swertia/metabolismo , Lipopolisacáridos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/tratamiento farmacológico , Transducción de Señal , Apoptosis , Estrés Oxidativo , Receptores ErbB/metabolismo
7.
Plant Phenomics ; 5: 0041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223315

RESUMEN

The number of leaves at a given time is important to characterize plant growth and development. In this work, we developed a high-throughput method to count the number of leaves by detecting leaf tips in RGB images. The digital plant phenotyping platform was used to simulate a large and diverse dataset of RGB images and corresponding leaf tip labels of wheat plants at seedling stages (150,000 images with over 2 million labels). The realism of the images was then improved using domain adaptation methods before training deep learning models. The results demonstrate the efficiency of the proposed method evaluated on a diverse test dataset, collecting measurements from 5 countries obtained under different environments, growth stages, and lighting conditions with different cameras (450 images with over 2,162 labels). Among the 6 combinations of deep learning models and domain adaptation techniques, the Faster-RCNN model with cycle-consistent generative adversarial network adaptation technique provided the best performance (R2 = 0.94, root mean square error = 8.7). Complementary studies show that it is essential to simulate images with sufficient realism (background, leaf texture, and lighting conditions) before applying domain adaptation techniques. Furthermore, the spatial resolution should be better than 0.6 mm per pixel to identify leaf tips. The method is claimed to be self-supervised since no manual labeling is required for model training. The self-supervised phenotyping approach developed here offers great potential for addressing a wide range of plant phenotyping problems. The trained networks are available at https://github.com/YinglunLi/Wheat-leaf-tip-detection.

8.
Plant Phenomics ; 5: 0043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223316

RESUMEN

The field phenotyping platforms that can obtain high-throughput and time-series phenotypes of plant populations at the 3-dimensional level are crucial for plant breeding and management. However, it is difficult to align the point cloud data and extract accurate phenotypic traits of plant populations. In this study, high-throughput, time-series raw data of field maize populations were collected using a field rail-based phenotyping platform with light detection and ranging (LiDAR) and an RGB (red, green, and blue) camera. The orthorectified images and LiDAR point clouds were aligned via the direct linear transformation algorithm. On this basis, time-series point clouds were further registered by the time-series image guidance. The cloth simulation filter algorithm was then used to remove the ground points. Individual plants and plant organs were segmented from maize population by fast displacement and region growth algorithms. The plant heights of 13 maize cultivars obtained using the multi-source fusion data were highly correlated with the manual measurements (R2 = 0.98), and the accuracy was higher than only using one source point cloud data (R2 = 0.93). It demonstrates that multi-source data fusion can effectively improve the accuracy of time series phenotype extraction, and rail-based field phenotyping platforms can be a practical tool for plant growth dynamic observation of phenotypes in individual plant and organ scales.

9.
Ecotoxicol Environ Saf ; 254: 114704, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36898311

RESUMEN

Studies on the general toxicity of copper nanoparticles (Cu NPs) have been conducted extensively, but their effects on reproductive toxicity remain unclear. In this study, we evaluated the toxic effect of Cu NPs on pregnant rats and their litter. The comparative in vivo toxicity of Cu ions, Cu NPs, and Cu microparticles (MPs) was studied in a 17-day repeated oral-dose experiment at the doses of 60, 120, and 180 mg/kg/day in pregnant rats. The pregnancy rate, mean live litter size, and number of dams decreased when exposed to Cu NPs. Moreover, Cu NPs caused a dose-dependent increase in ovarian Cu levels. The metabolomics results showed that Cu NPs caused reproductive dysfunction by altering sex hormones. In addition, in vivo and in vitro experiments showed that the ovarian cytochrome P450 enzymes (CYP450), responsible for hormone production, were significantly upregulated, whereas the enzymes responsible for hormone metabolism were significantly inhibited, resulting in a metabolic imbalance in some ovarian hormones. Furthermore, the results revealed that the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways significantly participated in the regulation of ovarian CYP enzyme expression. Overall, the results of the in vivo and in vitro toxicity experiments with Cu ions, Cu NPs, and Cu MPs suggested that toxicity from nanoscale Cu particles poses a more serious reproductive threat than microscale Cu as Cu NPs could directly damage the ovary and affect the metabolism of ovarian hormones.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Embarazo , Ratas , Femenino , Animales , Cobre/toxicidad , Ratas Sprague-Dawley , Nanopartículas del Metal/toxicidad , Ovario/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hormonas , Iones
10.
Biomed Pharmacother ; 161: 114525, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36921537

RESUMEN

Major depression disorder is more common among adolescents and is a primary reason for suicide in adolescents. Some antidepressants are ineffective and may possess side effects. Therefore, developing an adolescent antidepressant is the need of the hour. We designed the stress model of adolescent male mice induced by chronic unpredictable stress (CUS). The mice were treated using Tongxieyaofang neutral polysaccharide (TXYF-NP), Tongxieyaofang acidic polysaccharide (TXYF-AP), TXYF-AP + TXYF-NP and fructooligosaccharide + galactooligosaccharides to determine their body weight, behavior, and serum hormone levels. RT-qPCR was used to detect the gene expression of Crhr1, Nr3c1, and Nr3c2 in the hypothalamus and hippocampus and the gene expression of glutamic acid and γ-aminobutyric acid-related receptors in the hippocampus. RT-qPCR, Western blot, and ELISA detected tryptophan metabolism in the colon, serum, and hippocampus. 16s rDNA helped sequence colon microflora, and non-targeted metabolomics enabled the collection of metabolic profiles of colon microflora. In adolescent male mice, CUS induced depression-like behavior, hypothalamic-pituitary-adrenal axis hyperactivity, hippocampal tissue damage, abnormal expression of its related receptors, and dysregulation of tryptophan metabolism. The 16s rDNA and non-targeted metabolomics revealed that CUS led to colon microflora disorder and bile acid metabolism abnormality. Tongxieyaofang polysaccharide could improve the bacterial community and bile acid metabolism disorder by upregulating the relative abundance of Lactobacillus gasseri, Lachnospiraceae bacterium 28-4, Bacteroides and Ruminococcaceae UCG-014 while preventing CUS-induced changes. TXYF-P can inhibit depression-like behavior due to CUS by regulating colonic microflora and restoring bile acid metabolism disorder. Thus, based on the different comparisons, TXYF-NP possessed the best effect.


Asunto(s)
Depresión , Sistema Hipotálamo-Hipofisario , Ratones , Masculino , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Eje Cerebro-Intestino , Triptófano/farmacología , Sistema Hipófiso-Suprarrenal , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Hipocampo , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/metabolismo , Ácidos y Sales Biliares/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
11.
Research (Wash D C) ; 6: 0059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36951796

RESUMEN

The lack of efficient crop phenotypic measurement methods has become a bottleneck in the field of breeding and precision cultivation. However, high-throughput and accurate phenotypic measurement could accelerate the breeding and improve the existing cultivation management technology. In view of this, this paper introduces a high-throughput crop phenotype measurement platform named the LQ-FieldPheno, which was developed by China National Agricultural Information Engineering Technology Research Centre. The proposed platform represents a mobile phenotypic high-throughput automatic acquisition system based on a field track platform, which introduces the Internet of Things (IoT) into agricultural breeding. The proposed platform uses the crop phenotype multisensor central imaging unit as a core and integrates different types of equipment, including an automatic control system, upward field track, intelligent navigation vehicle, and environmental sensors. Furthermore, it combines an RGB camera, a 6-band multispectral camera, a thermal infrared camera, a 3-dimensional laser radar, and a deep camera. Special software is developed to control motions and sensors and to design run lines. Using wireless sensor networks and mobile communication wireless networks of IoT, the proposed system can obtain phenotypic information about plants in their growth period with a high-throughput, automatic, and high time sequence. Moreover, the LQ-FieldPheno has the characteristics of multiple data acquisition, vital timeliness, remarkable expansibility, high-cost performance, and flexible customization. The LQ-FieldPheno has been operated in the 2020 maize growing season, and the collected point cloud data are used to estimate the maize plant height. Compared with the traditional crop phenotypic measurement technology, the LQ-FieldPheno has the advantage of continuously and synchronously obtaining multisource phenotypic data at different growth stages and extracting different plant parameters. The proposed platform could contribute to the research of crop phenotype, remote sensing, agronomy, and related disciplines.

12.
J Affect Disord ; 328: 245-254, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36806662

RESUMEN

BACKGROUND: The relationship between callous-unemotional (CU) traits (the affective facet of psychopathy and the psychopathy that occurs during childhood and adolescence) and suicide ideation (SI) remains unclear. The mechanisms underlying this association still have a gap in the literature. The aims of this study were to determine whether and how callous-unemotional traits were associated with suicide ideation, and to evaluate the mediating effect of negative affect (includes irritability, depression, and anxiety) and the moderating effect of future orientation on the association. METHODS: Data were extracted from a longitudinal study involving middle and high school students, with 1,913 students (55.3% girls) aged 11 to 19 years (14.9 ± 1.6 years) completing a self-reported online survey. The conditional process analysis was examined using Mplus 8.3. RESULTS: We found that callous-unemotional traits positively predicted youths' current suicide ideation, with the observed positive relationship partly mediated by negative affect. However, callous-unemotional traits did not predict the worst-point suicide ideation, which indicated the connection fully mediated by negative affect. Furthermore, future orientation moderated these indirect effects. LIMITATIONS: Use of self-report measures and cross-sectional design. CONCLUSIONS: These findings provided evidence for current debates and conflicting conclusions, and set the foundation for future research, as well as implied the important intervention goals for reducing suicide ideation in youth.


Asunto(s)
Trastorno de la Conducta , Femenino , Humanos , Adolescente , Masculino , Trastorno de la Conducta/psicología , Emociones , Estudios Longitudinales , Estudios Transversales , Ideación Suicida
13.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232424

RESUMEN

A. hydrophila is an important pathogen that mainly harms aquatic animals and has exhibited resistance to a variety of antibiotics. Here, to seek an effective alternative for antibiotics, the effects of umbelliferone (UM) at sub-MICs on A. hydrophila virulence factors and the quorum-sensing system were studied. Subsequently, RNA sequencing was employed to explore the potential mechanisms for the antivirulence activity of umbelliferone. Meanwhile, the protective effect of umbelliferone on grass carp infected with A. hydrophila was studied in vivo. Our results indicated that umbelliferone could significantly inhibit A. hydrophila virulence such as hemolysis, biofilm formation, swimming and swarming motility, and their quorum-sensing signals AHL and AI-2. Transcriptomic analysis showed that umbelliferone downregulated expression levels of genes related to exotoxin, the secretory system (T2SS and T6SS), iron uptake, etc. Animal studies demonstrated that umbelliferone could significantly improve the survival of grass carps infected with A. hydrophila, reduce the bacterial load in the various tissues, and ameliorate cardiac, splenic, and hepatopancreas injury. Collectively, umbelliferone can reduce the pathogenicity of A. hydrophila and is a potential drug for treating A. hydrophila infection.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila , Animales , Antibacterianos/farmacología , Exotoxinas/farmacología , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/genética , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/microbiología , Hierro/farmacología , Umbeliferonas/farmacología , Factores de Virulencia/genética , Factores de Virulencia/farmacología
14.
J Ethnopharmacol ; 299: 115682, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36058478

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: SanHuang XieXin decoction (SXD) is a widely applicated traditional Chinese medicine (TCM) with a significant gut-liver axis regulation effect. AIM OF THE STUDY: To evaluate the therapeutic effect and elucidate the possible underlying molecular mechanisms of SXD on liver damage secondary to ulcerative colitis (UC) in mice. MATERIALS AND METHODS: A model of liver damage secondary to UC was induced by drinking 5% dextran sodium sulfate (DSS) in mice. These mice were treated with one of three doses of SXD or sulfasalazine (SASP), then liver samples were collected and tested. RESULTS: The results reveal that SXD treatment reduced liver cells swelling, and inhibited the accumulation of the hepatic-pro-inflammatory cytokines IL-1ß and tumor necrosis factor-α (TNF-α) in mice with colitis. In addition, SXD reduced the production of nitric oxide (NO) and malondialdehyde (MDA), and increased the activities of superoxide dismutase (SOD). In inflammation regulating, SXD significantly down regulated the protein expression of MyD88 and p-Iκα, but upregulated Iκα. In bile acid metabolism regulating, SXD significantly down regulated the protein expression of FXR, MRP2, BESP and SHP. Therefore, SXD treatment can regulate the TLR4-NF-κB and bile acid metabolism pathways to alleviate liver inflammation and cholestasis. CONCLUSIONS: These results demonstrate that SXD is a potential alternative therapeutic medicine for the treatment of liver damage secondary to colitis.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ácidos y Sales Biliares , Colitis/inducido químicamente , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Inflamación/tratamiento farmacológico , Hígado/metabolismo , Malondialdehído , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Sulfasalazina/uso terapéutico , Superóxido Dismutasa/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Biomed Pharmacother ; 154: 113633, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36063647

RESUMEN

There are 27 million cases of Salmonella Typhimurium (STM) reported worldwide annually, which have resulted in 217,000 deaths to date. Thus, there is an urgent requirement to develop novel antibacterial agents to target the multidrug-resistant strains of STM. We evaluated the inhibitory effect of the chloroform extracts of Atractylodes chinensis (Ac-CE) on the virulence of STM in vitro and develop it as a potential antibacterial agent. First, we determined the in vitro effects of Ac-CE on STM biofilm formation, and swimming, swarming, and adhesion to mucin. Further, we evaluated the effect of Ac-CE on the adhesion and invasion of STM at the gene level. Lastly, we evaluated the inhibitory effect of Ac-CE on STM infectivity at the cellular level. Ac-CE could attenuate both the adhesion and invasion abilities of STM in vitro. At the gene level, it could inhibit the expression of flagella, pilus, biofilm, SPI-1, and SPI-2 genes, which are related to the adhesion and invasion ability of STM in cells. Ac-CE significantly downregulated the expression of inflammatory cytokines and the TLR4/MyD88/NF-κB pathway in an STM infection cell model. It also significantly recovered the expression of intestinal barrier-related genes and proteins in intestinal cells that are damaged during STM infection. Ac-CE is effective as an antivirulence agent in alleviating STM infection. Although the main components of Ac-CE were analyzed.We have not demonstrated the antivirulence effect of the active ingredients in Ac-CE. And the antivirulence effect of Ac-CE and its active ingredients warrant further in vivo studies.


Asunto(s)
Atractylodes , Salmonella typhimurium , Antibacterianos/metabolismo , Antibacterianos/farmacología , Atractylodes/metabolismo , Cloroformo/metabolismo , Cloroformo/farmacología , FN-kappa B/metabolismo , Virulencia
16.
Int Immunopharmacol ; 112: 109239, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36113316

RESUMEN

Pseudomonas aeruginosa is a dangerous pathogen causing nosocomial pneumonia. P. aeruginosa infection-induced liver damage is another fatal threat, and antibiotic treatment is not effective in relieving P. aeruginosa virulence-triggered damage. We here evaluated the protective effect of epigallocatechin gallate (EGCG), a substance that inhibits virulence of P. aeruginosa through quorum quenching, on liver damage secondary to P. aeruginosa infection. Mice were pretreated with EGCG (20, 40, and 80 mg/kg) for 3 days, and then infected with P. aeruginosa through intratracheal instillation to model acute pneumonia. The mice were sacrificed after 24 h of infection, and samples were harvested for subsequent analysis. EGCG significantly decreased the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Histopathological changes of liver were significantly ameliorated by EGCG. It also significantly reduced oxidative stress that induced liver damage in P. aeruginosa infection, which relied not on the activation of the Nrf2-HO-1 pathway but on the upregulation of the activity of antioxidative enzymes. Then, the inflammatory response in the liver was tested. EGCG inhibited the release of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) by blocking the inflammation regulating signaling of the TLR4-myD88-NF-κB pathway. EGCG upregulated the activation of nuclear receptors to stronger the liver protective activity against P. aeruginosa infection. Conclusively, EGCG exhibited a significant hepatoprotective effective against P. aeruginosa infection.


Asunto(s)
Catequina , Hepatopatías , Neumonía Bacteriana , Infecciones por Pseudomonas , Animales , Ratones , Alanina Transaminasa , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Aspartato Aminotransferasas , Catequina/uso terapéutico , Catequina/farmacología , Citocinas/metabolismo , Interleucina-6/metabolismo , Hígado/patología , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Pseudomonas aeruginosa , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Neumonía Bacteriana/complicaciones , Neumonía Bacteriana/tratamiento farmacológico , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/tratamiento farmacológico , Hepatopatías/microbiología
17.
Front Immunol ; 13: 896874, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35686124

RESUMEN

Developing quorum-sensing (QS) based anti-infection drugs is one of the most powerful strategies to combat multidrug-resistant bacteria. Paeonol has been proven to attenuate the QS-controlled virulence factors of P. aeruginosa by down-regulating the transcription of QS signal molecules. This research aimed to assess the anti-virulence activity and mechanism of paeonol against P. aeruginosa infection in vitro and in vivo. In this study, paeonol was found to reduce the adhesion and invasion of P.aeruginosa to macrophages and resist the cytotoxicity induced by P.aeruginosa. Paeonol reduced the expression of virulence factors of P.aeruginosa by inhibiting QS, thereby reducing the LDH release and damage of P.aeruginosa-infected macrophages. Paeonol can inhibit bacterial virulence and enhance the ability of macrophages to clear P.aeruginosa. In addition, paeonol exerts anti-inflammatory activity by reducing the expression of inflammatory cytokines and increasing the production of anti-inflammatory cytokines. Paeonol treatment significantly inhibited the activation of TLR4/MyD88/NF-κB signaling pathway and decreased the inflammation response of P. aeruginosa-infected macrophages. Paeonol also significantly reduced the ability of P.aeruginosa to infect mice and reduced the inflammatory response. These data suggest that paeonol can inhibit the virulence of P.aeruginosa and decrease the inflammation response in P.aeruginosa-infected macrophages and mice, which can decrease the damage induced by P.aeruginosa infection and enhance the ability of macrophages to clear bacteria. This study supports the further development of new potential anti-infective drugs based on inhibition of QS and virulence factors.


Asunto(s)
Pseudomonas aeruginosa , Factores de Virulencia , Acetofenonas , Animales , Antiinflamatorios/farmacología , Citocinas , Inflamación/tratamiento farmacológico , Ratones , Pseudomonas aeruginosa/fisiología , Factores de Virulencia/metabolismo
18.
Front Microbiol ; 13: 874354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547130

RESUMEN

The superbug Pseudomonas aeruginosa is among the most formidable antibiotic-resistant pathogens. With declining options for antibiotic-resistant infections, new medicines are of utmost importance to combat with P. aeruginosa. In our previous study, we demonstrated that Epigallocatechin-3-gallate (EGCG) can inhibit the production of quorum sensing (QS)-regulated virulence factors in vitro. Accordingly, the protective effect and molecular mechanisms of EGCG against P. aeruginosa-induced pneumonia were studied in a mouse model. The results indicated that EGCG significantly lessened histopathological changes and increased the survival rates of mice infected with P. aeruginosa. EGCG effectively alleviated lung injury by reducing the expression of virulence factors and bacterial burden. In addition, EGCG downregulated the production of pro-inflammatory cytokines, such as TNF-α, IL-1, IL-6, and IL-17, and increased the expression of anti-inflammatory cytokines IL-4 and IL-10. Thus, the experimental results supported for the first time that EGCG improved lung damage in P. aeruginosa infection by inhibiting the production of QS-related virulence factors in vivo.

19.
Ecotoxicol Environ Saf ; 229: 113039, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34922170

RESUMEN

Nano-copper has been increasingly employed in various products. In previous studies, we showed that nano-copper caused damage in the rat testis, but it remains unclear whether the toxic reaction can affect the reproductive function. In this study, following 28 d of exposure to nano-copper at a dose of 44, 88, and 175 mg/kg/day, there was a decrease in sperm quality, fructose content, and the secretion of sex hormones. Nano-copper also increased the level of oxidative stress, sperm malformation rate, and induced abnormal structural changes in testicular tissue. Moreover, Nano-copper upregulated the expression of apoptosis-related protein Bax and autophagy-related protein Beclin, and downregulated the expression of Bcl2 and p62. Furthermore, nano-copper (175 mg/kg) downregulated the protein expression of AMPK, p-AKT, mTOR, p-mTOR, p-4E-BP1, p70S6K, and p-p70S6K, and upregulated the protein expression of p-AMPK. Therefore, nano-copper induced damage in testicular tissues and spermatogenesis is highly related to cell apoptosis and autophagy by regulating the Akt/mTOR signaling pathway. In summary, excess exposure to nano-copper may induce testicular apoptosis and autophagy through AKT/mTOR signaling pathways, and damage the reproductive system in adult males, which is associated with oxidative stress in the testes.


Asunto(s)
Cobre , Testículo , Animales , Apoptosis , Autofagia , Cobre/toxicidad , Masculino , Ratas , Transducción de Señal
20.
Front Microbiol ; 12: 692474, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421847

RESUMEN

With the prevalence of multidrug-resistant bacteria and clinical -acquired pathogenic infections, the development of quorum-sensing (QS) interfering agents is one of the most potential strategies to combat bacterial infections and antibiotic resistance. Chinese herbal medicines constitute a valuable bank of resources for the identification of QS inhibitors. Accordingly, in this research, some compounds were tested for QS inhibition using indicator strains. Paeonol is a phenolic compound, which can effectively reduce the production of violacein without affecting its growth in Chromobacterium violaceum ATCC 12472, indicating its excellent anti-QS activity. This study assessed the anti-biofilm activity of paeonol against Gram-negative pathogens and investigated the effect of paeonol on QS-regulated virulence factors in Pseudomonas aeruginosa. A Caenorhabditis elegans infection model was used to explore the anti-infection ability of paeonol in vivo. Paeonol exhibited an effective anti-biofilm activity against Gram-negative bacteria. The ability of paeonol to interfere with the AHL-mediated quorum sensing systems of P. aeruginosa was determined, found that it could attenuate biofilm formation, and synthesis of pyocyanin, protease, elastase, motility, and AHL signaling molecule in a concentration- and time-dependent manner. Moreover, paeonol could significantly downregulate the transcription level of the QS-related genes of P. aeruginosa including lasI/R, rhlI/R, pqs/mvfR, as well as mediated its virulence factors, lasA, lasB, rhlA, rhlC, phzA, phzM, phzH, and phzS. In vivo studies revealed that paeonol could reduce the pathogenicity of P. aeruginosa and enhance the survival rate of C. elegans, showing a moderate protective effect on C. elegans. Collectively, these findings suggest that paeonol attenuates bacterial virulence and infection of P. aeruginosa and that further research elucidating the anti-QS mechanism of this compound in vivo is warranted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...