Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(6): e0270223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37966201

RESUMEN

IMPORTANCE: Cascade regulation networks are almost present in various kinds of microorganisms, but locating and systematically elucidating specific pleiotropic regulators related to a certain gene cluster can be a tricky problem. Here, based on the promoter of the fidaxomicin pathway-specific regulator FadR1, we utilized a "DNA to Proteins" affinity purification method and captured a global regulator MtrA, which positively regulates fidaxomicin biosynthesis. In the mtrA overexpressed strain, the production of fidaxomicin was improved by 37% compared to the native strain. Then, we combined the "Protein to DNAs" affinity purification method (DAP-seq) with the results of RNA-seq and systematically elucidated the primary and secondary metabolic processes in which MtrA directly or indirectly participates. Thus, our work brought up a new way to improve fidaxomicin production from the perspective of global regulation and analyzed the regulatory mechanism of MtrA. Meanwhile, we provided a novel methodology for the research of cascade regulation networks and vital secondary metabolites.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Regulación Bacteriana de la Expresión Génica , Fidaxomicina , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Familia de Multigenes , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37873659

RESUMEN

AIMS: We evaluated whether the randomness of mutation breeding can be regulated through a double-reporter system. We hope that by establishing a new precursor feeding strategy, the production capacity of industrial microorganisms after pilot scale-up can be further improved. METHODS AND RESULTS: In this study, the industrial strain Streptomyces roseosporus L2796 was used as the starter strain for daptomycin production, and a double-reporter system with the kanamycin resistance gene Neo and the chromogenic gene gusA was constructed to screen for high-yield strain L2201 through atmospheric and room temperature plasma (ARTP). Furthermore, the composition of the culture medium and the parameters of precursor replenishment were optimized, resulting in a significant enhancement of the daptomycin yield of the mutant strain L2201(752.67 mg/l). CONCLUSIONS: This study successfully screened a high-yield strain of daptomycin through a double-reporter system combined with ARTP mutation. The expression level of two reporter genes can evaluate the strength of dptEp promoter, which can stimulate the expression level of dptE in the biosynthesis of daptomycin, thus producing more daptomycin. The developed multi-stage feeding rate strategy provides a novel way to increase daptomycin in industrial fermentation.


Asunto(s)
Daptomicina , Streptomyces , Fermentación , Mutagénesis , Mutación , Streptomyces/genética , Streptomyces/metabolismo
3.
Microorganisms ; 11(10)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894236

RESUMEN

Asperpyridone A represents an unusual class of pyridone alkaloids with demonstrated potential for hypoglycemic activity, primarily by promoting glucose consumption in HepG2 cells. Trichodin A, initially isolated from the marine fungus Trichoderma sp. strain MF106, exhibits notable antibiotic activities against Staphylococcus epidermidis. Despite their pharmacological significance, the regulatory mechanisms governing their biosynthesis have remained elusive. In this investigation, we initiated the activation of a latent gene cluster, denoted as "top", through the overexpression of the Zn2Cys6 transcription factor TopC in Tolypocladium ophioglossoides. The activation of the top cluster led to the biosynthesis of asperpyridone A, pyridoxatin, and trichodin A. Our study also elucidated that the regulator TopC exerts precise control over the biosynthesis of asperpyridone A and trichodin A through the detection of protein-nucleic acid interactions. Moreover, by complementing these findings with gene deletions involving topA and topH, we proposed a comprehensive biosynthesis pathway for asperpyridone A and trichodin A in T. ophioglossoides.

4.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37429605

RESUMEN

AIMS: Study of the effect of isoleucine on the biosynthesis of FK506 and modification of its producing strain to improve the production of FK506. METHODS AND RESULTS: Metabolomics analysis was conducted to explore key changes in the metabolic processes of Streptomyces tsukubaensis Δ68 in medium with and without isoleucine. In-depth analysis revealed that the shikimate pathway, methylmalonyl-CoA, and pyruvate might be the rate-limiting factors in FK506 biosynthesis. Overexpression of involved gene PCCB1 in S. tsukubaensis Δ68, a high-yielding strain Δ68-PCCB1 was generated. Additionally, the amino acids supplement was further optimized to improve FK506 biosynthesis. Finally, FK506 production was increased to 929.6 mg L-1, which was 56.6% higher than that in the starter strain, when supplemented isoleucine and valine at 9 and 4 g L-1, respectively. CONCLUSIONS: Methylmalonyl-CoA might be the key rate-limiting factors in FK506 biosynthesis and overexpression of the gene PCCB1 and further addition of isoleucine and valine could increase the yield of FK506 by 56.6%.


Asunto(s)
Inmunosupresores , Tacrolimus , Tacrolimus/química , Tacrolimus/metabolismo , Ingeniería Metabólica , Isoleucina , Valina
5.
Braz J Microbiol ; 54(2): 935-947, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37162704

RESUMEN

Contamination of soil by petroleum is becoming increasingly serious in the world today. However, the research on gene functional characteristics, metabolites and distribution of microbial genomes in oil-contaminated soil is limited. Considering that, metagenomic and metabonomic were used to detect microbes and metabolites in oil-contaminated soil, and the changes of functional pathways were analyzed. We found that oil pollution significantly changed the composition of soil microorganisms and metabolites, and promoted the relative abundance of Pseudoxanthomonas, Pseudomonas, Mycobacterium, Immundisolibacter, etc. The degradation of toluene, xylene, polycyclic aromatic hydrocarbon and fluorobenzoate increased in Xenobiotics biodegradation and metabolism. Key monooxygenases and dioxygenase systems were regulated to promote ring opening and degradation of aromatic hydrocarbons. Metabolite contents of polycyclic aromatic hydrocarbons (PAHs) such as 9-fluoronone and gentisic acid increased significantly. The soil microbiome degraded petroleum pollutants into small molecular substances and promoted the bioremediation of petroleum-contaminated soil. Besides, we discovered the complete degradation pathway of petroleum-contaminated soil microorganisms to generate gentisic acid from the hydroxylation of naphthalene in PAHs by salicylic acid. This study offers important insights into bioremediation of oil-contaminated soil from the aspect of molecular regulation mechanism and provides a theoretical basis for the screening of new oil degrading bacteria.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Petróleo/análisis , Metagenómica , Microbiología del Suelo , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/metabolismo , Metabolómica , Suelo , Contaminantes del Suelo/metabolismo , Hidrocarburos/metabolismo
6.
Microbiol Spectr ; 11(3): e0038023, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37154757

RESUMEN

DNA methylation is a defense that microorganisms use against extreme environmental stress, and improving resistance against environmental stress is essential for industrial actinomycetes. However, research on strain optimization utilizing DNA methylation for breakthroughs is rare. Based on DNA methylome analysis and KEGG pathway assignment in Streptomyces roseosporus, we discovered an environmental stress resistance regulator, TagR. A series of in vivo and in vitro experiments identified TagR as a negative regulator, and it is the first reported regulator of the wall teichoic acid (WTA) ABC transport system. Further study showed that TagR had a positive self-regulatory loop and m4C methylation in the promoter improved its expression. The ΔtagR mutant exhibited better hyperosmotic resistance and higher decanoic acid tolerance than the wild type, which led to a 100% increase in the yield of daptomycin. Moreover, enhancing the expression of the WTA transporter resulted in better osmotic stress resistance in Streptomyces lividans TK24, indicating the potential for wide application of the TagR-WTA transporter regulatory pathway. This research confirmed the feasibility and effectiveness of mining regulators of environmental stress resistance based on the DNA methylome, characterized the mechanism of TagR, and improved the resistance and daptomycin yield of strains. Furthermore, this research provides a new perspective on the optimization of industrial actinomycetes. IMPORTANCE This study established a novel strategy for screening regulators of environmental stress resistance based on the DNA methylome and discovered a new regulator, TagR. The TagR-WTA transporter regulatory pathway improved the resistance and antibiotic yield of strains and has the potential for wide application. Our research provides a new perspective on the optimization and reconstruction of industrial actinomycetes.


Asunto(s)
Daptomicina , Streptomyces , Epigenoma , Antibacterianos , Streptomyces/genética , Streptomyces/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
7.
Protein Sci ; 32(4): e4617, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36882943

RESUMEN

The efficiency of drug biosynthesis depends on different transcriptional regulatory pathways in Streptomyces, and the protein degradation system adds another layer of complexity to the regulatory processes. AtrA, a transcriptional regulator in the A-factor regulatory cascade, stimulates the production of daptomycin by binding to the dptE promoter in Streptomyces roseosporus. Using pull-down assays, bacterial two-hybrid system and knockout verification, we demonstrated that AtrA is a substrate for ClpP protease. Furthermore, we showed that ClpX is necessary for AtrA recognition and subsequent degradation. Bioinformatics analysis, truncating mutation, and overexpression proved that the AAA motifs of AtrA were essential for initial recognition in the degradation process. Finally, overexpression of mutated atrA (AAA-QQQ) in S. roseosporus increased the yield of daptomycin by 225% in shake flask and by 164% in the 15 L bioreactor. Thus, improving the stability of key regulators is an effective method to promote the ability of antibiotic synthesis.


Asunto(s)
Daptomicina , Streptomyces , Daptomicina/metabolismo , Antibacterianos/metabolismo , Regiones Promotoras Genéticas , Mutación , Tretinoina/metabolismo , Streptomyces/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
8.
Synth Syst Biotechnol ; 7(4): 1013-1023, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35801092

RESUMEN

Despite numerous studies on transcriptional level regulation by single genes in drug producing Actinomyces, the global regulation based on epigenetic modification is not well explored. N4-methylcytosine (m4C), an abundant epigenetic marker in Actinomycetes' genome, but its regulatory mechanism remains unclear. In this study, we identify a m4C methyltransferase (SroLm3) in Streptomyces roseosporus L30 and multi-omics studies were performed and revealed SroLm3 as a global regulator of secondary metabolism. Notably, three BGCs in ΔsroLm3 strain exhibited decreased expression compared to wild type. In-frame deletion of sroLm3 in S.roseosporus L30 further revealed its role in enhancing daptomycin production. In summary, we characterized a m4C methyltransferase, revealed the function of m4C in secondary metabolism regulation and biosynthesis of red pigment, and mapped a series of novel regulators for daptomycin biosynthesis dominated by m4C methylation. Our research further indicated that m4C DNA methylation may contribute to a metabolic switch from primary to secondary metabolism in Actinomyces.

9.
J Fungi (Basel) ; 8(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35628765

RESUMEN

As a potential protein kinase C inhibitor, the fungus metabolite balanol has become more attractive in recent decades. In our previous work, we revealed its biosynthetic pathway through overexpression of the cluster-situated regulator gene blnR in Chinese herb fungus Tolypocladium ophioglossoides. However, information on the regulation of blnR is still largely unknown. In this study, we further investigated the regulation of balanol biosynthesis by BlnR through the analysis of affinity binding using EMSA and RNA-seq analysis. The results showed that BlnR positively regulates balanol biosynthesis through binding to all promoters of bln gene members, including its own promoter. Microscopic observation revealed blnR overexpression also affected spore development and hypha growth. Furthermore, RNA-seq analysis suggested that BlnR can regulate other genes outside of the balanol biosynthetic gene cluster, including those involved in conidiospore development. Finally, balanol production was further improved to 2187.39 mg/L using the optimized medium through statistical optimization based on response surface methodology.

10.
Front Microbiol ; 13: 902990, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620094

RESUMEN

The emergence of drug resistance highlights the importance of new drug discovery. Microbial secondary metabolites encoded in biosynthetic gene clusters (BGCs) are a prolific source of drugs, whereas most of these BGCs are cryptic. Thus, taking strategies to activate these cryptic BGCs is of great importance for potential drug discovery. In this work, three novel pentangular polyphenols lanthomicin A-C were identified by activating a cryptic aromatic polyketide BGC through promoter engineering combined with optimization of fermentation conditions. We further confirmed the involvement of lanthomicin (ltm) BGC in biosynthesis by CRISPR-Cpf1-assisted gene editing. Based on functional analysis of homologous genes, a putative biosynthetic pathway was proposed for the three lanthomicins. Particularly, lanthomicin A showed antiproliferative activity with IC50 0.17 µM for lung cancer cell line A-549. The discovery of lanthomicins brings new members to the pentangular polyphenol subclade of aromatic polyketide and demonstrates the potential of Streptomyces as a source for drug discovery.

11.
Front Microbiol ; 13: 872397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509317

RESUMEN

Daptomycin is a cyclic lipopeptide antibiotic with a significant antibacterial action against antibiotic-resistant Gram-positive bacteria. Despite numerous attempts to enhance daptomycin yield throughout the years, the production remains unsatisfactory. This study reports the application of multilevel metabolic engineering strategies in Streptomyces roseosporus to reconstruct high-quality daptomycin overproducing strain L2797-VHb, including precursor engineering (i.e., refactoring kynurenine pathway), regulatory pathway reconstruction (i.e., knocking out negative regulatory genes arpA and phaR), byproduct engineering (i.e., removing pigment), multicopy biosynthetic gene cluster (BGC), and fermentation process engineering (i.e., enhancing O2 supply). The daptomycin titer of L2797-VHb arrived at 113 mg/l with 565% higher comparing the starting strain L2790 (17 mg/l) in shake flasks and was further increased to 786 mg/l in 15 L fermenter. This multilevel metabolic engineering method not only effectively increases daptomycin production, but can also be applied to enhance antibiotic production in other industrial strains.

12.
Appl Microbiol Biotechnol ; 106(8): 3103-3112, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35389068

RESUMEN

Daptomycin is a new lipopeptide antibiotic for treatment of severe infection caused by multi-drug-resistant bacteria, but its production cost remains high currently. Thus, it is very important to improve the fermentation ability of the daptomycin producer Streptomyces roseosporus. Here, we found that the deletion of proteasome in S. roseosporus would result in the loss of ability to produce daptomycin. Therefore, transcriptome and 4D label-free proteome analyses of the proteasome mutant (Δprc) and wild type were carried out, showing 457 differential genes. Further, five genes were screened by integrated crotonylation omics analysis. Among them, two genes (orf04750/orf05959) could significantly promote the daptomycin synthesis by overexpression, and the fermentation yield in shake flask increased by 54% and 76.7%, respectively. By enhancing the crotonylation modification via lysine site mutation (K-Q), the daptomycin production in shake flask was finally increased by 98.8% and 206.3%, respectively. This result proved that the crotonylation modification of appropriate proteins could effectively modulate daptomycin biosynthesis. In summary, we established a novel strategy of gene screen for antibiotic biosynthesis process, which is more convenient than the previous screening method based on pathway-specific regulators. KEY POINTS: • Δprc strain has lost the ability of daptomycin production • Five genes were screened by multi-omics analysis • Two genes (orf04750/orf05959) could promote the daptomycin synthesis by overexpression.


Asunto(s)
Daptomicina , Streptomyces , Antibacterianos/farmacología , Complejo de la Endopetidasa Proteasomal , Proteoma/metabolismo , Streptomyces/metabolismo
13.
Microb Biotechnol ; 15(6): 1852-1866, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35213090

RESUMEN

The metabolic flux of fatty acyl-CoAs determines lipopeptide biosynthesis efficiency, because acyl donor competition often occurs from polyketide biosynthesis and homologous pathways. We used A40926B0 as a model to investigate this mechanism. The lipopeptide A40926B0 with a fatty acyl group is the active precursor of dalbavancin, which is considered as a new lipoglycopeptide antibiotic. The biosynthetic pathway of fatty acyl-CoAs in the A40926B0 producer Nonomuraea gerenzanensis L70 was efficiently engineered using endogenous replicon CRISPR (erCRISPR). A polyketide pathway and straight-chain fatty acid biosynthesis were identified as major competitors in the malonyl-CoA pool. Therefore, we modified both pathways to concentrate acyl donors for the production of the desired compound. Combined with multiple engineering approaches, including blockage of an acetylation side reaction, overexpression of acetyl-CoA carboxylase, duplication of the dbv gene cluster and optimization of the fermentation parameters, the final strain produced 702.4 mg l-1 of A40926B0, a 2.66-fold increase, and the ratio was increased from 36.2% to 81.5%. Additionally, an efficient erCRISPR-Cas9 editing system based on an endogenous replicon was specifically developed for L70, which increased conjugation efficiency by 660% and gene-editing efficiency was up to 90%. Our strategy of redirecting acyl donor metabolic flux can be widely adopted for the metabolic engineering of lipopeptide biosynthesis.


Asunto(s)
Lipopéptidos , Policétidos , Acilcoenzima A/metabolismo , Vías Biosintéticas , Lipopéptidos/metabolismo , Ingeniería Metabólica , Policétidos/metabolismo
14.
Molecules ; 27(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35164125

RESUMEN

The azoxy compounds with an intriguing chemical bond [-N=N+(-O-)-] are known to have broad applications in many industries. Our previous work revealed that a nonheme diiron N-oxygenase AzoC catalyzed the oxidization of amino-group to its nitroso analogue in the formation of azoxy bond in azoxymycins biosynthesis. However, except for the reported pyridine alkaloid azoxy compounds, most azoxy bonds of nitrogen heterocycles have not been biosynthesized so far, and the substrate scope of AzoC is limited to p-aminobenzene-type compounds. Therefore, it is very meaningful to use AzoC to realize the biosynthesis of azoxy nitrogen heterocycles compounds. In this work, we further studied the catalytic potential of AzoC toward nitrogen heterocycle substrates including 5-aminopyrimidine and 5-aminopyridine compounds to form new azoxy compounds through directed evolution. We constructed a double mutant L101I/Q104R via molecular engineering with improved catalytic efficiency toward 2-methoxypyrimidin-5-amine. These mutations also proved to be beneficial for N-oxygenation of methyl 5-aminopyrimidine-2-carboxylate. The structural analysis showed that relatively shorter distance between the substrate and the diiron center and amino acid residues of the active center may be responsible for the improvement of catalytic efficiency in L101I/Q104R. Our results provide a molecular basis for broadening the AzoC catalytic activity and its application in the biosynthesis of azoxy six-membered nitrogen catenation compounds.


Asunto(s)
Evolución Molecular Dirigida , Compuestos Heterocíclicos/química , Nitrógeno/química , Oxigenasas/química , Catálisis , Oxigenasas/genética
15.
Environ Sci Pollut Res Int ; 29(16): 23338-23351, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34811609

RESUMEN

This study investigated the acute toxicity of cadmium (Cd) to the freshwater mussel Anodonta woodiana. The freshwater mussels were exposed to five concentrations of Cd (0 mg/L, 8.43 mg/L, 16.86 mg/L, 33.72 mg/L, and 67.45 mg/L) for up to 96 h. The 24-h, 48-h, 72-h, and 96-h LC50 values for Cd were estimated as 562.3 mg/L, 331.1 mg/L, 182.0 mg/L, and 134.9 mg/L, respectively. Caspase-3, caspase-8, caspase-9, and Ca-ATPase activities; protein and H2O2 levels; DNA fragmentation; and ultrastructure of the gill were also investigated. The activities of caspase-3 and caspase-9 in mussels were increased by Cd in a dose-dependent manner, where higher doses of Cd (33.72 mg/L and 67.45 mg/L) significantly increased the enzyme activities compared to the controls (P < 0.05). The caspase-8 activity was significantly depressed by a low dose of Cd (8.43 mg/L) but was clearly induced by higher doses of Cd (16.86 mg/L, 33.72 mg/L, and 67.45 mg/L) (P < 0.05). The Ca-ATPase activity and H2O2 levels were elevated and reached maximum values under the medium dose of Cd (16.86 mg/L). However, protein levels were decreased by Cd in an inverse dose-dependent manner. In the gills of the mussels, Cd treatment induced DNA fragmentation as demonstrated by DNA ladders observed via agarose gel electrophoresis. Moreover, ultrastructural alterations in gill cells of mussels treated with Cd (16.86 mg/L and 67.45 mg/L) for 96 h were observed by electronic microscopy. The ultrastructure abnormalities were characterized by the following features: (1) a disordered arrangement and breaking off of microvilli of epithelial cells; (2) chromatin condensed near the nuclear membrane and the appearances of extremely irregular nuclei, some with a fingerlike shape and an unclear, swollen, invaginated, or ruptured nuclear membrane and apoptotic bodies; (3) swollen and vacuolating mitochondria, some with disintegrated or missing cristae; (4) a disintegrated rough endoplasmic reticulum containing different sizes of vesicles; and (5) shrinking and deformation of Golgi bodies with decreased vesicle numbers. Our results demonstrated that Cd could activate caspase-3, caspase-8, caspase-9, and Ca-ATPase; cause ultrastructural changes; and produce DNA fragmentation in the mussels investigated. Based on the information obtained through this study, it is reasonable to conclude that Cd can induce apoptosis in the gills of the mussels, eventually leading to tissue damage.


Asunto(s)
Anodonta , Contaminantes Químicos del Agua , Animales , Apoptosis , Cadmio/análisis , Agua Dulce , Branquias/metabolismo , Peróxido de Hidrógeno/metabolismo , Contaminantes Químicos del Agua/análisis
16.
Mitochondrial DNA B Resour ; 7(1): 19-20, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34912957

RESUMEN

Artabotrys pilosus (Annonaceae) is endemic to China, this plant has high medicinal value and broad application prospect. In this study, we assembled and systematically analyzed the chloroplast genome of A. pilosus on the basis of DNA sequencing using high-throughput techniques. The chloroplast sequence of A. pilosus was 178,195 bp in length, including two inverted repeat regions of 42,150 bp, a large single-copy region of 90,797 bp and a small single-copy region of 3098 bp. It was predicted to contain 142 genes, of which 96 are coding, 38 are tRNA genes, and eight are rRNA genes. The overall GC content was 38.8%; this was higher in the IRs (40.4%) when compared to the LSC (37.6%) and the SSC (32%) regions. Phylogenetic analysis showed that A. pilosus is in subfamily Annonoideae.

17.
ACS Synth Biol ; 10(11): 3009-3016, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34628852

RESUMEN

Oritavancin is a new-generation semisynthetic lipoglycopeptide antibiotic used to prevent the spread of vancomycin-resistant Gram-positive bacteria. The glycopeptide A82846B is the direct precursor of oritavancin. Considering the structural similarity between A82846B and vancomycin, the vancomycin producer Amycolatopsis orientalis was used as a chassis for the construction of a strain producing high-quality A82846B. To construct the A82846B synthetic pathway, we established a highly efficient CRISPR-Cas12a system by optimizing the conditions of conjugation and by screening the regulatory elements in the A. orientalis, which is difficult to be genetically manipulated. The efficiency of gene knockout was almost 100%. The glycosyltransferases module (gtfDE) and glycosyl synthesis module (vcaAEBD) in the vancomycin gene cluster were replaced with the corresponding glycosyltransferases module (gtfABC) and glycosyl synthesis module (evaAEBD) in the A82846B cluster, respectively. A82846B was successfully produced by the artificially constructed synthetic pathway. Moreover, the titer of A82846B was increased 80% by expressing the pathway-specific regulatory strR. This strategy has excellent potential for remodification of natural products to solve antibiotic resistance.


Asunto(s)
Antibacterianos/metabolismo , Sistemas CRISPR-Cas/genética , Glicopéptidos/genética , Glicopéptidos/metabolismo , Actinomycetales/genética , Actinomycetales/metabolismo , Amycolatopsis/genética , Amycolatopsis/metabolismo , Farmacorresistencia Microbiana/genética , Lipoglucopéptidos/genética , Lipoglucopéptidos/metabolismo , Familia de Multigenes/genética , Vancomicina/metabolismo
18.
Microb Cell Fact ; 20(1): 166, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34425854

RESUMEN

BACKGROUND: FK506, a macrolide mainly with immunosuppressive activity, can be produced by various Streptomyces strains. However, one of the major challenges in the fermentation of FK506 is its insufficient production, resulting in high fermentation costs and environmental burdens. Herein, we tried to improve its production via metabolic engineering-guided combinational strategies in Streptomyces tsukubaensis. RESULTS: First, basing on the genome sequencing and analysis, putative competitive pathways were deleted. A better parental strain L19-2 with increased FK506 production from 140.3 to 170.3 mg/L and a cleaner metabolic background was constructed. Subsequently, the FK506 biosynthetic gene cluster was refactored by in-situ promoter-substitution strategy basing on the regulatory circuits. This strategy enhanced transcription levels of the entire FK506 biosynthetic gene cluster in a fine-tuning manner and dramatically increased the FK506 production to 410.3 mg/mL, 1.41-fold higher than the parental strain L19-2 (170.3 mg/L). Finally, the FK506 production was further increased from 410.3 to 603 mg/L in shake-flask culture by adding L-isoleucine at a final concentration of 6 g/L. Moreover, the potential of FK506 production capacity was also evaluated in a 15-L fermenter, resulting in the FK506 production of 830.3 mg/L. CONCLUSION: From the aspects of competitive pathways, refactoring of the FK506 biosynthetic gene cluster and nutrients-addition, a strategy for hyper-production and potentially industrial application of FK506 was developed and a hyper-production strain L19-9 was constructed. The strategy presented here can be generally applicable to other Streptomyces for improvement of FK506 production and streamline hyper-production of other valuable secondary metabolites.


Asunto(s)
Inmunosupresores/metabolismo , Ingeniería Metabólica/métodos , Streptomyces/genética , Streptomyces/metabolismo , Tacrolimus/metabolismo , Técnicas de Cultivo Celular por Lotes , Fermentación , Regulación Bacteriana de la Expresión Génica , Familia de Multigenes
19.
Metab Eng ; 67: 198-215, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34166765

RESUMEN

Actinomycetes are recognized as excellent producers of microbial natural products, which have a wide range of applications, especially in medicine, agriculture and stockbreeding. The three main indexes of industrialization (titer, purity and stability) must be taken into overall consideration in the manufacturing process of natural products. Over the past decades, synthetic biology techniques have expedited the development of industrially competitive strains with excellent performances. Here, we summarize various rational engineering strategies for upgrading the performance of industrial actinomycetes, which include enhancing the yield of natural products, eliminating the by-products and improving the genetic stability of engineered strains. Furthermore, the current challenges and future perspectives for optimizing the industrial strains more systematically through combinatorial engineering strategies are also discussed.


Asunto(s)
Actinobacteria , Productos Biológicos , Actinobacteria/genética , Actinomyces , Ingeniería Metabólica , Biología Sintética
20.
Appl Microbiol Biotechnol ; 105(11): 4731-4741, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34021812

RESUMEN

Genome sequencing has revealed that each Streptomyces contains a wide range of biosynthetic gene clusters (BGCs) and has the capability to produce more novel natural products than what is expected. However, most gene clusters for secondary metabolite biosynthesis are cryptic under normal growth conditions. In Streptomyces tsukubaensis, combining overexpression of the putative SARPs (Streptomyces antibiotic regulatory proteins) and bioactivity-guided screening, the silent gene cluster (tsu) was successfully activated and a novel bioactive anthracycline tsukubarubicin was further isolated and identified. Biological activity assays demonstrated that tsukubarubicin possessed much better antitumor bioactivities against various human cancer cell lines (especially the breast cancer cell lines) than clinically used doxorubicin. Moreover, the previously unreported gene cluster (tsu) for biosynthesis of tsukubarubicin was first characterized and detailed annotations of this gene cluster were also conducted. Our strategy presented in this work is broadly applicable in other Streptomyces and will assist in enriching the natural products for potential drug leads. KEY POINTS: • Generally scalable strategy to activate silent gene clusters by manipulating SARPs. • The novel anthracycline tsukubarubicin with potent antitumor bioactivities. • Identification and annotation of the previously uncharacterized tsu gene cluster.


Asunto(s)
Streptomyces , Antibacterianos/farmacología , Humanos , Familia de Multigenes , Metabolismo Secundario , Streptomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...