Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Adv Mater ; : e2401495, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851884

RESUMEN

The tumor microenvironment (TME) of typical tumor types such as triple-negative breast cancer is featured by hypoxia and immunosuppression with abundant tumor-associated macrophages (TAMs), which also emerge as potential therapeutic targets for antitumor therapy. M1-like macrophage-derived exosomes (M1-Exos) have emerged as a promising tumor therapeutic candidate for their tumor-targeting and macrophage-polarization capabilities. However, the limited drug-loading efficiency and stability of M1-Exos have hindered their effectiveness in antitumor applications. Here, a hybrid nanovesicle is developed by integrating M1-Exos with AS1411 aptamer-conjugated liposomes (AApt-Lips), termed M1E/AALs. The obtained M1E/AALs are loaded with perfluorotributylamine (PFTBA) and IR780, as P-I, to construct P-I@M1E/AALs for reprogramming TME by alleviating tumor hypoxia and engineering TAMs. P-I@M1E/AAL-mediated tumor therapy enhances the in situ generation of reactive oxygen species, repolarizes TAMs toward an antitumor phenotype, and promotes the infiltration of T lymphocytes. The synergistic antitumor therapy based on P-I@M1E/AALs significantly suppresses tumor growth and prolongs the survival of 4T1-tumor-bearing mice. By integrating multiple treatment modalities, P-I@M1E/AAL nanoplatform demonstrates a promising therapeutic approach for overcoming hypoxic and immunosuppressive TME by targeted TAM reprogramming and enhanced tumor photodynamic immunotherapy. This study highlights an innovative TAM-engineering hybrid nanovesicle platform for the treatment of tumors characterized by hypoxic and immunosuppressive TME.

2.
Nat Nanotechnol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898135

RESUMEN

The buildup of plaques in atherosclerosis leads to cardiovascular events, with chronic unresolved inflammation and overproduction of reactive oxygen species (ROS) being major drivers of plaque progression. Nanotherapeutics that can resolve inflammation and scavenge ROS have the potential to treat atherosclerosis. Here we demonstrate the potential of black phosphorus nanosheets (BPNSs) as a therapeutic agent for the treatment of atherosclerosis. BPNSs can effectively scavenge a broad spectrum of ROS and suppress atherosclerosis-associated pro-inflammatory cytokine production in lesional macrophages. We also demonstrate ROS-responsive, targeted-peptide-modified BPNS-based carriers for the delivery of resolvin D1 (an inflammation-resolving lipid mediator) to lesional macrophages, which further boosts the anti-atherosclerotic efficacy. The targeted nanotherapeutics not only reduce plaque areas but also substantially improve plaque stability in high-fat-diet-fed apolipoprotein E-deficient mice. This study presents a therapeutic strategy against atherosclerosis, and highlights the potential of BPNS-based therapeutics to treat other inflammatory diseases.

3.
Comput Methods Programs Biomed ; 250: 108191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677079

RESUMEN

BACKGROUND AND OBJECTIVE: Enhanced external counterpulsation (EECP) is a mechanically assisted circulation technique widely used in the rehabilitation and management of ischemic cardiovascular diseases. It contributes to cardiovascular functions by regulating the afterload of ventricle to improve hemodynamic effects, including increased diastolic blood pressure at aortic root, increased cardiac output and enhanced blood perfusion to multiple organs including coronary circulation. However, the effects of EECP on the coupling of the ventricle and the arterial system, termed ventricular-arterial coupling (VAC), remain elusive. We aimed to investigate the acute effect of EECP on the dynamic interaction between the left ventricle and its afterload of the arterial system from the perspective of ventricular output work. METHODS: A neural network assisted optimization algorithm was proposed to identify the ordinary differential equation (ODE) relation between aortic root blood pressure and flow rate. Based on the optimized order of ODE, a lumped parameter model (LPM) under EECP was developed taking into consideration of the simultaneous action of cardiac and EECP pressure sources. The ventricular output work, in terms of aortic pressure and flow rate cooperated with the LPM, was used to characterize the VAC of ventricle and its afterload. The VAC subjected to the principle of minimal ventricular output work was validated by solving the Euler-Poisson equation of cost function, ultimately determining the waveforms of aortic pressure and flow rate. RESULTS: A third-order ODE can precisely describe the hemodynamic relationship between aortic pressure and flow rate. An optimized dual-source LPM with three energy-storage elements has been constructed, showing the potential in probing VAC under EECP. The LPM simulation results demonstrated that the VAC in terms of aortic pressure and flow rate yielded to the minimal ventricular output work under different EECP pressures. CONCLUSIONS: The ventricular-arterial coupling under EECP is subjected to the minimal ventricular output work, which can serve as a criterion for determining aortic pressure and flow rate. This study provides insight for the understanding of VAC and has the potential in characterizing the performance of the ventricular and arterial system under EECP.


Asunto(s)
Algoritmos , Contrapulsación , Ventrículos Cardíacos , Hemodinámica , Modelos Cardiovasculares , Humanos , Contrapulsación/métodos , Gasto Cardíaco , Arterias/fisiología , Presión Sanguínea , Simulación por Computador , Aorta/fisiología , Redes Neurales de la Computación
5.
Nanoscale ; 16(15): 7378-7386, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38511468

RESUMEN

Tumor-associated macrophages (TAMs) play crucial roles in the immunosuppressive solid tumor microenvironment (TME). Despite their tumor-promoting functions, TAMs can also be therapeutically modulated to exhibit tumor-killing properties, making them attractive targets for tumor immunotherapy. This review highlights the recent advances in nanomedicine-based strategies centered around macrophages for enhanced cancer immunotherapy. Emerging nanomedicine-based strategies to modulate TAMs in cancer treatment include repolarization of the TAM phenotype, inhibition of monocyte recruitment, depletion of TAMs, and blockage of immune checkpoints. These strategies have shown great promise in significantly improving the efficacy of cancer immunotherapy. Moreover, macrophage-inspired drug delivery systems have demonstrated significant promise in inducing immunotherapeutic effects and enhancing therapeutic efficacy by facilitating evasion from the reticuloendothelial system and promoting accumulation at the tumor site. Finally, we also discuss the challenges and propose future opportunities associated with macrophage-modulating nanomedicine to enhance cancer immunotherapy.


Asunto(s)
Nanomedicina , Neoplasias , Humanos , Macrófagos , Sistema Mononuclear Fagocítico , Neoplasias/patología , Inmunoterapia , Microambiente Tumoral
6.
Small Methods ; : e2301620, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38343178

RESUMEN

Acute inflammation has the potential for the recruitment of immune cells, inhibiting tumor angiogenesis, metastasis, and drug resistance thereby overcoming the tumor immunosuppressive microenvironment caused by chronic inflammation. Here, an acute inflammation inducer using bacteria outer membrane vesicles (OMVs) loaded in thermal-sensitive hydrogel (named OMVs-gel) for localized and controlled release of OMVs in tumor sites is proposed. OMVs trigger neutrophil recruitment and amplify acute inflammation inside tumor tissues. The hydrogel ensures drastic inflammation is confined within the tumor, addressing biosafety concerns that the direct administration of free OMVs may cause fatal effects. This strategy eradicated solid tumors safely and rapidly. The study further elucidates one of the possible immune mechanisms of OMVs-gel therapy, which involves the assembly of antitumor neutrophils and elastase release for selective tumor killing. Additionally, tumor vascular destruction induced by OMVs-gel results in tumor darkening, allowing for combinational photothermal therapy. The findings suggest that the use of OMVs-gel can safely induce acute inflammation and enhance antitumor immunity, representing a promising strategy to promote acute inflammation application in tumor immunotherapy.

7.
Chem Rev ; 124(3): 929-1033, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38284616

RESUMEN

RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.


Asunto(s)
ARN , ARN/uso terapéutico , ARN Interferente Pequeño/química , Estudios Prospectivos , Interferencia de ARN
8.
Acta Biomater ; 177: 316-331, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244661

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) aggregates called Lewy bodies leading to the gradual loss of dopaminergic (DA) neurons in the substantia nigra. Although α-syn expression can be attenuated by antisense oligonucleotides (ASOs) and heteroduplex oligonucleotide (HDO) by intracerebroventricular (ICV) injection, the challenge to peripheral targeted delivery of oligonucleotide safely and effectively into DA neurons remains unresolved. Here, we designed a new DNA/DNA double-stranded (complementary DNA, coDNA) molecule with cholesterol conjugation (Chol-HDO (coDNA)) based on an α-syn-ASO sequence and evaluated its silence efficiency. Further, Chol-HDO@LMNPs, Chol-HDO-loaded, cerebrovascular endothelial cell membrane with DSPE-PEG2000-levodopa modification (L-DOPA-CECm)-coated nanoparticles (NPs), were developed for the targeted treatment of PD by tail intravenous injection. CECm facilitated the blood-brain barrier (BBB) penetration of NPs, together with cholesterol escaped from reticuloendothelial system uptake, as well as L-DOPA was decarboxylated into dopamine which promoted the NPs toward the PD site for DA neuron regeneration. The behavioral tests demonstrated that the nanodecoys improved the efficacy of HDO on PD mice. These findings provide insights into the development of biomimetic nanodecoys loading HDO for precise therapy of PD. STATEMENT OF SIGNIFICANCE: The accumulation of α-synuclein (α-syn) aggregates is a hallmark of PD. Our previous study designed a specific antisense oligonucleotide (ASO) targeting human SNCA, but the traumatic intracerebroventricular (ICV) is not conducive to clinical application. Here, we further optimize the ASO by creating a DNA/DNA double-stranded molecule with cholesterol-conjugated, named Chol-HDO (coDNA), and develop a DA-targeted biomimetic nanodecoy Chol-HDO@LMNPs by engineering cerebrovascular endothelial cells membranes (CECm) with DSPE-PEG2000 and L-DOPA. The in vivo results demonstrated that tail vein injection of Chol-HDO@LMNPs could target DA neurons in the brain and ameliorate motor deficits in a PD mouse model. This investigation provides a promising peripheral delivery platform of L-DOPA-CECm nanodecoy loaded with a new Chol-HDO (coDNA) targeting DA neurons in PD therapy.


Asunto(s)
Enfermedad de Parkinson , Ratones , Humanos , Animales , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Levodopa , Oligonucleótidos/farmacología , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Biomimética , Células Endoteliales/metabolismo , ADN/metabolismo
9.
Electrophoresis ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909658

RESUMEN

Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.

10.
Nat Commun ; 14(1): 6973, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914681

RESUMEN

The dense stroma of desmoplastic tumor limits nanotherapeutic penetration and hampers the antitumor immune response. Here, we report a denaturation-and-penetration strategy and the use of tin monosulfide nanoparticles (SnSNPs) as nano-sonosensitizers that can overcome the stromal barrier for the management of desmoplastic triple-negative breast cancer (TNBC). SnSNPs possess a narrow bandgap (1.18 eV), allowing for efficient electron (e-)-hole (h+) pair separation to generate reactive oxygen species under US activation. More importantly, SnSNPs display mild photothermal properties that can in situ denature tumor collagen and facilitate deep penetration into the tumor mass upon near-infrared irradiation. This approach significantly enhances sonodynamic therapy (SDT) by SnSNPs and boosts antitumor immunity. In mouse models of malignant TNBC and hepatocellular carcinoma (HCC), the combination of robust SDT and enhanced cytotoxic T lymphocyte infiltration achieves remarkable anti-tumor efficacy. This study presents an innovative approach to enhance SDT and antitumor immunity using the denaturation-and-penetration strategy, offering a potential combined sono-immunotherapy approach for the cancer nanomedicine field.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Neoplasias , Neoplasias de la Mama Triple Negativas , Terapia por Ultrasonido , Humanos , Animales , Ratones , Carcinoma Hepatocelular/terapia , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias Hepáticas/terapia , Neoplasias/terapia , Especies Reactivas de Oxígeno , Nanopartículas/uso terapéutico , Línea Celular Tumoral
11.
Proc Natl Acad Sci U S A ; 120(44): e2304966120, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37878720

RESUMEN

Messenger RNA (mRNA)-based therapeutics are transforming the landscapes of medicine, yet targeted delivery of mRNA to specific cell types while minimizing off-target accumulation remains challenging for mRNA-mediated therapy. In this study, we report an innovative design of a cationic lipid- and hyaluronic acid-based, dual-targeted mRNA nanoformulation that can display the desirable stability and efficiently transfect the targeted proteins into lung tissues. More importantly, the optimized dual-targeted mRNA nanoparticles (NPs) can not only accumulate primarily in lung tumor cells and inflammatory macrophages after inhalation delivery but also efficiently express any desirable proteins (e.g., p53 tumor suppressor for therapy, as well as luciferase and green fluorescence protein for imaging as examples in this study) and achieve efficacious lung tissue transfection in vivo. Overall, our findings provide proof-of-principle evidence for the design and use of dual-targeted mRNA NPs in homing to specific cell types to up-regulate target proteins in lung tissues, which may hold great potential for the future development of mRNA-based inhaled medicines or vaccines in treating various lung-related diseases.


Asunto(s)
Nanopartículas , Neoplasias , ARN Mensajero/genética , Transfección , Pulmón , Macrófagos
12.
Adv Drug Deliv Rev ; 203: 115116, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37871748

RESUMEN

Upon entering the biological milieu, nanomedicines swiftly interact with the surrounding tissue fluid, subsequently being enveloped by a dynamic interplay of biomacromolecules, such as carbohydrates, nucleic acids, and cellular metabolites, but with predominant serum proteins within the biological corona. A notable consequence of the protein corona phenomenon is the unintentional loss of targeting ligands initially designed to direct nanomedicines toward particular cells or organs within the in vivo environment. mRNA nanomedicine displays high demand for specific cell and tissue-targeted delivery to effectively transport mRNA molecules into target cells, where they can exert their therapeutic effects with utmost efficacy. In this review, focusing on the delivery systems and tissue-specific applications, we aim to update the nanomedicine population with the prevailing and still enigmatic paradigm of nano-bio interactions, a formidable hurdle in the pursuit of targeted mRNA delivery. We also elucidate the current impediments faced in mRNA therapeutics and, by contemplating prospective avenues-either to modulate the corona or to adopt an 'ally from adversary' approach-aim to chart a course for advancing mRNA nanomedicine.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Humanos , Nanomedicina , Estudios Prospectivos , Líquido Extracelular , Nanopartículas/metabolismo
13.
Front Immunol ; 14: 1140463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600773

RESUMEN

Immunotherapy has been emerging as a powerful strategy for cancer management. Recently, accumulating evidence has demonstrated that bacteria-based immunotherapy including naive bacteria, bacterial components, and bacterial derivatives, can modulate immune response via various cellular and molecular pathways. The key mechanisms of bacterial antitumor immunity include inducing immune cells to kill tumor cells directly or reverse the immunosuppressive microenvironment. Currently, bacterial antigens synthesized as vaccine candidates by bioengineering technology are novel antitumor immunotherapy. Especially the combination therapy of bacterial vaccine with conventional therapies may further achieve enhanced therapeutic benefits against cancers. However, the clinical translation of bacteria-based immunotherapy is limited for biosafety concerns and non-uniform production standards. In this review, we aim to summarize immunotherapy strategies based on advanced bacterial therapeutics and discuss their potential for cancer management, we will also propose approaches for optimizing bacteria-based immunotherapy for facilitating clinical translation.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Bacterias , Neoplasias/terapia , Antígenos Bacterianos , Vacunas Bacterianas , Microambiente Tumoral
14.
Angew Chem Int Ed Engl ; 62(41): e202308413, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37380606

RESUMEN

Tumor-associated macrophages (TAMs) play a critical role in the immunosuppressive solid tumor microenvironment (TME), yet in situ engineering of TAMs for enhanced tumor immunotherapy remains a significant challenge in translational immuno-oncology. Here, we report an innovative nanodrug-delivering-drug (STNSP@ELE) strategy that leverages two-dimensional (2D) stanene-based nanosheets (STNSP) and ß-Elemene (ELE), a small-molecule anticancer drug, to overcome TAM-mediated immunosuppression and improve chemo-immunotherapy. Our results demonstrate that both STNSP and ELE are capable of polarizing the tumor-supportive M2-like TAMs into a tumor-suppressive M1-like phenotype, which acts with the ELE chemotherapeutic to boost antitumor responses. In vivo mouse studies demonstrate that STNSP@ELE treatment can reprogram the immunosuppressive TME by significantly increasing the intratumoral ratio of M1/M2-like TAMs, enhancing the population of CD4+ and CD8+ T lymphocytes and mature dendritic cells, and elevating the expression of immunostimulatory cytokines in B16F10 melanomas, thereby promoting a robust antitumor response. Our study not only demonstrates that the STNSP@ELE chemo-immunotherapeutic nanoplatform has immune-modulatory capabilities that can overcome TAM-mediated immunosuppression in solid tumors, but also highlights the promise of this nanodrug-delivering-drug strategy in developing other nano-immunotherapeutics and treating various types of immunosuppressive tumors.


Asunto(s)
Melanoma , Nanopartículas , Neoplasias , Ratones , Animales , Macrófagos Asociados a Tumores , Macrófagos/metabolismo , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Melanoma/patología , Nanopartículas/uso terapéutico , Microambiente Tumoral
15.
J Am Chem Soc ; 145(22): 12193-12205, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37208802

RESUMEN

Selenoprotein plays a crucial role in immune cells and inflammatory regulation. However, as a protein drug that is easily denatured or degraded in the acidic environment of the stomach, efficient oral delivery of selenoprotein is a great challenge. Herein, we innovated an oral hydrogel microbeads-based biochemical strategy that can in situ synthesize selenoproteins, therefore bypassing the necessity and harsh conditions for oral protein delivery while effectively generating selenoproteins for therapeutic applications. The hydrogel microbeads were synthesized by coating hyaluronic acid-modified selenium nanoparticles with a protective shell of calcium alginate (SA) hydrogel. We tested this strategy in mice with inflammatory bowel disease (IBD), one of the most representative diseases related to intestinal immunity and microbiota. Our results revealed that hydrogel microbeads-mediated in situ synthesis of selenoproteins could prominently reduce proinflammatory cytokines secretion and mediate immune cells (e.g., reduce neutrophils and monocytes and increase immune regulatory T cells) to effectively relieve colitis-associated symptoms. This strategy was also able to regulate gut microbiota composition (increase probiotics abundance and suppress detrimental communities) to maintain intestinal homeostasis. Considering intestinal immunity and microbiota widely associated with cancers, infections, inflammations, etc., this in situ selenoprotein synthesis strategy might also be possibly applied to broadly tackle various diseases.


Asunto(s)
Hidrogeles , Microbiota , Animales , Ratones , Microesferas , Selenoproteínas/metabolismo , Inflamación
16.
Math Biosci ; 359: 109009, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37086782

RESUMEN

Vascular endothelial cells (ECs) residing in the innermost layer of blood vessels are exposed to dynamic wall shear stress (WSS) induced by blood flow. The intracellular nitric oxide (NO) and reactive oxygen species (ROS) in ECs modulated by the dynamic WSS play important roles in endothelial functions. Mathematical modeling is a popular methodology for biophysical studies. It can not only explain existing cell experiments, but also reveal the underlying mechanism. However, the previous mathematical models of NO dynamics in ECs are limited to the static WSS induced by constant flow, while arterial blood flow is a periodic pulsatile flow with varying amplitude and frequency at different exercise intensities. In this study, a mathematical model of intracellular NO and ROS dynamics activated by dynamic WSS based on the in vitro cell experiments is developed. With the hypothesis of the viscoelastic body, the Kelvin model is adopted to simulate the mechanosensors on EC. Thus, the NO dynamics activated by dynamic shear stresses induced by constant flow, pulsatile flow, and oscillatory flow are analyzed and compared. Moreover, the roles of ROS have been considered for the first time in the modeling of NO dynamics in ECs based on the analysis of cell experiments. The predictions of the proposed model coincide fairly well with the experimental data when ECs are subjected to exercise-induced WSS. The mechanism is elucidated that WSS induced by moderate-intensity exercise is most favorable to NO production in ECs. This study can provide valuable insights for further study of NO and ROS dynamics in ECs and help develop appropriate exercise regimens for improving endothelial functions.


Asunto(s)
Células Endoteliales , Óxido Nítrico , Células Endoteliales/fisiología , Especies Reactivas de Oxígeno , Hemodinámica , Modelos Teóricos , Estrés Mecánico
17.
J Am Chem Soc ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36930579

RESUMEN

Because of tumor heterogeneity and the immunosuppressive tumor microenvironment, most cancer vaccines typically do not elicit robust antitumor immunological responses in clinical trials. In this paper, we report findings about a bioadhesive nanoparticle (BNP)-based separable cancer vaccine, FeSHK@B-ovalbumin (OVA), to target multi-epitope antigens and exert effective cancer immunotherapy. After the FeSHK@B-OVA "nanorocket" initiates the "satellite-rocket separation" procedure in the acidic tumor microenvironment, the FeSHK@B "launch vehicle" can amplify intracellular oxidative stress persistently. This procedure allows for bioadhesiveness-mediated prolonged drug retention within the tumor tissue and triggers the immunogenic death of tumor cells that transforms the primary tumors into antigen depots, which acts synergistically with the OVA "satellite" to trigger robust antigen-specific antitumor immunity. The cooperation of these two immunostimulants not only efficiently inhibits the primary tumor growth and provokes durable antigen-specific immune activation in vivo but also activates a long-term and robust immune memory effect to resist tumor rechallenge and metastasis. These results highlight the enormous potential of FeSHK@B-OVA to serve as an excellent therapeutic and prophylactic cancer nanovaccine. By leveraging the antigen depots in situ and the synergistic effect among multi-epitope antigens, such a nanovaccine strategy with stealthy bioadhesion may offer a straightforward and efficient approach to developing various cancer vaccines for different types of tumors.

19.
Biomaterials ; 295: 122031, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36731367

RESUMEN

This study reports an ultrasound-mediated and two-dimensional (2D) porous vermiculite nanosheets (VMT NSs)-based nanocatalyst platform (Arg@VMT@PDA-PEG) that synergistically harnessed the Fenton reaction-based chemodynamic therapy (CDT), 2D semiconductor-based sonodynamic therapy (SDT) and nitric oxide (NO)-based gas therapy for combination cancer therapy. The tumor microenvironment responsive degradation of polydopamine (PDA) shell could not only prevent L-Arg, a NO donor, leakage during blood circulation, but also selectively release the active sites of VMT NSs for catalytic reactions in tumor cells. Additionally, the Fenton reactions mediated by the abundant Fe2+/Fe3+ in VMT NSs could efficiently produce ·OH and consume glutathione (GSH) for CDT. Moreover, the reactive oxygen species (ROS, ·OH and ·O2-) produced by ultrasound-triggered Arg@VMT@PDA-PEG could not only execute SDT but also oxidize L-Arg to NO for synergetic gas therapy. The results show that the transformation of ROS to NO can enhance curative efficacy owing to the ability of NO with much longer life-time in freely diffusing into cells from intercellular space. This biodegradable Arg@VMT@PDA-PEG nanocatalytic platform integrating three different catalytic reactions provides a new therapeutic paradigm for combination cancer therapy.


Asunto(s)
Arginina , Neoplasias , Humanos , Porosidad , Especies Reactivas de Oxígeno , Terapia Combinada , Glutatión , Óxido Nítrico , Línea Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrógeno
20.
Bioact Mater ; 20: 548-560, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35846843

RESUMEN

Bacterial outer membrane vesicles (OMVs) are potent immuno-stimulating agents and have the potentials to be bioengineered as platforms for antitumor nanomedicine. In this study, OMVs are demonstrated as promising antitumor therapeutics. OMVs can lead to beneficial M2-to-M1 polarization of macrophages and induce pyroptosis to enhance antitumor immunity, but the therapeutic window of OMVs is narrow for its toxicity. We propose a bioengineering strategy to enhance the tumor-targeting ability of OMVs by macrophage-mediated delivery and improve the antitumor efficacy by co-loading of photosensitizer chlorin e6 (Ce6) and chemotherapeutic drug doxorubicin (DOX) into OMVs as a therapeutic platform. We demonstrate that systemic injection of the DOX/Ce6-OMVs@M therapeutic platform, providing combinational photodynamic/chemo-/immunotherapy, eradicates triple-negative breast tumors in mice without side effects. Importantly, this strategy also effectively prevents tumor metastasis to the lung. This OMVs-based strategy with bioengineering may serve as a powerful therapeutic platform for a synergic antitumor therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...