Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 202(4): 1711-1721, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37474886

RESUMEN

Copper (Cu) is one of the most significant trace elements in the body, but it is also a widespread environmental toxicant health. Ferroptosis is a newly identified programmed cell death, which involves various heavy metal-induced organ toxicity. Nevertheless, the role of ferroptosis in Cu-induced hepatotoxicity remains poorly understood. In this study, we found that 330 mg/kg Cu could disrupt the liver structure and cause characteristic morphological changes in mitochondria associated with ferroptosis. Additionally, Cu treatment increased MDA (malondialdehyde) and LPO (lipid peroxide) production while reducing GSH (reduced glutathione) content and GCL (glutamate cysteine ligase) activity. However, it is noticeable that there were no appreciable differences in liver iron content and key indicators of iron metabolism. Meanwhile, our further investigation found that 330 mg/kg Cu-exposure changed multiple ferroptosis-related indicators in chicken livers, including inhibition of the expression of SLC7A11, GPX4, FSP1, and COQ10B, whereas enhances the levels of ACLS4, LPCAT3, and LOXHD1. Furthermore, the changes in the expression of NCOA4, TXNIP, and Nrf2/Keap1 signaling pathway-related genes and proteins also further confirmed 330 mg/kg Cu exposure-induced ferroptosis. In conclusion, our results indicated that ferroptosis may play essential roles in Cu overload-induced liver damage, which offered new insights into the pathogenesis of Cu-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ferroptosis , Ubiquinona/análogos & derivados , Animales , Peroxidación de Lípido , Cobre/toxicidad , Pollos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Hierro
2.
Biometals ; 37(2): 421-432, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37991682

RESUMEN

Copper (Cu) is an essential trace element that plays a crucial role in numerous physiopathological processes related to human and animal health. In the poultry industry, Cu is used to promote growth as a feed supplement, but excessive use can lead to toxicity on animals. Cytochrome P450 enzymes (CYP450s) are a superfamily of proteins that require heme as a cofactor and are essential for the metabolism of xenobiotic compounds. The purpose of this study was to explore the influence of exposure to Cu on CYP450s activity and apoptosis in the jejunum of broilers. Hence, we first simulated the Cu exposure model by feeding chickens diets containing different amounts of Cu. In the present study, histopathological observations have revealed morphological damage to the jejunum. The expression levels of genes and proteins of intestinal barrier markers were prominently downregulated. While the mRNA expression level of the gene associated with CYP450s was significantly increased. Additionally, apoptosis-related genes and proteins (Bak1, Bax, Caspase-9, Caspase-3, and CytC) were also significantly augmented by excessive Cu, while simultaneously decreasing the expression of Bcl-2. It can be concluded that long-term Cu exposure affects CYP450s activity, disrupts intestinal barrier function, and causes apoptosis in broilers that ultimately leads to jejunum damage.


Asunto(s)
Pollos , Oligoelementos , Humanos , Animales , Pollos/metabolismo , Yeyuno , Apoptosis , Cobre/toxicidad , Cobre/metabolismo , Oligoelementos/metabolismo , Dieta
3.
Ecotoxicol Environ Saf ; 266: 115542, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801897

RESUMEN

Arsenic (As) and copper (Cu) are two common contaminants in the environment. When organisms are exposed to As or/ and Cu in large quantities or for sustained periods, oxidative stress is induced, adversely affecting kidney function. However, the molecular mechanisms involved in As or/ and Cu-induced nephrotoxicity remain elusive. In this experiment, wild-type C57BL/6 and Nrf2-knockout mice (n = 24 each) were exposed to arsenic trioxide and copper chloride alone or in combination. Our research findings indicate that exposure to As or/ and Cu can activate the Nrf2 antioxidant pathway by upregulating the levels of Nrf2, HO-1, CAT, and downregulating the level of Keap1, thereby reducing As or/ and Cu-induced oxidative stress. Meanwhile, exposure induced kidney cell pyroptosis and apoptosis by promoting the expression of NLRP3 inflammasomes and Caspase-3, which peaked in mice co-treated with As and Cu. Subsequently, we investigated its role in As or/ and Cu-induced kidney injury by knocking out Nrf2. Our results show that after knocking out Nrf2, the expression of antioxidant factors CAT and HO-1 significantly decreased. Based on the low antioxidant capacity after Nrf2 knockout, the levels of NLRP3 inflammasome, GSDMD, and Caspase1 were significantly upregulated after exposure to As and Cu, indicating more severe cellular pyroptosis. In addition, the level of Caspase3-mediated apoptosis was also more severe. Taken together, there is crosstalk between Nrf2-mediated antioxidant capacity and apoptosis/ pyroptosis induced by exposure to As or/ and Cu. Depletion of Nrf2 alters its antioxidant capacity, ultimately leading to more severe apoptosis, pyroptosis, and nephrotoxicity.


Asunto(s)
Apoptosis , Arsénico , Cobre , Animales , Ratones , Antioxidantes/metabolismo , Arsénico/metabolismo , Cobre/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Piroptosis
4.
J Hazard Mater ; 458: 131908, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37364438

RESUMEN

Copper (Cu) is hazardous metal contaminant, which induced hepatotoxicity is closely related to mitochondrial disorder, but exact regulatory mechanism has not yet been revealed. Mitochondrial microRNAs (mitomiRs) are a novel and critical regulator of mitochondrial function and mitochondrial homeostasis. Hence, this study revealed the impact of Cu-exposure on mitomiR expression profiles in chicken livers, and further identified mitomiR-12294-5p and its target gene CISD1 as core regulators involved in Cu-induced hepatotoxicity. Additionally, our results showed that Cu-exposure induced mitochondrial oxidative damage, and mitochondrial quality control imbalance mediated by mitochondrial dynamics disturbances, mitochondrial biogenesis inhibition and abnormal mitophagy flux in chicken livers and primary chicken embryo hepatocytes (CEHs). Meaningfully, we discovered that inhibition of the expression of mitomiR-12294-5p effectively alleviated Cu-induced mitochondrial oxidative stress and mitochondrial quality control imbalance, while the up-regulation of mitomiR-12294-5p expression exacerbated Cu-induced mitochondrial damage. Simultaneously, the above Cu-induced mitochondrial damage can be effectively rescued by the overexpression of CISD1, while knockdown of CISD1 dramatically reverses the mitigating effect that inhibition of mitomiR-12294-5p expression on Cu-induced mitochondrial oxidative stress and mitochondrial quality control imbalance. Overall, these results suggested that mitomiR-12294-5p/CISD1 axis mediated mitochondrial damage is a novel molecular mechanism involved in regulating Cu-induced hepatotoxicity in chickens.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , MicroARNs , Embrión de Pollo , Animales , Cobre/metabolismo , Pollos/metabolismo , Apoptosis , Mitocondrias , MicroARNs/genética , MicroARNs/metabolismo , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
5.
Biol Trace Elem Res ; 201(12): 5747-5755, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36929115

RESUMEN

Copper (Cu) is a kind of widely used dietary supplement in poultry production, and a common environmental pollutant at the same time. Excess Cu exposure has been reported to accumulate in the liver and induce cytotoxicity, but the effect of Cu toxicity on hepatic cholesterol metabolism is still uncertain. Herein, we aimed to reveal the effect of excess Cu on the liver and primary hepatocytes of broilers at various concentrations. We found that 110 mg/kg Cu supplement remarkably increased blood cholesterol levels by detecting serum TC, LDL-C, and HDL-C in the broilers, while there was no significant difference in 220 and 330 mg/kg Cu supplements. In addition, high Cu exposure resulted in severe hepatic steatosis and hepatic cord derangement in the broilers. Oil red O staining of primary hepatocytes showed that Cu treatment caused intracellular neutral lipid accumulation. However, the hepatic TC content indicated a downward trend in both liver tissues and hepatocytes after Cu exposure. Furthermore, the expression of cholesterol metabolism-related indicators (SREBP2, HMGCR, LDLR, and CYP7A1) was notably decreased in the Cu-treated groups. While the expression of the key enzyme of cholesterol esterification (ACAT2) did not change significantly. Taken together, our findings preliminarily revealed excess Cu-induced hepatic cholesterol metabolism dysfunction, providing a deeper understanding of the molecular mechanisms of Cu-induced hepatotoxicity.


Asunto(s)
Hígado Graso , Hiperlipidemias , Animales , Cobre/farmacología , Pollos/metabolismo , Hígado/metabolismo , Colesterol , Hígado Graso/metabolismo , Hiperlipidemias/metabolismo , Metabolismo de los Lípidos
6.
Sci Total Environ ; 866: 161458, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36621474

RESUMEN

Copper (Cu) is an essential trace element, but it is also a ubiquitous environmental pollutant that threatens public health. Cuproptosis is a recently discovered cell death mode that unlike other programmed cell death, characterized by proteotoxic stress due to lipoylated protein aggregation and iron-sulfur cluster protein loss. Chickens as a high-trophic-level non-mammalian vertebrate that easily absorb and accumulate copper from the environment and food, but it is unclear whether the underlying molecular mechanisms that cause their hepatotoxicity under natural copper stress are related to cuproptosis. Therefore, we established animal models of chickens with different concentrations of copper exposure to dissect the role and mechanism of cuproptosis in chicken hepatotoxicity under natural copper stress. Our histopathological and biochemical results demonstrated that the liver structure with copper-treated exhibited dose-dependent damage. Meanwhile, copper treatment also dramatically increased serum and liver copper content and activated the expression of the membrane-associated copper transporter ATP7B. Furthermore, we found that Cu-exposure significantly increased the MDA content, and reduced the levels of T-AOC and SOD in serum and liver. Additionally, we found that the mRNA and protein levels of FDX1 were significantly upregulated in the 220 and 330 mg/kg Cu-treated groups. In our further studies, we found that copper did not alter protein levels of DLAT and DLST in chicken liver, but significantly increased Lipoylated-DLAT levels and oligomerization of Lipoylated-DLAT in the 330 mg/kg Cu-treatment group. Overall, we identified that FDX1-mediated protein lipoylation and proteotoxic stress indeed participate in copper-induced hepatotoxicity in chickens. Our results present novel insight into the pathogenesis of copper-induced hepatotoxicity in chickens and provide data to support filling in the role of cuproptosis in birds.


Asunto(s)
Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Oligoelementos , Animales , Pollos/metabolismo , Cobre/toxicidad , Cobre/metabolismo , Estrés Oxidativo , Oligoelementos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...