Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 470: 134149, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554512

RESUMEN

Whether bisphenols, as plasticizers, can influence bacterial uptake of antibiotic resistance genes (ARGs) in natural environment, as well as the underlying mechanism remains largely unknown. Our results showed that four commonly used bisphenols (bisphenol A, S, F, and AF) at their environmental relative concentrations can significantly promote transmission of ARGs by 2.97-3.56 times in Acinetobacter baylyi ADP1. Intriguingly, we observed ADP1 acquired resistance by integrating plasmids uptake and cellular metabolic adaptations other than through reactive oxygen species mediated pathway. Metabolic adaptations including upregulation of capsules polysaccharide biosynthesis and intracellularly metabolic enzymes, which enabled formation of thicker capsules for capturing free plasmids, and degradation of accumulated compounds. Simultaneously, genes encoding DNA uptake and translocation machinery were incorporated to enhance natural transformation of antibiotic resistance carrying plasmids. We further exposed aquatic fish to bisphenols for 120 days to monitor their long-term effects in aquatic environment, which showed that intestinal bacteria communities were dominated by a drug resistant microbiome. Our study provides new insight into the mechanism of enhanced natural transformation of ARGs by bisphenols, and highlights the investigations for unexpectedly-elevated antibiotic-resistant risks by structurally related environmental chemicals.


Asunto(s)
Acinetobacter , Compuestos de Bencidrilo , Fenoles , Sulfonas , Fenoles/toxicidad , Fenoles/metabolismo , Acinetobacter/efectos de los fármacos , Acinetobacter/genética , Acinetobacter/metabolismo , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/metabolismo , Animales , Plásmidos , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Microbiana/genética , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Adaptación Fisiológica , Plastificantes/toxicidad , Antibacterianos/farmacología , Antibacterianos/toxicidad
2.
PLoS One ; 19(3): e0299999, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451992

RESUMEN

Rice blast, caused by rice blast fungus (Magnaporthe oryzae), is a global threat to food security, with up to 50% yield losses. Panicle blast is a severe form of rice blast, and disease responses vary between cultivars with different genotypes. Reactive oxygen species (ROS)-mediated signaling reactions and the phenylpropanoid pathway are important defense mechanisms involved in recognizing and resisting against fungal infection. To understand rice-M. oryzae interactions in resistant and susceptible cultivars, we determined dynamic changes in the activities of five defense-related enzymes in resistant cultivar jingsui 18 and susceptible cultivar jinyuan 899 infected with M. oryzae from 4 to 25 days after infection. We then performed untargeted metabolomics analyses to profile the metabolomes of the cultivars under infected and non-infected conditions. Dynamic changes in the activities of five defense-related enzymes were closely related to panicle blast resistance in rice. Metabolome data analysis identified 634 differentially accumulated metabolites (DAMs) between resistant and susceptible cultivars following infection, potentially explaining differences in disease response between varieties. The most enriched DAMs were associated with lipids and lipid-like molecules, phenylpropanoids and polyketides, organoheterocyclic compounds, organic acids and derivatives, and lignans, neolignans, and related compounds. Multiple metabolic pathways are involved in resistance to panicle blast in rice, including biosynthesis of other secondary metabolites, amino acid metabolism, lipid metabolism, phenylpropanoid biosynthesis, arachidonic acid metabolism, arginine biosynthesis, tyrosine metabolism, tryptophan metabolism, tyrosine and tryptophan biosynthesis, lysine biosynthesis, and oxidative phosphorylation.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Oryza/genética , Magnaporthe/genética , Triptófano/metabolismo , Tirosina/metabolismo , Enfermedades de las Plantas/microbiología
3.
PLoS One ; 19(2): e0298708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422071

RESUMEN

Cross-linguistic perception is known to be molded by native and second language (L2) experiences. Yet, the role of prosodic patterns and individual characteristics on how speakers of tonal languages perceive L2 Spanish sentence modalities remains relatively underexplored. This study addresses the gap by analyzing the auditory performance of 75 Mandarin speakers with varying levels of Spanish proficiency. The experiment consisted of four parts: the first three collected sociolinguistic profiles and assessed participants' pragmatic competence and musical abilities. The last part involved an auditory gating task, where participants were asked to identify Spanish broad focus statements and information-seeking yes/no questions with different stress patterns. Results indicated that the shape of intonation contours and the position of the final stressed syllable significantly impact learners' perceptual accuracy, with effects modulated by utterance length and L2 proficiency. Moreover, individual differences in pragmatic and musical competence were found to refine auditory and cognitive processing in Mandarin learners, thereby influencing their ability to discriminate question-statement contrasts. These findings reveal the complex interplay between prosodic and individual variations in L2 speech perception, providing novel insights into how speakers of tonal languages process intonation in a non-native Romance language like Spanish.


Asunto(s)
Lenguaje , Percepción del Habla , Humanos , Lingüística , Cafeína , Medios de Contraste , Niacinamida
4.
Environ Pollut ; 346: 123599, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38369093

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) are emerging pollutants in the ocean, but their transfer and toxicity along the food chains are unclear. In this study, a marine rotifer (Brachionus plicatilis)-marine medaka (Oryzias melastigma) food chain was constructed to evaluate the transfer of polystyrene MPs and NPs (70 nm, 500 nm, and 2 µm, 2000 µg/L) and toxicity of 70 nm PS-NPs (0, 20, 200, and 2000 µg/L) on marine medaka after long-term food chain exposure. The results showed that the amount of 70 nm NPs accumulated in marine medaka was 1.24 µg/mg, which was significantly higher than that of 500 nm NPs (0.87 µg/mg) and 2 µm MP (0.69 µg/mg). Long-term food chain exposure to NPs caused microflora dysbiosis, resulting in activation of toll-like receptor 4 (TLR4) pathway, which induced liver inflammation. Moreover, NPs food chain exposure increased liver and muscle tissue triglyceride and lactate content, but decreased the protein, sugar, and glycogen content. NPs food chain exposure impaired reproductive function and inhibited offspring early development, which might pose a threat to the sustainability of marine medaka population. Overall, the study revealed the transfer of MPs and NPs and the effects of NPs on marine medaka along the food chain.


Asunto(s)
Oryzias , Rotíferos , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos/toxicidad , Oryzias/fisiología , Cadena Alimentaria , Contaminantes Químicos del Agua/análisis , Rotíferos/metabolismo , Poliestirenos/toxicidad
5.
J Adolesc ; 96(1): 152-166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37859549

RESUMEN

INTRODUCTION: Whether adolescents' routine disclosure to parents is voluntary is assumed but rarely assessed. Researchers also have not examined whether disclosure and lying are premeditated, occurring before rather than after disclosure or lying, and whether adolescents use a single strategy consistently rather than applying multiple strategies when deciding whether to disclose or lie about their activities. This study investigated these significant gaps in the literature and tested whether voluntariness (for disclosure), timing, consistency, and parental psychological control are associated with lessons learned from disclosure and lying. METHODS: Narrative interviews were conducted in 2014-2015 with 131 primarily middle-class, mostly White US early and middle adolescents and college students (M's = 12.74, 15.81, 20.41 years). Narrated disclosure and lying interviews were reliably coded for voluntariness, timing, consistency, and lessons learned. Parental psychological control was assessed using an online survey. RESULTS: Disclosure was primarily strategic or voluntary and less often involuntary. Lying occurred more often before the narrated event, whereas disclosure occurred more often after. Youth typically reported using other strategies besides the elicited one. Disclosing after was associated with lessons learned. Voluntary disclosure was associated with psychological growth, and psychological control was associated with negative self-lessons. CONCLUSIONS: Disclosure and lying are complex and nuanced, varying in their timing, consistency, and voluntariness. These features contribute to adolescents' meaning-make from disclosure and lying. The findings have implications for future research on disclosure and secrecy.


Asunto(s)
Conducta del Adolescente , Revelación , Humanos , Adolescente , Conducta del Adolescente/psicología , Padres/psicología , Confidencialidad , Relaciones Padres-Hijo
6.
Pest Manag Sci ; 80(3): 1039-1052, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37831609

RESUMEN

BACKGROUND: Quorum sensing inhibitors (QSIs) are an emerging control tool that inhibits the quorum sensing (QS) system of pathogenic bacteria. We aimed to screen for potential QSIs in the metabolites of Trichoderma and to explore their inhibitory mechanisms. RESULTS: We screened a strain of Trichoderma asperellum LN004, which demonstrated the ability to inhibit the color development of Chromobacterium subtsugae CV026, primarily attributed to the presence of emodin as its key QSI component. The quantitative polymerase chain reaction with reverse transcription results showed that after emodin treatment of Pectobacterium carotovorum subsp. carotovorum (Pcc), plant cell wall degrading enzyme-related synthetic genes were significantly downregulated, and the exogenous enzyme synthesis gene negative regulator (rsmA) was upregulated 3.5-fold. Docking simulations indicated that emodin could be a potential ligand for ExpI and ExpR proteins because it exhibited stronger competition than the natural ligands in Pcc. In addition, western blotting showed that emodin attenuated the degradation of n-acylhomoserine lactone on the ExpR protein and protected it. Different concentrations of emodin reduced the activity of pectinase, cellulase, and protease in Pcc by 20.81%-72.21%, 8.38%-52.73%, and 3.57%-47.50%. Lesion size in Chinese cabbages, carrots and cherry tomatoes following Pcc infestation was reduced by 10.02%-68.57%, 40.17%-88.56% and 11.36%-86.17%. CONCLUSION: Emodin from T. asperellum LN004 as a QSI can compete to bind both ExpI and ExpR proteins, interfering with the QS of Pcc and reducing the production of virulence factors. The first molecular mechanism reveals the ability of emodin as a QSI to competitively inhibit two QS proteins simultaneously. © 2023 Society of Chemical Industry.


Asunto(s)
Emodina , Pectobacterium , Trichoderma , Emodina/metabolismo , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/metabolismo , Proteínas Bacterianas/genética , Enfermedades de las Plantas/microbiología
7.
STAR Protoc ; 4(4): 102746, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38060443

RESUMEN

The commercial mass production of bifunctional oxygen catalysts with high activity and stability is critical for constructing high-performance lithium-oxygen (Li-O2) batteries, but remains challenging. Herein, we describe a protocol for the scalable fabrication of a 2D bifunctional electrocatalyst of Pt/RuO2/graphene by spatial confinement strategy and elaborately evaluate its oxygen reduction/evolution reactions for advanced Li-O2 batteries. We then detail the synthesis steps for preparing materials followed by assembly and evaluation of the three-electrode systems and coin-type Li-O2 batteries. For complete details on the use and execution of this protocol, please refer to Li et al. (2023).1.


Asunto(s)
Grafito , Oxígeno , Humanos , Litio , Hipoxia
8.
Pestic Biochem Physiol ; 196: 105599, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945247

RESUMEN

Despite the increasing number of fungal microRNA-like small RNAs (milRNAs) being identified and reported, profiling of milRNAs in biocontrol fungi and their roles in the mycoparasitism of pathogenic fungi remains limited. Therefore, in this study, we constructed a GFP fluorescence strain to evaluate the critical period of mycoparasitism in the interaction system between T. breve T069 and B. cinerea. The results showed that the early stage of Trichoderma mycoparasitism occurred 12 h after hyphal contact and was characterized by hyphal parallelism, whereas the middle stage lasted 36 h was characterized by wrapping. The late stage of mycoparasitism occurred at 72 h was characterized by the degradation of B. cinerea mycelia. We subsequently identified the sRNAs of T. breve T069 and B. cinerea during the critical period of mycoparasitism using high-throughput sequencing. In ltR1, 45 potential milRNA targets were identified for 243 genes, and 73 milRNAs targeted 733 genes in ltR3. Additionally, to identify potential transboundary miRNAs in T. breve T069, we screened for miRNAs that were exclusively expressed and had precursor structures in the T. breve T069 genome but were absent in the B. cinerea genome. Next, we predicted the target genes of B. cinerea. Our findings showed that 14 potential transboundary milRNAs from T. breve T069 targeted 41 genes in B. cinerea. Notably, cme-MIR164a-p5_1ss17CT can target 15 genes, including Rim15 (BCIN_15g00280), Nop53 (BCIN_12g03770), Skn7 (BCIN_02g08650), and Vel3 (BCIN_03g06410), while ppe-MIR477b-p3_1ss11TC targeted polyketide synthase (BCIN_03g04360, PKS3). The target gene of PC-5p-27397_41 was a non-ribosomal peptide synthetase (BCIN_01g03730, Bcnrps6). PC-3p-0029 (Tri-milR29) targeted chitin synthetase 7. These genes play crucial roles in normal mycelial growth and pathogenicity of B. cinerea. In conclusion, this study highlights the significance of milRNAs in Trichoderma mycoparasitism of B. cinerea. This discovery provides a new strategy for the application of miRNAs in the prevention and treatment of fungal pathogens.


Asunto(s)
Hypocreales , MicroARNs , Trichoderma , MicroARNs/genética , Hypocreales/genética , Botrytis/genética , ARN de Hongos/genética , Trichoderma/genética , Regulación Fúngica de la Expresión Génica
9.
Eur J Pharmacol ; 960: 176148, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37866742

RESUMEN

Influenza A virus infection mediates the host's excessive immune response, wherein caspase-3-GSDME-mediated pyroptosis of lung alveolar epithelial cells can contribute to inducing cytokine storm, leading to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Numerous studies have shown that mesenchymal stem cells (MSCs) possess potent immunomodulatory abilities and can mitigate virus-induced cytokine storm and lung injury. However, the role of MSCs in lung pyroptosis remains poorly understood. In this study, we established an ALI model using a mouse-adapted strain of avian influenza virus H9N2 (MA01) and intervened by injecting appropriate bone marrow-derived mesenchymal stem cells (BMMSCs) into the mouse's trachea. The results obtained from animal experiments demonstrated that BMMSCs prevented and ameliorated ALI by inhibiting Caspase-3-GSDME-mediated pyroptosis of lung epithelial cells as well as hypercytokinemia. Similarly, corresponding results were observed in vitro, where BMMSCs and the lung epithelial cell line MLE-12 cells were co-cultured in a transwell compartment. Additionally, the caspase-3 inhibitor Z-DEVD-FMK could block MA01-induced GSDME activation. Furthermore, by combining RNA-Seq data with in vitro and in vivo results, we also discovered that MA01-induced pyroptosis is associated with the BAK/BAX-dependent mitochondrial apoptosis pathway. Notably, BMMSCs exhibit the ability to interfere with this signaling pathway. In conclusion, this study provides novel theoretical support for the utilization of BMMSCs in the treatment of ALI induced by influenza.


Asunto(s)
Lesión Pulmonar Aguda , Subtipo H9N2 del Virus de la Influenza A , Células Madre Mesenquimatosas , Animales , Piroptosis , Células Epiteliales Alveolares/metabolismo , Subtipo H9N2 del Virus de la Influenza A/metabolismo , Caspasa 3/metabolismo , Síndrome de Liberación de Citoquinas , Pulmón/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/metabolismo , Células Madre Mesenquimatosas/metabolismo
10.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37762614

RESUMEN

Rice (Oryza sativa L.) is one of the world's most crucial food crops, as it currently supports more than half of the world's population. However, the presence of sheath blight (SB) caused by Rhizoctonia solani has become a significant issue for rice agriculture. This disease is responsible for causing severe yield losses each year and is a threat to global food security. The breeding of SB-resistant rice varieties requires a thorough understanding of the molecular mechanisms involved and the exploration of immune genes in rice. To this end, we conducted a screening of rice cultivars for resistance to SB and compared the transcriptome based on RNA-seq between the most tolerant and susceptible cultivars. Our study revealed significant transcriptomic differences between the tolerant cultivar ZhengDao 22 (ZD) and the most susceptible cultivar XinZhi No.1 (XZ) in response to R. solani invasion. Specifically, the tolerant cultivar showed 7066 differentially expressed genes (DEGs), while the susceptible cultivar showed only 60 DEGs. In further analysis, we observed clear differences in gene category between up- and down-regulated expression of genes (uDEGs and dDEGs) based on Gene Ontology (GO) classes in response to infection in the tolerant cultivar ZD, and then identified uDEGs related to cell surface pattern recognition receptors, the Ca2+ ion signaling pathway, and the Mitogen-Activated Protein Kinase (MAPK) cascade that play a positive role against R. solani. In addition, DEGs of the jasmonic acid and ethylene signaling pathways were mainly positively regulated, whereas DEGs of the auxin signaling pathway were mainly negatively regulated. Transcription factors were involved in the immune response as either positive or negative regulators of the response to this pathogen. Furthermore, our results showed that chloroplasts play a crucial role and that reduced photosynthetic capacity is a critical feature of this response. The results of this research have important implications for better characterization of the molecular mechanism of SB resistance and for the development of resistant cultivars through molecular breeding methods.


Asunto(s)
Oryza , Transcriptoma , Oryza/genética , Fitomejoramiento , Productos Agrícolas
11.
Biomed Pharmacother ; 167: 115471, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37699317

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a lung inflammatory disease that is associated with environmental allergic component exposure. Cigarette smoke is an environmental toxicant that induces lung malfunction leading to various pulmonary diseases. Astaxanthin (AST) is a carotenoid that shows antioxidant and anti-inflammatory activities which might be a promising candidate for COPD therapy. In this study, we released that AST could attenuate cigarette smoke-induced DNA damage and apoptosis in vivo and in vitro. AST administration ameliorated cigarette smoke extract (CSE)-induced activation of Caspase-3 and apoptosis. Pretreated mice with AST significantly decrease CSE-induced DNA damage which shows lower nuclear γ-H2AX level. AST treatment also dramatically reduces the production of intracellular reactive oxygen species (ROS) by suppressing the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzyme 4 (NOX4) and dual oxidase 1 (DUOX1). Taken together, this study suggested that AST can decrease CSE-induced DNA damage and apoptosis by inhibiting NOX4/DUOX1 expression that promotes ROS generation. AST may be a potential protective agent against CSE-associated lung disease that is worth in-depth investigation.

12.
Mar Pollut Bull ; 194(Pt A): 115248, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37572429

RESUMEN

In order to improve the sensitivity of lateral flow immunoassays (LFIAs) for the detection of piscine vitellogenin (Vtg), a well-established biomarker for environmental estrogens, Au coated Ag nanoflowers (Ag@Au NFs) were used as labeling probes to develop a LFIA for marine medaka Vtg. The synthesized Ag@Au NFs with good monodispersity had an average diameter of 44.1 nm and absorbance peak of 524 nm. When the concentration of goat anti-mouse IgG and anti-Vtg polyclonal antibody (anti-Vtg PAbs) were 1.3 and 0.4 mg/mL, respectively, the detection range of the LFIA was 0.19-25 ng/mL, and the visual detection limit was 0.1 ng/mL, which was approximately 80 times lower than that of LFIAs based on other nanoparticles (Au NPs, Ag NPs, Au NFs, and FM). After evaluation of its specificity and robustness, the usefulness of Ag@Au NFs labeled LFIA was validated by measuring Vtg induction in the plasma of marine medaka exposed to bisphenol A, a weak estrogenic chemical. This highly sensitive lateral flow immunoassay could detect Vtg biomarker within 15 min without the need of expensive and complicated instruments, and thus offered an ultrasensitive and robust on-site detection method for estrogenic activity in field environment.


Asunto(s)
Nanopartículas del Metal , Oryzias , Animales , Vitelogeninas , Estrógenos , Inmunoensayo , Biomarcadores , Nanopartículas del Metal/toxicidad
13.
Talanta ; 265: 124838, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37453395

RESUMEN

Herbicide prometryn has become a common pollutant in aquatic environments and caused adverse impacts on ecosystems. This study developed an ultrasensitive electrochemical aptasensor for prometryn based on its highly affinitive and specific aptamer and Ag@Au nanoflowers (Ag@AuNFs) for signal amplification. Firstly, this study improved the Capture-SELEX strategy to screen aptamers and obtained aptamer P60-1, which had a high affinity (Kd: 23 nM) and could distinguish prometryn from its structural analogues. Moreover, the typical stem-loop structure in aptamer P60-1 was found to be the binding pocket for prometryn. Subsequently, an electrochemical aptasensor for prometryn was established using multiwalled carbon nanotubes and reduced graphene oxide as electrode substrate, Ag@Au NFs as signal amplification element, and aptamer P60-1 as recognition element. The aptasensor had a detection range of 0.16-500 ng/mL and a detection limit of 60 pg/mL, which was much lower than those of existing detection methods. The aptasensor had high stability and good repeatability, and could specifically detecting prometryn. Furthermore, the utility of the aptasensor was validated by measuring prometryn in environmental and biological components. Therefore, this study provides a robust and ultrasensitive aptasensor for accurate detection for prometryn pollution.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Herbicidas , Nanotubos de Carbono , Nanotubos de Carbono/química , Prometrina , Aptámeros de Nucleótidos/química , Ecosistema , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Oro/química , Límite de Detección , Grafito/química
14.
Front Pharmacol ; 14: 1191129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292153

RESUMEN

Background: Metastatic castration-resistant prostate cancer (mCRPC) is a highly aggressive stage of prostate cancer, and non-mutational epigenetic reprogramming plays a critical role in its progression. Super enhancers (SE), epigenetic elements, are involved in multiple tumor-promoting signaling pathways. However, the SE-mediated mechanism in mCRPC remains unclear. Methods: SE-associated genes and transcription factors were identified from a cell line (C4-2B) of mCRPC by the CUT&Tag assay. Differentially expressed genes (DEGs) between mCRPC and primary prostate cancer (PCa) samples in the GSE35988 dataset were identified. What's more, a recurrence risk prediction model was constructed based on the overlapping genes (termed SE-associated DEGs). To confirm the key SE-associated DEGs, BET inhibitor JQ1 was applied to cells to block SE-mediated transcription. Finally, single-cell analysis was performed to visualize cell subpopulations expressing the key SE-associated DEGs. Results: Nine human TFs, 867 SE-associated genes and 5417 DEGs were identified. 142 overlapping SE-associated DEGs showed excellent performance in recurrence prediction. Time-dependent receiver operating characteristic (ROC) curve analysis showed strong predictive power at 1 year (0.80), 3 years (0.85), and 5 years (0.88). The efficacy of his performance has also been validated in external datasets. In addition, FKBP5 activity was significantly inhibited by JQ1. Conclusion: We present a landscape of SE and their associated genes in mCPRC, and discuss the potential clinical implications of these findings in terms of their translation to the clinic.

15.
Environ Pollut ; 330: 121745, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127237

RESUMEN

Thyroid-disrupting chemicals (TDCs) have received increasing concerns because of their negative health impacts on both wildlife and humans. This study aimed to develop in vitro screening assays for TDCs based on thyroid hormone receptor ß (TRß) and transthyretin (TTR) proteins. Firstly, the recombinant ligand-binding domain of TRß (TRß-LBD) and TTR proteins of zebrafish were produced by eukaryotic expression system and then used as bio-recognition components to construct electrochemical biosensors. In the biosensors, the supported bilayer lipid membrane (s-BLM) was used as a matrix to immobilize proteins, and gold nanoflowers (AuNFs) were used to improve the sensitivity by increasing electroactive surface area. Under the optimizing conditions, the zfTRß-LBD/AuNFs/s-BLM/GCE biosensor had a detection range of 0.23 nM-1.92 µM and a detection limit of 0.07 nM for triiodothyronine (T3), while the zfTTR/AuNFs/s-BLM/GCE biosensor had a detection range of 0.46 nM-3.84 µM, with a detection limit of 0.13 nM. Based on the constructed biosensors, the order of T3 equivalent concentrations of bisphenols was BPA ≈ BPS > BPF > BPAF ≈ BPAP > BPZ, which was similar to the results of recombinant TRß two-hybrid yeast assay. Furthermore, the reliability of the biosensors was validated by molecular docking, in which BPA and BPS showed higher binding affinity to zfTRß-LBD. Therefore, this study provided a valuable tool for efficiently screening TDCs.


Asunto(s)
Glándula Tiroides , Pez Cebra , Animales , Humanos , Glándula Tiroides/metabolismo , Pez Cebra/metabolismo , Receptores beta de Hormona Tiroidea/metabolismo , Prealbúmina/metabolismo , Simulación del Acoplamiento Molecular , Reproducibilidad de los Resultados
16.
Plant Signal Behav ; 18(1): 2213934, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37231769

RESUMEN

Piriformospora indica, a plant root-colonizing basidiomycete fungus, exhibits strong growth-promoting activity in symbiosis with a broad range of plants. Here, we report the potential of P. indica to improve growth, yield, and disease resistance in wheat in the field. In the present study, P. indica successfully colonized wheat through chlamydospores and formed dense mycelial networks that covered roots. Plants subjected to the seed soaking (SS) treatment with P. indica chlamydospore suspensions enhanced tillering 2.28-fold compared to the non-inoculated wheat in the tillering stage. In addition, P. indica colonization promoted vegetative growth significantly during the three-leaf, tillering, and jointing stages. Moreover, the P. indica-SS-treatment enhanced wheat yield by 16.37 ± 1.63%, by increasing grains per ear and panicle weight and decreased damage to wheat shoot and root architecture markedly, with high field control effects against Fusarium pseudograminearum (81.59 ± 1.32%), Bipolaris sorokiniana (82.19 ± 1.59%), and Rhizoctonia cerealis (75.98 ± 1.36%). Most of the primary metabolites, such as amino acids, nucleotides, and lipids, involved in vegetative reproduction were increased in P. indica-SS-treatment plants, whereas secondary metabolites, such as terpenoids, polyketides, and alkaloids, decreased following P. indica inoculation. The up-regulated processes of protein, carbohydrate, and lipid metabolism indicated that P. indica colonization increased growth, yield, and disease resistance via the acceleration of plant primary metabolism. In conclusion, P. indica improved morphological, physiological, and metabolic substance levels, and further promoted its growth, yield, and disease resistance in wheat.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Triticum , Basidiomycota/fisiología , Simbiosis , Raíces de Plantas/metabolismo
17.
RNA Biol ; 20(1): 248-256, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37231782

RESUMEN

Chloroplast and mitochondrial DNA (cpDNA and mtDNA) are apart from nuclear DNA (nuDNA) in a eukaryotic cell. The transcription system of chloroplasts differs from those of mitochondria and eukaryotes. In contrast to nuDNA and animal mtDNA, the transcription of cpDNA is still not well understood, primarily due to the unresolved identification of transcription initiation sites (TISs) and transcription termination sites (TTSs) on the genome scale. In the present study, we characterized the transcription of chloroplast (cp) genes with greater accuracy and comprehensive information using PacBio full-length transcriptome data from Arabidopsis thaliana. The major findings included the discovery of four types of artifacts, the validation and correction of cp gene annotations, the exact identification of TISs that start with G, and the discovery of polyA-like sites as TTSs. Notably, we proposed a new model to explain cp transcription initiation and termination at the whole-genome level. Four types of artifacts, degraded RNAs and splicing intermediates deserve the attention from researchers working with PacBio full-length transcriptome data, as these contaminant sequences can lead to incorrect downstream analysis. Cp transcription initiates at multiple promoters and terminates at polyA-like sites. Our study provides new insights into cp transcription and new clues to study the evolution of promoters, TISs, TTSs and polyA tails of eukaryotic genes.


Asunto(s)
Arabidopsis , Genoma del Cloroplasto , Animales , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Transcriptoma , ADN Mitocondrial/genética , Cloroplastos/genética , Arabidopsis/genética
18.
Exp Lung Res ; 49(1): 49-62, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36719141

RESUMEN

Purpose: Endoplasmic reticulum (ER) stress regulates mucus hypersecretion, and may activate downstream factors via TBK1 signaling to induce gene expression. However, it remains unclear whether ER stress promotes airway mucus secretion through the TBK1 pathway. We aimed to investigate the role of the TBK1 pathway in the regulation of MUC5AC expression in a mouse model of house dust mite (HDM)-induced allergic asthma. Materials and Methods: Mice with HDM-induced asthma and human bronchial epithelial BEAS-2B cells were treated with amlexanox, an anti-allergy drug (25 µM), or 4-PBA (10 mM). Tissue and cell samples were collected. Tissue samples were stained with hematoxylin and eosin (H&E) or periodic acid Schiff (PAS) to evaluate pathology. Protein expression was analyzed by western blotting and immunofluorescence. Results: Mice exposed to HDM presented ER stress and hypersecretion of mucus Muc5ac from airway epithelial cells (p < 0.001). Similar results were observed in BEAS-2B cells following exposure to HDM. Both in vivo and in vitro studies revealed that HDM-induced ER stress induced MUC5AC overexpression via TBK1 signaling. Amlexanox and 4-PBA markedly reduced mucus production and weakened the TBK1 signal, which mediates MUC5AC hypersecretion. Conclusion: TBK1 plays a pivotal role in HDM-induced ER stress, leading to overproduction of MUC5AC in the asthmatic airway epithelium. The overproduction of MUC5AC can be significantly decreased by inhibiting TBK1 or ER stress using 4-PBA. These findings highlight potential target-specific therapies for patients with chronic allergic asthma.


Asunto(s)
Asma , Pyroglyphidae , Humanos , Ratones , Animales , Pyroglyphidae/metabolismo , Asma/metabolismo , Estrés del Retículo Endoplásmico , Epitelio/metabolismo , Proteínas Serina-Treonina Quinasas , Mucina 5AC/genética , Mucina 5AC/metabolismo
19.
Small ; 19(2): e2205024, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36398604

RESUMEN

Mono-chemotherapy has significant side effects and unsatisfactory efficacy, limiting its clinical application. Therefore, a combination of multiple treatments is becoming more common in oncotherapy. Chemotherapy combined with the induction of ferroptosis is a potential new oncotherapy. Furthermore, polymeric nanoparticles (NPs) can improve the antitumor efficacy and decrease the toxicity of drugs. Herein, a polymeric NP, mPEG-b-PPLGFc@Dox, is synthesized to decrease the toxicity of doxorubicin (Dox) and enhance the efficacy of chemotherapy by combining it with the induction of ferroptosis. First, mPEG-b-PPLGFc@Dox is oxidized by endogenous H2 O2 and releases Dox, which leads to an increase of H2 O2 by breaking the redox balance. The Fe(II) group of ferrocene converts H2 O2 into ·OH, inducing subsequent ferroptosis. Furthermore, glutathione peroxidase 4, a biomarker of ferroptosis, is suppressed and the lipid peroxidation level is elevated in cells incubated with mPEG-b-PPLGFc@Dox compared to those treated with Dox alone, indicating ferroptosis induction by mPEG-b-PPLGFc@Dox. In vivo, the antitumor efficacy of mPEG-b-PPLGFc@Dox is higher than that of free Dox. Moreover, the loss of body weight in mice treated mPEG-b-PPLGFc@Dox is lower than in those treated with free Dox, indicating that mPEG-b-PPLGFc@Dox is less toxic than free Dox. In conclusion, mPEG-b-PPLGFc@Dox not only has higher antitumor efficacy but it reduces the damage to normal tissue.


Asunto(s)
Ferroptosis , Nanopartículas , Ratones , Animales , Metalocenos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Polietilenglicoles , Polímeros
20.
Aquat Toxicol ; 254: 106378, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36571890

RESUMEN

Prometryn, a widely used triazine herbicide in agriculture and aquaculture, has been commonly detected in marine environments, but its effects on the marine copepod are unknown. In this study, marine copepod Tigriopus japonicus was chronically exposed to environmentally relevant concentrations of prometryn to investigate its impacts and potential mechanism of action. The results showed that 0.5, 5, and 50 µg/L prometryn delayed the first spawning time and hatching time, reduced the fecundity, and inhibited the population growth rate. Moreover, exposure to 0.5, 5 and 50 µg/L prometryn decreased food ingestion, the content of C and N elements, nutrient accumulation and body size, but increased the content of 20-hydroxyecdysone (20E). Transcriptome analysis showed that 50 µg/L prometryn down-regulated 1431 genes, which were mainly enriched in lysosome pathway and chitin binding and cuticle construction process. The results of qRT-PCR showed that the expression of key genes involved in juvenile hormone synthesis and chitin metabolic pathways were also inhibited after prometryn exposure. Molecular docking revealed that prometryn could bind to ecdysone receptor (EcR) and UDP-N-acetylglucosamine pyrophosphorylase (UAP), components of the ecdysteroid nuclear receptor complex. Therefore, environmental relevant prometryn delayed the molting and development of T. japonicus by disrupting the ecdysone signal pathway and chitin metabolic pathway through binding to EcR and UAP. This study provides new insights into toxic effects and molecular mechanisms of prometryn on marine copepods.


Asunto(s)
Copépodos , Herbicidas , Contaminantes Químicos del Agua , Animales , Ecdisona , Prometrina/farmacología , Herbicidas/toxicidad , Quitina/metabolismo , Quitina/farmacología , Simulación del Acoplamiento Molecular , Contaminantes Químicos del Agua/toxicidad , Redes y Vías Metabólicas , Reproducción , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...