Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Gene ; 930: 148818, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098513

RESUMEN

Prostate cancer (PCa) incidence and cancer-related deaths are both high in the male population. Once castration-resistant prostate cancer (CRPC) has developed, PCa can be difficult to manage. Circular RNAs (circRNAs) play essential roles in the regulation of carcinogenesis and cancer progression. In CRPC, however, the potential molecular mechanisms and biological functions of circRNAs are yet to be defined. In this study, we conducted RNA sequencing on four hormone-sensitive prostate cancer (HSPC) tumor tissue samples and three CRPC samples. We recognized hsa_circ_0001610, a novel circRNA that was highly expressed in the cells and tissue of CRPC. We used quantitative real-time PCR (qRT-PCR) to evaluate hsa_circ_0001610 expression. We conducted in vivo and in vitro experiments and found that hsa_circ_0001610 overexpression caused PCa cells to proliferate and migrate and caused enzalutamide resistance. In contrast, the opposite results were found for hsa_circ_0001610 knockdown. We used Western blot, dual-luciferase reporter assays, RNA immunoprecipitation (RIP), qRT-PCR, and rescue experiments to reveal the underlying mechanisms of hsa_circ_0001610. Mechanistically, hsa_circ_0001610 acted as a molecular sponge for miR-1324 and thus reversed its inhibitory effect on its target gene PTK6. As a result, the PTK6 expression was enhanced, which accelerated PCa progression. The findings of this study confirmed that hsa_circ_0001610 drives the progression of PCa through the hsa_circ_0001610/miR-1324/PTK6 axis. Thus, hsa_circ_0001610 is potentially an effective therapeutic target and specific biomarker for advanced PCa.

2.
Anal Chem ; 96(29): 11985-11996, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38989829

RESUMEN

Accelerating the migration of interfacial carriers in heterojunctions is crucial for achieving highly sensitive photoelectrochemical (PEC) sensing. In this study, we developed three-dimensional (3D)/two-dimensional (2D) CuInS2/red phosphorus nanosheet (CuInS2/RP NS) n-n heterojunction functional materials with enhanced interfacial charge transfer capabilities for PEC sensing. The 3D CuInS2 serves as a conductive layer, providing excellent electronic conductivity and superior electron absorption and transport properties. In contrast, the ultrathin RP NS acts as a transport layer that enhances carrier mobility. The 3D/2D heterojunction ensures a large interface contact surface, shortening the carrier transport distance. A well-aligned band position generates a substantial built-in electric field, providing a significant driving force for efficient carrier separation and migration, thereby improving response sensitivity. A PEC aptamer sensor was constructed based on the synthesized heterostructure for ciprofloxacin detection. The detection limit of the CuInS2/RP NS aptamer sensor for ciprofloxacin is 2.03 × 10-15 mg·mL-1, with a linear range from 1.0 × 10-14 to 1.0 × 10-5 mg·mL-1. This work presents a strategy for enhancing the photoelectric response by modulating the interface structure of heterojunctions, thereby opening new prospects for the application of highly sensitive PEC sensors in antibiotic detection.

3.
Ecotoxicol Environ Saf ; 283: 116808, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39083865

RESUMEN

Exposure to arsenic (As) induces adverse effects on human health. Vitamins B1, B6, and C, as indispensable micronutrients for humans, have been proven to influence the metabolism and toxicity of ingested As. To determine the effect of vitamins on health risks associated with soil exposure, As bioaccessibility in 14 soil samples using four in vitro methods of IVG, PBET, SBRC, and UBM was measured with the addition of vitamins B1, B6, and C. With vitamins B1 and B6 addition, the gastric As bioaccessibility in 14 soil samples was reduced by 1.14-3.52 and 1.14-5.02 fold, respectively, and instead an increase in the intestinal bioaccessibility was presented in some cases. Vitamin C supplementation yielded higher As bioaccessibility in the gastric (1.13-13.02 fold) and small intestinal (1.21-33.35 fold) phases, respectively. As evidenced by the X-ray absorption near-edge spectroscopy (XANES) and Fourier transform infrared spectroscopy (FTIR) analysis, arsenic dissolution was promoted by Fe-As and hindered by the formation of Al-As fractions. Soil As dissolution in the simulated gastrointestinal tract was strongly influenced by soil minerals and ingested vitamins, due to the chelation of arsenic with vitamins and soil minerals such as Fe (hydr)oxides, and Fe(III) reductive dissolution to enhance As release by vitamin C as an iron reducer. These findings will expand the knowledge of health risks of exposure to As-contaminated soils and nutritional interventions aiming at the mitigation of As toxicity.

4.
Radiother Oncol ; 199: 110420, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029591

RESUMEN

BACKGROUND: Temporal lobe (TL) white matter (WM) injuries are often seen early after radiotherapy (RT) in nasopharyngeal carcinoma patients (NPCs), which fail to fully recover in later stages, exhibiting a "non-complete recovery pattern". Herein, we explored the correlation between non-complete recovery WM injuries and TL necrosis (TLN), identifying dosimetric predictors for TLN-related high-risk WM injuries. METHODS: We longitudinally examined 161 NPCs and 19 healthy controls employing multi-shell diffusion MRI. Automated fiber-tract quantification quantified diffusion metrics within TL WM tract segments. ANOVA identified non-complete recovery WM tract segments one-year post-RT. Cox regression models discerned TLN risk factors utilizing non-complete recovery diffusion metrics. Normal tissue complication probability (NTCP) models and dose-response analysis further scrutinized RT-related toxicity to high-risk WM tract segments. RESULTS: Seven TL WM tract segments exhibited a "non-complete recovery pattern". Cox regression analysis identified mean diffusivity of the left uncinate fasciculus segment 1, neurite density index (NDI) of the left cingulum hippocampus segment 1, and NDI of the right inferior longitudinal fasciculus segment 1 as TLN risk predictors (hazard ratios [HRs] with confidence interval [CIs]: 1.45 [1.17-1.81], 1.07 [1.00-1.15], and 1.15 [1.03-1.30], respectively; all P-values < 0.05). In NTCP models, D10cc.L, D20cc.L and D10cc.R demonstrated superior performance, with TD50 of 37.22 Gy, 24.96 Gy and 37.28 Gy, respectively. CONCLUSIONS: Our findings underscore the significance of the "non-complete recovery pattern" in TL WM tract segment injuries during TLN development. Understanding TLN-related high-risk WM tract segments and their tolerance doses could facilitate early intervention in TLN and improve RT protocols.

5.
JMIR Res Protoc ; 13: e56484, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885500

RESUMEN

BACKGROUND: Vascular cognitive impairment (VCI) persistently impairs cognition and the ability to perform activities of daily living, seriously compromising patients' quality of life. Previous studies have reported that disorders of serum iron metabolism and iron deposition in the brain can lead to inflammation, abnormal protein aggregation and degeneration, and massive neuronal apoptosis in the central nervous system, which in turn leads to a progressive decline in cognitive processes. Our previous clinical studies have found acupuncture to be a safe and effective intervention for treating VCI, but the specific mechanisms require further exploration. OBJECTIVE: The objective of the trial is to evaluate the clinical efficacy of Tongdu Xingshen acupuncture and to investigate whether it can improve VCI by regulating brain iron deposition and body iron metabolism. METHODS: In total, 42 patients with VCI and 21 healthy individuals will participate in this clinical trial. The 42 patients with VCI will be randomized into acupuncture and control groups, while the 21 healthy individuals will be in the healthy control group. Both the control and acupuncture groups will receive conventional medical treatment and cognitive rehabilitation training. In addition, the acupuncture group will receive electroacupuncture treatment with Tongdu Xingshen for 30 minutes each time, 6 times a week for 4 weeks. Meanwhile, the healthy control group will not receive any intervention. All 3 groups will undergo baseline assessments of brain iron deposition, serum iron metabolism, and neuropsychological tests after enrollment. The acupuncture and control groups will be evaluated again at the end of 4 weeks of treatment, as described earlier. By comparing neuropsychological test scores between groups, we will examine the efficacy of Tongdu Xingshen acupuncture in treating VCI. Additionally, we will test the correlations between neuropsychological test scores, brain iron deposition, and body iron metabolism indexes to explore the possible mechanisms of Tongdu Xingshen acupuncture in treating VCI. RESULTS: Participants are currently being recruited. The first participant was enrolled in June 2023, which marked the official start of the experiment. As of the submission of the paper, there were 23 participants. The recruitment process is expected to continue until June 2025, at which point the processing and analysis of data will begin. As of May 15, 2024, up to 30 people have been enrolled in this clinical trial. CONCLUSIONS: This study will provide data on the effects of Tongdu Xingshen acupuncture on cerebral iron deposition as well as somatic iron metabolism in patients with VCI. These results will help to prove whether Tongdu Xingshen acupuncture can improve VCI by regulating brain iron deposition and body iron metabolism, which will provide the clinical and theoretical basis for the wide application of acupuncture therapy in VCI rehabilitation. TRIAL REGISTRATION: China Clinical Registration Agency ChiCTR2300072188; https://tinyurl.com/5fcydtkv. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/56484.


Asunto(s)
Terapia por Acupuntura , Encéfalo , Disfunción Cognitiva , Hierro , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia por Acupuntura/métodos , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/terapia , Hierro/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
J Cell Mol Med ; 28(11): e18405, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842134

RESUMEN

Prostate cancer (PCa), a prevalent malignancy among elderly males, exhibits a notable rate of advancement, even when subjected to conventional androgen deprivation therapy or chemotherapy. An effective progression prediction model would prove invaluable in identifying patients with a higher progression risk. Using bioinformatics strategies, we integrated diverse data sets of PCa to construct a novel risk model predicated on gene expression and progression-free survival (PFS). The accuracy of the model was assessed through validation using an independent data set. Eight genes were discerned as independent prognostic factors and included in the prediction model. Patients assigned to the high-risk cohort demonstrated a diminished PFS, and the areas under the curve of our model in the validation set for 1-year, 3-year, and 5-year PFS were 0.9325, 0.9041 and 0.9070, respectively. Additionally, through the application of single-cell RNA sequencing to two castration-related prostate cancer (CRPC) samples and two hormone-related prostate cancer (HSPC) samples, we discovered that luminal cells within CRPC exhibited an elevated risk score. Subsequent molecular biology experiments corroborated our findings, illustrating heightened SYK expression levels within tumour tissues and its contribution to cancer cell migration. We found that the knockdown of SYK could inhibit migration in PCa cells. Our progression-related risk model demonstrated the potential prognostic value of SYK and indicated its potential as a target for future diagnosis and treatment strategies in PCa management.


Asunto(s)
Biología Computacional , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata , Masculino , Humanos , Biología Computacional/métodos , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/diagnóstico , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Factores de Riesgo , Línea Celular Tumoral
7.
ACS Appl Mater Interfaces ; 16(22): 28570-28577, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38769608

RESUMEN

Despite being heralded as the "holy grail" of anodes for their high theoretical specific capacity, lithium (Li) metal anodes still face practical challenges due to difficulties in fabricating ultrathin Li with controllable thickness and suppressing Li dendrites growth. Herein, we introduce a simple and cost-effective dip-coating method to fabricate ultrathin lithium-tin (LiSn) anode with adjustable thicknesses ranging from 4.5 to 45 µm. The in situ formation of Li22Sn5 alloy improves the wettability of the molten Li, enabling the casting of ultrathin Li metal layers on different substrates. More importantly, the abundant Li22Sn5 lithiophilic sites significantly lower the nucleation overpotential, inducing uniform Li deposition and accelerating the electrochemical reaction at the interface. As a result, the symmetric cell assembled with LiSn-Cu electrodes can cycle stably for more than 120 h with a charge/discharge depth of 50%, which is 1.5 times longer than the lifespan of the pure Li anode. In the full cells paired with NCM cathode, the discharge specific capacity is improved from 13.84 to 70.31 mA h g-1 with the LiSn-Cu anode at 8 C. The LiSn-Cu||NCM full cell realized a high energy density of 724.9 Wh kg-1 at the active material level with an N/P ratio of 1.4.

8.
Chem Commun (Camb) ; 60(46): 5980-5983, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38769815

RESUMEN

Tuning the electrode-molecule interface stands at the heart of functional single-molecule devices. Herein, we report that the electrode-molecule interface of difluoro-substituted benzothiadiazole (FBTZ)-based single-molecule junctions can be modulated by the bias voltage. At low bias voltage (100 mV), the dative Au-N linkage is formed and at high bias voltage (600 mV), a covalent Au-C linkage is constructed. These junctions show distinct conductance. Interestingly, dominant charge carriers in Au-N- and Au-C-based junctions are different, as evidenced by dft calculations. These results provide a new strategy for regulating the electrode-molecule interface, which will advance the development of molecular electronics.

9.
Macromol Rapid Commun ; 45(14): e2400102, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38648071

RESUMEN

The II-I phase transition of isotactic poly(1-butene) (iPBu) leads to improved mechanical performance. However, this will take several weeks and increase storage and processing costs. In this work, shear forces are introduced into the supercooled iPBu melt, and the effects of isothermal crystallization temperature (Tc) and shear temperature (Tshear) on crystallization and phase transition are explored. Shear-induced transcrystalline morphology of Form II with a significantly shortened crystallization induction period can be observed at relatively high Tc (105 °C). Besides, the shear-induced Form II can transit to Form I faster than the unsheared one. In addition, the phase transition rate increases as the Tshear decreases, with the fastest rate occurring at Tshear of 120 °C. The half transition time (t1/2) is measured as 6.3 h when Tc = 105 °C, Tshear = 120 °C, which is much shorter than the 20.7 h required for unsheared samples. The accelerated phase transition of iPBu can be attributed to the stretching of molecular chains, resulting from shear treatment. This study provides a quantitative analysis of the influence of the shear treatment and the Tshear on the II-I phase transition rate. It also presents a cost-effective and straightforward approach for expediting the phase transition process.


Asunto(s)
Transición de Fase , Polienos/química , Cristalización , Temperatura , Polímeros/química , Resistencia al Corte
10.
Bioelectrochemistry ; 158: 108712, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636365

RESUMEN

The main challenges (sluggish electron transfer, low energy density) hinder the future application of enzymatic biofuel cells (EBFCs), which urgent to take effective measures to solve these issues. In this work, a composite of Au nanoparticles decorated graphdiyne (AuNPs@GDY) is fabricated and employed as the carrier of enzyme (G6PDH), and a mechanism based on π-π interaction of electron transfer is proposed to understand bioelectrocatalysis processes. The results show that the AuNPs@GDY composite exhibits the highest current density among the three materials (GDY, AuNPs, and AuNPs@GDY), which is 3.4 times higher than that of GDY and 2.5 times higher than that of AuNPs. Furthermore, the results reveal that the AuNPs could increase the loading of enzymes and provide more active site for reaction, while GDY provides highly π-conjugated structure and unique sp/sp2-hybridized linkages interface. This work provides new insights to explore a theoretical basis for the development of more efficient bioelectrocatalytic systems.


Asunto(s)
Fuentes de Energía Bioeléctrica , Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Biocatálisis , Grafito/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Técnicas Electroquímicas/métodos
11.
Exp Dermatol ; 33(4): e15082, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38664884

RESUMEN

As a chronic relapsing disease, psoriasis is characterized by widespread skin lesions. The Psoriasis Area and Severity Index (PASI) is the most frequently utilized tool for evaluating the severity of psoriasis in clinical practice. Nevertheless, long-term monitoring and precise evaluation pose difficulties for dermatologists and patients, which is time-consuming, subjective and prone to evaluation bias. To develop a deep learning system with high accuracy and speed to assist PASI evaluation, we collected 2657 high-quality images from 1486 psoriasis patients, and images were segmented and annotated. Then, we utilized the YOLO-v4 algorithm to establish the model via four modules, we also conducted a human-computer comparison through quadratic weighted Kappa (QWK) coefficients and intra-class correlation coefficients (ICC). The YOLO-v4 algorithm was selected for model training and optimization compared with the YOLOv3, RetinaNet, EfficientDet and Faster_rcnn. The model evaluation results of mean average precision (mAP) for various lesion features were as follows: erythema, mAP = 0.903; scale, mAP = 0.908; and induration, mAP = 0.882. In addition, the results of human-computer comparison also showed a median consistency for the skin lesion severity and an excellent consistency for the area and PASI score. Finally, an intelligent PASI app was established for remote disease assessment and course management, with a pleasurable agreement with dermatologists. Taken together, we proposed an intelligent PASI app based on the image YOLO-v4 algorithm that can assist dermatologists in long-term and objective PASI scoring, shedding light on similar clinical assessments that can be assisted by computers in a time-saving and objective manner.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Psoriasis , Índice de Severidad de la Enfermedad , Psoriasis/patología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
12.
Mikrochim Acta ; 191(5): 243, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38575711

RESUMEN

PEDOT: PSS has been used as a biomimetic uric acid (UA) sensor but suffers from unfortunate low detection limit (LOD), narrow detection range and poor stability. Herein, we get graphdiyne (GDY) marry PEDOT:PSS to create a very stable GDY@PEDOT:PSS heterostructure for a biomimetic UA sensor, which accomplishes the lowest LOD (6 nM), the widest detection range (0.03 µM-7 mM) and the longest stability (98.1% for 35 days) among the related UA sensors. The sensor was successfully used to in situ real-time detection of  UA in sweat. The enhancement mechanisms of the sensor were investigated, and results discover that C≡C of GDY and C = C of PEDOT:PSS can cross-link each other by π-π interactions, making not only the former strongly resistant against oxidation deterioration, but also causes the latter to efficiently prevent water swelling of polymer for poor conductivity, thereby leading to high stability from both components. While the stabilized heterostructure can also offer more active sites by enhanced absorption of UA via π-π interactions for highly sensitive detection of UA. This work holds great promise for a practical sweat UA sensor while providing scientific insight to design a stable and electrocatalytically active structure from two unstable components.


Asunto(s)
Grafito , Sudor , Ácido Úrico , Límite de Detección
13.
Antioxidants (Basel) ; 13(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38671832

RESUMEN

The ovary plays a crucial role in the reproductive system of female animals. Ovarian problems such as ovarian insufficiency, premature aging, polycystic ovary syndrome, and ovarian cysts may lead to ovulation disorders, abnormal hormone secretion, or luteal dysfunction, thereby increasing the risk of infertility and abortion. Only when the ovarian function and other organs in the reproductive system remain healthy and work normally can female animals be ensured to carry out reproductive activities regularly, improve the pregnancy rate and litter size, promote the healthy development of the fetus, and then improve their economic value. The follicle, as the functional unit of the ovary, is composed of theca cells, granulosa cells (GCs), and oocytes. GCs are the largest cell population and main functional unit in follicles and provide the necessary nutrients for the growth and development of follicles. N-acetylcysteine (NAC) is a prevalent and cell-permeable antioxidant molecule that effectively prevents apoptosis and promotes cellular survival. Over the past few years, its function in boosting reproductive performance in animals at the cellular level has been widely acknowledged. However, its specific role and mechanism in influencing GCs is yet to be fully understood. The objective of this study was to examine the effects of NAC on ovarian damage in female rabbits. For this purpose, D-galactose (D-gal) was first used to establish a model of damaged GCs, with exposure to 1.5 mg/mL of D-gal leading to substantial damage. Subsequently, varying concentrations of NAC were introduced to determine the precise mechanism through which it influences cell damage. Based on the results of the Cell Counting Kit-8 assay, flow cytometry, and Western blotting, it was found that 0.5 mg/mL of NAC could significantly suppress cell apoptosis and promote proliferation. In particular, it decreased the expression levels of Bax, p53, and Caspase-9 genes, while concurrently upregulating the expression of the BCL-2 gene. Moreover, NAC was found to alleviate intracellular oxidative stress, suppress the discharge of mitochondrial Cytochrome c, and boost the enzymatic activities of CAT (Catalase), GSH (Glutathione), and SOD (Superoxide dismutase). RNA sequencing analysis subsequently underscored the critical role of the PI3K/Akt/mTOR pathway in governing proliferation and apoptosis within GCs. These findings demonstrated that NAC could significantly influence gene expression within this pathway, thereby clarifying the exact relationship between the PI3K/Akt/mTOR signaling cascade and the underlying cellular processes controlling proliferation and apoptosis. In conclusion, NAC can reduce the expression of Bax, p53, and Caspase-9 genes, inhibit the apoptosis of GCs, improve cell viability, and resist D-gal-induced oxidative stress by increasing the activity of CAT, GSH, and SOD. The molecular mechanism of NAC in alleviating D-gal-induced ovarian GC injury in female rabbits by regulating the PI3K/Akt/mTOR signaling pathway provides experimental evidence for the effect of NAC on animal reproductive function at the cellular level.

14.
J Opt Soc Am A Opt Image Sci Vis ; 41(3): 550-559, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437446

RESUMEN

Using line structured light to measure metal surface topography, the extraction error of the stripe center is significant due to the influence of the optical characteristics of the metal surface and the scattering noise. This paper proposes a sub-pixel stripe center extraction method based on adaptive threshold segmentation and a gradient weighting strategy to address this issue. First, we analyze the characteristics of the stripe image of the measured metal's surface morphology. Relying on the morphological features of the image, the image is segmented to remove the effect of background noise and to obtain the region of interest in the image. Then, we use the gray-gravity method to get the rough center coordinates of the stripes. We extend the stripes in the width direction using the rough center coordinates as a reference to determine the center of the stripes for extraction after segmentation. Next, we adaptively determine the boundary threshold utilizing the region's grayscale. Finally, we use the gradient weighting strategy to extract the sub-pixel stripe center. The experimental results show that the proposed method effectively eliminates the interference of metal surface scattering on 3D reconstruction. The average height error of the measured standard block is 0.025 mm, and the repeatability of the measurement accuracy is 0.026 mm.

15.
Apoptosis ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478171

RESUMEN

Prostate cancer (PCa) is one of the most common cancers affecting the health of men worldwide. Castration-resistant prostate cancer (CRPC), the advanced and refractory phase of prostate cancer, has multiple mechanisms of resistance to androgen deprivation therapy (ADT) such as AR mutations, aberrant androgen synthase, and abnormal expression of AR-related genes. Based on the research of the AR pathway, new drugs for the treatment of CRPC have been developed in clinical practice, such as Abiraterone and enzalutamide. However, many areas in this pathway are still worth exploring. In this study, single-cell sequencing analysis was utilized to scrutinize significant genes in the androgen receptor (AR) pathway related to CRPC. Our analysis of single-cell sequencing combined with bulk-cell sequencing revealed a substantial downregulation of AR-regulated AFF3 in CRPC. Overexpression of AFF3 restricted the proliferation and migration of prostate cancer cells whilst also increasing their sensitivity towards enzalutamide, while knockdown of AFF3 had the opposite effect. To elucidate the mechanism of tumor inhibition by AFF3, we applied GSVA and GSEA to investigate the metabolic pathways related to AFF3 and revealed that AFF3 had an impact on fatty acids metabolism and ferroptosis through the regulation of ACSL4 protein expression. Based on correlation analysis and flow cytometry, we can speculate that AFF3 can impact the sensitivity of the CRPC cell lines to the ferroptosis inducer (RSL3) by regulating ACSL4. Therefore, our findings may provide new insights into the mechanisms of drug resistance in CRPC, and AFF3 may serve as a novel prognostic biomarker in prostate cancer.

16.
ACS Appl Mater Interfaces ; 16(12): 15426-15434, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38497376

RESUMEN

High-conducting single-molecule junctions have attracted a great deal of attention, but insulating single-molecule junctions, which are critical in molecular circuits, have been less investigated due to the long-standing challenges. Herein, the in situ formation of a Au-C linker via electrical-potential-mediated sp2 C-H bond metalation of polyfluoroarenes with the assistance of scanning tunneling microscope-based break junction technique is reported. This metalation process is bias-dependent and occurs with an electropositive electrode, and the formed junction is highly oriented. Surprisingly, these polyfluoroarenes exhibit unexpected low conductance even under short molecular lengths and are superior molecular insulators. Flicker noise analysis and DFT calculations confirm that the insulating properties of polyfluoroarenes are ascribed to their multiple fluorine substituents. Our results pave a way for constructing oriented asymmetric molecular junctions and provide an efficient strategy to suppress the single-molecule conductance, which will aid in the design of molecular insulators and advance the development of self-integrating functional molecular circuits.

17.
Sci Total Environ ; 925: 171729, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492589

RESUMEN

Stabilization of arsenic-contaminated soils with ferrous sulfate has been reported in many studies, but there are few stabilization effects assessments simultaneously combined chemical extraction methods and in vitro methods, and further explored the corresponding alternative relationships. In this study, ferrous sulfate was added at FeAs molar ratio of 0, 5, 10 and 20 to stabilize As in 10 As spiked soils. Stabilization effects were assessed by 6 chemical extraction methods (toxicity characteristic leaching procedures (TCLP), HCl, diethylenetriamine pentaacetic acid (DTPA), CaCl2, CH3COONH4, (NH4)2SO4), and 4 in vitro methods (physiologically based extraction test (PBET), in vitro gastrointestinal method (IVG), Solubility Bioaccessibility Research Consortium (SBRC) method, and the Unified Bioaccessibility Research Group of Europe method (UBM)). The results showed that the HCl method provides the most conservative assessment results in non-calcareous soils, and in alkaline calcareous soils, (NH4)2SO4 method provides a more conservative assessment. In vitro methods provided significantly higher As concentrations than chemical extraction methods. The components of the simulated digestion solution as well as the parameters may have contributed to this result. The small intestinal phase of PBET and SBRC method produced the highest and lowest ranges of As concentrations, and in the range of 127-462 mg/kg and 68-222 mg/kg when the FeAs molar ratio was 5. So the small intestinal phase of PBET method may provide the most conservative assessment results, while the same phase of SBRC may underestimate the human health risks of As in stabilized soil by 51 %(at a FeAs molar ratio of 5). Spearman correlation analysis indicated that the small intestinal phase of PBET method correlated best with HCl method (correlation coefficient: 0.71). This study provides ideas for the assessment of stabilization efforts to ensure that stabilization meets ecological needs while also being less harmful to humans.


Asunto(s)
Arsénico , Compuestos Ferrosos , Contaminantes del Suelo , Humanos , Arsénico/análisis , Contaminantes del Suelo/análisis , Contaminación Ambiental/análisis , Suelo , Disponibilidad Biológica
18.
Math Biosci Eng ; 21(2): 3129-3145, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38454722

RESUMEN

Biometric authentication prevents losses from identity misuse in the artificial intelligence (AI) era. The fusion method integrates palmprint and palm vein features, leveraging their stability and security and enhances counterfeiting prevention and overall system efficiency through multimodal correlations. However, most of the existing multi-modal palmprint and palm vein feature extraction methods extract only feature information independently from different modalities, ignoring the importance of the correlation between different modal samples in the class to the improvement of recognition performance. In this study, we addressed the aforementioned issues by proposing a feature-level joint learning fusion approach for palmprint and palm vein recognition based on modal correlations. The method employs a sparse unsupervised projection algorithm with a "purification matrix" constraint to enhance consistency in intra-modal features. This minimizes data reconstruction errors, eliminating noise and extracting compact, and discriminative representations. Subsequently, the partial least squares algorithm extracts high grayscale variance and category correlation subspaces from each modality. A weighted sum is then utilized to dynamically optimize the contribution of each modality for effective classification recognition. Experimental evaluations conducted for five multimodal databases, composed of six unimodal databases including the Chinese Academy of Sciences multispectral palmprint and palm vein databases, yielded equal error rates (EER) of 0.0173%, 0.0192%, 0.0059%, 0.0010%, and 0.0008%. Compared to some classical methods for palmprint and palm vein fusion recognition, the algorithm significantly improves recognition performance. The algorithm is suitable for identity recognition in scenarios with high security requirements and holds practical value.


Asunto(s)
Inteligencia Artificial , Identificación Biométrica , Identificación Biométrica/métodos , Algoritmos , Mano/anatomía & histología , Aprendizaje
19.
Anal Chem ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324759

RESUMEN

Point-of-care testing (POCT) has attracted great interest because of its prominent advantages of rapidness, precision, portability, and real-time monitoring, thus becoming a powerful biomedical device in early clinical diagnosis and convenient medical treatments. However, its complicated manufacturing process and high expense severely impede mass production and broad applications. Herein, an innovative but inexpensive integrated sandwich-paper three-dimensional (3D) cell sensing device is fabricated to in situ wirelessly detect H2O2 released from living cells. The paper-based electrochemical sensing device was constructed by a sealed sandwiched bottom plastic film/fiber paper/top hole-centered plastic film that was printed with patterned electrodes. A new (Fe, Mn)3(PO4)2/N-doped carbon nanorod was developed and immobilized on the sensing carbon electrode while cell culture solution filled the exposed fiber paper, allowing living cells to grow on the fiber paper surrounding the electrode. Due to the significantly shortening diffusion distance to access the sensing sites by such a unique device and a rationally tuned ratio of Fe2+/Mn2+, the device exhibits a fast response time (0.2 s), a low detection limit (0.4 µM), and a wide detection range (2-3200 µM). This work offers great promise for a low-cost and highly sensitive POCT device for practical clinic diagnosis and broad POCT biomedical applications.

20.
Sensors (Basel) ; 24(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38400346

RESUMEN

The performance of the capacitive gap-sensing system plays a critical role in a satellite-based gravity gradiometer that is developed using an electrostatic accelerometer. The capacitive sensing gain mainly depends on the stabilized injection bias amplitude, the gain of the transformer bridge, and the trans-impedance amplifier. Previous studies have indicated that amplitude noise is the main factor influencing the noise of capacitive displacement detection. Analyzing the capacitive gap-sensing system indicates that the amplitude, frequency, phase, and broadband noises of the stabilized injection bias have varying levels of influence on the performance of the detection system. This paper establishes a model to clarify the mentioned effects. The validation of the sub-tests demonstrates that the analysis and evaluation results of various noise coefficients are highly consistent with the model's predicted outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA